Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Research Article

Banaba Restricts Brain Damage: Neuroprotective Role in Cerebral Ischemiareperfusion Injury

Author(s): Maneesh Soni, Avinash Singh Mandloi, Kapil Baraskar, Manisha Kawadkar and Vipin Dhote*

Volume 1, 2023

Published on: 07 November, 2023

Article ID: e2210299X261536 Pages: 7

DOI: 10.2174/012210299X261536231025093606

open_access

Open Access Journals Promotions 2
conference banner
Abstract

Background: Glucose regulation and energy homeostasis mitigate energy crises milieu in reperfusion injury. We investigated Banaba for its outcomes on cerebral ischemia reperfusion (IR) injury using artery occlusion in rats. The pleiotropic activity of Banaba on various debilitating mechanisms inducing reperfusion injury was evaluated.

Aim: This study aimedto evaluate the pharmacological activity of Banaba (Lagerstroemia speciosa) extract on reperfusion injury and investigate the effect of Banaba on vascular permeability, oxidative stress and cellular damage in ischemia reperfusion injury in rats.

Methods: Transient ischemia and reperfusion through occlusion of the middle cerebral artery (MCAO) lead to Cerebral IR injury in Wistar rats; it was treated with oral administration of Banaba extract (100mg/kg and 200mg/kg). The injury outcomes were evaluated after 22 hours of reperfusion by determining cellular injury, its impact on musculoskeletal coordination, multiple free radical scavenging measures (SOD, GSH, LPO) and vascular permeability of the blood-brain barrier.

Results: Banaba treatment led to a marked improvement in neurological outcomes by enhanced coordination and reduced cerebral infarct in comparison to vehicle control ischemic group. Free radical scavenging activity (SOD and GSH) was significantly better, and lipid peroxidation was reduced by Banaba treatment; it also reduced the vascular permeability of the blood-brain barrier. We observed that a lower dose of Banaba (100 mg/kg) was more effective than the higher (200 mg/kg) in ischemic rats. The anti-inflammatory and anti-oxidant activity could drive the neuroprotective outcomes of Banaba in cerebral IR injury. The critical factor of the beneficial effect of Banaba in cerebral injury is the optimization of dose in this experimental setup of reperfusion injury using rats.

Conclusion: The recovery of injury could be attributed to Banaba’s multi-factorial effect targeting free radicals, inflammation, and necrosis during ischemiareperfusion injury.

Keywords: Banaba, Cerebral ischemia, Free radicals, Inflammation, Middle cerebral artery occlusion, Reperfusion injury.

[1]
Thiyagarajan, M.; Kaul, C.L.; Sharma, S.S. Neuroprotective efficacy and therapeutic time window of peroxynitrite decomposition catalysts in focal cerebral ischemia in rats #. Br. J. Pharmacol., 2004, 142(5), 899-911.
[http://dx.doi.org/10.1038/sj.bjp.0705811] [PMID: 15197101]
[2]
Pham, M.; Helluy, X.; Kleinschnitz, C.; Kraft, P.; Bartsch, A.J.; Jakob, P.; Nieswandt, B.; Bendszus, M.; Stoll, G. Sustained reperfusion after blockade of glycoprotein-receptor-Ib in focal cerebral ischemia: An MRI study at 17.6 Tesla. PLoS One, 2011, 6(4), e18386.
[http://dx.doi.org/10.1371/journal.pone.0018386] [PMID: 21483769]
[3]
Yang, C.; Wang, H.; Zhang, S.; Cheng, Y.; Sun, J. Neuroprotective effects of NKN on focal cerebral ischemia in rats. Turk Neurosurg., 2012, 22(1), 1-6.
[PMID: 22274963]
[4]
Jonnala, R.R.; Buccafusco, J.J. Inhibition of nerve growth factor signaling by peroxynitrite. J. Neurosci. Res., 2001, 63(1), 27-34.
[http://dx.doi.org/10.1002/1097-4547(20010101)63:1<27::AID-JNR4>3.0.CO;2-#] [PMID: 11169611]
[5]
Dhote, V.; Balaraman, R. Anti-oxidant activity mediated neuroprotective potential of trimetazidine on focal cerebral ischaemia-reperfusion injury in rats. Clin. Exp. Pharmacol. Physiol., 2008, 35(5-6), 630-637.
[http://dx.doi.org/10.1111/j.1440-1681.2008.04845.x] [PMID: 18318745]
[6]
Chen, S.D.; Yang, D.I.; Lin, T.K.; Shaw, F.Z.; Liou, C.W.; Chuang, Y.C. Roles of oxidative stress, apoptosis, PGC-1α and mitochondrial biogenesis in cerebral ischemia. Int. J. Mol. Sci., 2011, 12(10), 7199-7215.
[http://dx.doi.org/10.3390/ijms12107199] [PMID: 22072942]
[7]
Klein, G.; Kim, J.; Himmeldirk, K.; Cao, Y.; Chen, X. Antidiabetes and anti-obesity activity of Lagerstroemia speciosa. Evid. Based Complement. Alternat. Med., 2007, 4(4), 401-407.
[http://dx.doi.org/10.1093/ecam/nem013] [PMID: 18227906]
[8]
Rohit Singh, T.; Ezhilarasan, D. Lagerstroemia speciosa (L.) Pers., ethanolic extract attenuates simultaneously administered isoniazid‐ and dapsone‐induced hepatotoxicity in rats. J. Food Biochem., 2021, 45(8), e13830.
[http://dx.doi.org/10.1111/jfbc.13830] [PMID: 34155655]
[9]
Yamada, K.; Hosokawa, M.; Yamada, C.; Watanabe, R.; Fujimoto, S.; Fujiwara, H.; Kunitomo, M.; Miura, T.; Kaneko, T.; Tsuda, K.; Seino, Y.; Inagaki, N. Dietary corosolic acid ameliorates obesity and hepatic steatosis in KK-Ay mice. Biol. Pharm. Bull., 2008, 31(4), 651-655.
[http://dx.doi.org/10.1248/bpb.31.651] [PMID: 18379057]
[10]
Park, C.; Lee, J.S. Banaba: The natural remedy as antidiabetic drug. Biomed. Res., 2011, 22(2), 125-129.
[11]
Dhote, V.; Balaraman, R.; Raja, M.K. Cardioprotective effect of banaba on myocardial ischemia/reperfusion injury in rats. J. Nat. Rem., 2020, 140-148.
[http://dx.doi.org/10.18311/jnr/2020/25156]
[12]
Chomova, M.; Zitnanova, I. Look into brain energy crisis and membrane pathophysiology in ischemia and reperfusion. Stress, 2016, 19(4), 341-348.
[http://dx.doi.org/10.1080/10253890.2016.1174848] [PMID: 27095435]
[13]
Reichmann, H.; Maltese, W.A.; DeVivo, D.C. Enzymes of fatty acid β-oxidation in developing brain. J. Neurochem., 1988, 51(2), 339-344.
[http://dx.doi.org/10.1111/j.1471-4159.1988.tb01044.x] [PMID: 2899130]
[14]
Longa, EZ; Weinstein, PR; Carlson, S; Cummins, R Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20(1), 84-91.
[15]
Ghoneim, A.; Abdel-Naim, A.B.; Khalifa, A.; El-Denshary, E.S. Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacol. Res., 2002, 46(3), 273-279.
[http://dx.doi.org/10.1016/S1043-6618(02)00123-8] [PMID: 12220971]
[16]
Bederson, JB; Pitts, LH; Tsuji, M; Nishimura, MC; Davis, RL; Bartkowski, H Rat middle cerebral artery occlusion: Evaluation of the model and development of a neurologic examination. Stroke, 1986, 17(3), 472-476.
[17]
Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem., 1972, 247(10), 3170-3175.
[http://dx.doi.org/10.1016/S0021-9258(19)45228-9] [PMID: 4623845]
[18]
Moron, MS; Depierre, JW; Mannervik, B Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim. Biophys. Acta., 1979, 582(1), 67-78.
[19]
Slater, T.F.; Sawyer, B.C. The stimulatory effect of carbon tetrachloride and other halogenoalkanes or peroxidative reactions in rat liver fractions in vitro. Biochem. J., 1971, 123(5), 805-814.
[http://dx.doi.org/10.1042/bj1230805] [PMID: 4399399]
[20]
Gürsoy-Özdemir, Y.; Bolay, H.; Saribaş, O.; Dalkara, T. Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. Stroke, 2000, 31(8), 1974-1981.
[http://dx.doi.org/10.1161/01.STR.31.8.1974] [PMID: 10926966]
[21]
Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[22]
Bai, N.; He, K.; Roller, M.; Zheng, B.; Chen, X.; Shao, Z.; Peng, T.; Zheng, Q. Active compounds from Lagerstroemia speciosa, insulin-like glucose uptake-stimulatory/inhibitory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J. Agric. Food Chem., 2008, 56(24), 11668-11674.
[http://dx.doi.org/10.1021/jf802152z] [PMID: 19053366]
[23]
Liu, X.; Kim, J.; Li, Y.; Li, J.; Liu, F.; Chen, X. Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells. J. Nutr., 2005, 135(2), 165-171.
[http://dx.doi.org/10.1093/jn/135.2.165] [PMID: 15671208]
[24]
Vijaykumar, K.; Murthy, P.B.; Kannababu, S.; Syamasundar, B.; Subbaraju, G.V. Quantitative determination of corosolic acid in Lagerstroemia speciosa leaves, extracts and dosage forms. Int. J. Appl. Sci. Eng., 2006, 4(2), 103-114.
[25]
Li, J.; Qi, Y.; Liu, H.; Cui, Y.; Zhang, L.; Gong, H.; Li, Y.; Li, L.; Zhang, Y. Acute high-altitude hypoxic brain injury: Identification of ten differential proteins. Neural Regen. Res., 2013, 8(31), 2932-2941.
[PMID: 25206614]
[26]
Zhou, X.; Li, C.; Xu, W.; Chen, J. Trimetazidine protects against smoking-induced left ventricular remodeling via attenuating oxidative stress, apoptosis, and inflammation. PLoS One, 2012, 7(7), e40424.
[http://dx.doi.org/10.1371/journal.pone.0040424] [PMID: 22792312]
[27]
Almeida, A.; Almeida, J.; Bolaños, J.P.; Moncada, S. Different responses of astrocytes and neurons to nitric oxide: The role of glycolytically generated ATP in astrocyte protection. Proc. Natl. Acad. Sci., 2001, 98(26), 15294-15299.
[http://dx.doi.org/10.1073/pnas.261560998] [PMID: 11742096]
[28]
Nowak, P.; Zagził, T.; Konecki, J.; Szczerbak, G.; Szkilnik, R.; Niwiński, J.; Gorzałek, J.; Kostrzewa, R.M.; Brus, R. Trimetazidine increases [3H]glucose uptake in rat brain. Pharmacol. Rep., 2006, 58(4), 559-561.
[PMID: 16963803]
[29]
Yu, L.; Yang, B.; Wang, J.; Zhao, L.; Luo, W.; Jiang, Q.; Yang, J. Time course change of COX2-PGI2/TXA2 following global cerebral ischemia reperfusion injury in rat hippocampus. Behav. Brain Funct., 2014, 10(1), 42-52.
[http://dx.doi.org/10.1186/1744-9081-10-42] [PMID: 25388440]
[30]
Fang, J.; Holmgren, A. Inhibition of thioredoxin and thioredoxin reductase by 4-hydroxy-2-nonenal in vitro and in vivo. J. Am. Chem. Soc., 2006, 128(6), 1879-1885.
[http://dx.doi.org/10.1021/ja057358l] [PMID: 16464088]
[31]
Kawabori, M.; Yenari, M. Inflammatory responses in brain ischemia. Curr. Med. Chem., 2015, 22(10), 1258-1277.
[http://dx.doi.org/10.2174/0929867322666150209154036] [PMID: 25666795]
[32]
Rink, C.; Khanna, S. Significance of brain tissue oxygenation and the arachidonic acid cascade in stroke. Antioxid. Redox Signal., 2011, 14(10), 1889-1903.
[http://dx.doi.org/10.1089/ars.2010.3474] [PMID: 20673202]
[33]
Hinson, H.E.; Rowell, S.; Schreiber, M. Clinical evidence of inflammation driving secondary brain injury. J. Trauma Acute. Care Surg., 2015, 78(1), 184-191.
[http://dx.doi.org/10.1097/TA.0000000000000468] [PMID: 25539220]
[34]
Mousa, A.M.; El-Sammad, N.M.; Abdel-Halim, A.H.; Anwar, N.; Khalil, W.K.B.; Nawwar, M.; Hashim, A.N.; Elsayed, E.A.; Hassan, S.K. Lagerstroemia speciosa (L.) Pers leaf extract attenuates lung tumorigenesis via alleviating oxidative stress, inflammation and apoptosis. Biomolecules, 2019, 9(12), 871-892.
[http://dx.doi.org/10.3390/biom9120871] [PMID: 31842482]
[35]
Priya, T.T.; Sabu, M.C.; Jolly, C.I. Free radical scavenging and anti-inflammatory properties of Lagerstroemia speciosa (L). Inflammopharmacology, 2008, 16(4), 182-187.
[http://dx.doi.org/10.1007/s10787-008-7002-6] [PMID: 18759076]
[36]
Sai Saraswathi, V.; Kamarudheen, N.; BhaskaraRao, K.V.; Santhakumar, K. Phytoremediation of dyes using Lagerstroemia speciosa mediated silver nanoparticles and its biofilm activity against clinical strains Pseudomonas aeruginosa. J. Photochem. Photobiol. B, 2017, 168, 107-116.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.02.004] [PMID: 28212517]

© 2024 Bentham Science Publishers | Privacy Policy