Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Role of Plant Lectins in the Cellular and Molecular Processes of Skin Wound Repair: An Overview

Author(s): Guilherme Feijó de Sousa, Rafael Guerra Lund and Luciano da Silva Pinto*

Volume 29, Issue 33, 2023

Published on: 06 November, 2023

Page: [2618 - 2625] Pages: 8

DOI: 10.2174/0113816128264103231030093124

Price: $65

conference banner
Abstract

There is increasing pressure for innovative methods to treat compromised and difficult-to-heal wounds. Consequently, new strategies are needed for faster healing, reducing infection, hydrating the wound, stimulating healing mechanisms, accelerating wound closure, and reducing scar formation. In this scenario, lectins present as good candidates for healing agents. Lectins are a structurally heterogeneous group of glycosylated or non-glycosylated proteins of non-immune origin, which can recognize at least one specific monosaccharide or oligosaccharide specific for the reversible binding site. Cell surfaces are rich in glycoproteins (glycosidic receptors) that potentially interact with lectins through the number of carbohydrates reached. This lectin-cell interaction is the molecular basis for triggering various changes in biological organisms, including healing mechanisms. In this context, this review aimed to (i) provide a comprehensive overview of relevant research on the potential of vegetable lectins for wound healing and tissue regeneration processes and (ii) discuss future perspectives.

Keywords: Tissue healing, lectin, healing activity, glycoproteins, healing lectins, cellular signaling pathways.

[1]
Panjwani N. Role of galectins in re-epithelialization of wounds. Ann Transl Med 2014; 2(9): 89.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2014.09.09] [PMID: 25405164]
[2]
Seo GY, Lim Y, Koh D, et al. TMF and glycitin act synergistically on keratinocytes and fibroblasts to promote wound healing and anti-scarring activity. Exp Mol Med 2017; 49(3): e302-13.
[http://dx.doi.org/10.1038/emm.2016.167] [PMID: 28303029]
[3]
Tabassum N, Hamdani M. Plants used to treat skin diseases. Pharmacogn Rev 2014; 8(15): 52-60.
[http://dx.doi.org/10.4103/0973-7847.125531] [PMID: 24600196]
[4]
Balbino CA, Pereira LM, Curi R. Mechanisms involved in healing: A review. Braz J Pharm Sci 2005; 41(1): 27-51.
[http://dx.doi.org/10.1590/S1516-93322005000100004]
[5]
Lin YT, Chen JS, Wu MH, et al. Galectin-1 accelerates wound healing by regulating the neuropilin-1/Smad3/NOX4 pathway and ROS production in myofibroblasts. J Invest Dermatol 2015; 135(1): 258-68.
[http://dx.doi.org/10.1038/jid.2014.288] [PMID: 25007042]
[6]
Mishra A, Behura A, Mawatwal S, et al. Structure-function and application of plant lectins in disease biology and immunity. Food Chem Toxicol 2019; 134(9): 110827.
[http://dx.doi.org/10.1016/j.fct.2019.110827] [PMID: 31542433]
[7]
Kennedy JF, Palva PMG, Corella MTS, Cavalcanti MSM, Coelho LCBB. Lectins, versatile proteins of recognition: A review. Carbohydr Polym 1995; 26(3): 219-30.
[http://dx.doi.org/10.1016/0144-8617(94)00091-7]
[8]
Wu AM, Lisowska E, Duk M, Yang Z. Lectins as tools in glycoconjugate research. Glycoconj J 2009; 26(8): 899-913.
[http://dx.doi.org/10.1007/s10719-008-9119-7] [PMID: 18368479]
[9]
Coelho LCBB, Silva PMS, Lima VLM, et al. Lectins, interconnecting proteins with biotechnological/pharmacological and therapeutic applications. Evid Based Complement Alternat Med 2017; 2017: 1-22.
[http://dx.doi.org/10.1155/2017/1594074]
[10]
de Sousa FD, Vasconselos PD, da Silva AFB, et al. Hydrogel and membrane scaffold formulations of Frutalin (Breadfruit lectin) within a polysaccharide galactomannan matrix have potential for wound healing. Int J Biol Macromol 2019; 121(19): 429-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.050] [PMID: 30326222]
[11]
Kim YJ, de Molon RS, da Silva VC, et al. Topical application of lectin Artin M improves wound healing in defects created in the palatal mucosa: An in vivo study in dogs. Odontology 2020; 108(4): 560-8.
[http://dx.doi.org/10.1007/s10266-020-00495-y] [PMID: 32076883]
[12]
Martinez D, Amaral D, Markovitz D, Pinto L. The use of lectins as tools to combat SARS-CoV-2. Curr Pharm Des 2021; 27(41): 4212-22.
[http://dx.doi.org/10.2174/1381612827666210830094743] [PMID: 34459375]
[13]
Ganiko L, Martins AR, Freymüller E, Mortara RA, Roque-Barreira MC. Lectin KM+-induced neutrophil haptotaxis involves binding to laminin. Biochim Biophys Acta, Gen Subj 2005; 1721(1-3): 152-63.
[http://dx.doi.org/10.1016/j.bbagen.2004.10.012] [PMID: 15652190]
[14]
Neto LGN, Pinto LS, Bastos RM, et al. Effect of the lectin of Bauhinia variegata and its recombinant isoform on surgically induced skin wounds in a murine model. Molecules 2011; 16(11): 9298-315.
[http://dx.doi.org/10.3390/molecules16119298] [PMID: 22064270]
[15]
Brustein VP, Souza-Araújo FV, Vaz AFM, et al. A novel antimicrobial lectin from Eugenia malaccensis that stimulates cutaneous healing in mice model. Inflammopharmacology 2012; 20(6): 315-22.
[http://dx.doi.org/10.1007/s10787-011-0113-5] [PMID: 22271003]
[16]
Pinto LS, Nagano CS, Oliveira TM, et al. Purification and molecular cloning of a new galactose-specific lectin from Bauhinia variegata seeds. J Biosci 2008; 33(3): 355-63.
[http://dx.doi.org/10.1007/s12038-008-0055-2] [PMID: 19005235]
[17]
Moreno AN, Jamur MC, Oliver C, Roque-Barreira MC. Mast cell degranulation induced by lectins: Effect on neutrophil recruitment. Int Arch Allergy Immunol 2003; 132(3): 221-30.
[http://dx.doi.org/10.1159/000074303] [PMID: 14646383]
[18]
Alencar VBM, Alencar NMN, Assreuy AMS, et al. Pro-inflammatory effect of Arum maculatum lectin and role of resident cells. Int J Biochem Cell Biol 2005; 37(9): 1805-14.
[http://dx.doi.org/10.1016/j.biocel.2005.02.027] [PMID: 15914076]
[19]
Dumic J, Dabelic S, Flögel M. Galectin-3: An open-ended story. Biochim Biophys Acta, Gen Subj 2006; 1760(4): 616-35.
[http://dx.doi.org/10.1016/j.bbagen.2005.12.020] [PMID: 16478649]
[20]
Li FY, Wang SF, Bernardes ES, Liu FT. Galectins in host defense against microbial infections. Adv Exp Med Biol 2020; 1204(3): 141-67.
[http://dx.doi.org/10.1007/978-981-15-1580-4_6] [PMID: 32152946]
[21]
Aureli A, Del Cornò M, Marziani B, Gessani S, Conti L. Highlights on the role of galectin-3 in colorectal cancer and the preventive/therapeutic potential of food-derived inhibitors. Cancers 2022; 15(1): 52.
[http://dx.doi.org/10.3390/cancers15010052] [PMID: 36612048]
[22]
Grosso G, Laudisio D, Frias-Toral E, et al. Anti-inflammatory nutrients and obesity-associated metabolic-inflammation: State of the art and future direction. Nutrients 2022; 14(6): 1137.
[http://dx.doi.org/10.3390/nu14061137] [PMID: 35334794]
[23]
Johannes L, Jacob R, Leffler H. Galectins at a glance. J Cell Sci 2018; 131(9): jcs208884.
[http://dx.doi.org/10.1242/jcs.208884] [PMID: 29717004]
[24]
Rubinstein N, Ilarregui JM, Toscano MA, Rabinovich GA. The role of galectins in the initiation, amplification and resolution of the inflammatory response. Tissue Antigens 2004; 64(1): 1-12.
[http://dx.doi.org/10.1111/j.0001-2815.2004.00278.x] [PMID: 15191517]
[25]
Rabinovich GA, van Kooyk Y, Cobb BA. Glycobiology of immune responses. Ann N Y Acad Sci 2012; 1253(1): 1-15.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06492.x] [PMID: 22524422]
[26]
Yang RY, Rabinovich GA, Liu FT. Galectins: Structure, function and therapeutic potential. Expert Rev Mol Med 2008; 10(17): e17.
[http://dx.doi.org/10.1017/S1462399408000719] [PMID: 18549522]
[27]
Cao Z, Said N, Amin S, et al. Galectins-3 and -7, but not galectin-1, play a role in re-epithelialization of wounds. J Biol Chem 2002; 277(44): 42299-305.
[http://dx.doi.org/10.1074/jbc.M200981200] [PMID: 12194966]
[28]
McLeod K, Walker JT, Hamilton DW, Hamilton DW. Galectin-3 regulation of wound healing and fibrotic processes: Insights for chronic skin wound therapeutics. J Cell Commun Signal 2018; 12(1): 281-7.http://dx.doi.org/
[http://dx.doi.org/10.1007/s12079-018-0453-7] [PMID: 29372416]
[29]
Moreira RA, Castelo-Branco CC, Monteiro ACO, Tavares RO, Beltramini LM. Isolation and partial characterization of a lectin from Artocarpus incisa L. seeds. Phytochemistry 1998; 47(7): 1183-8.
[http://dx.doi.org/10.1016/S0031-9422(97)00753-X] [PMID: 9611823]
[30]
Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine 2008; 42(2): 145-51.
[http://dx.doi.org/10.1016/j.cyto.2008.01.006] [PMID: 18304834]
[31]
Omar A, Wright J, Schultz G, Burrell R, Nadworny P. Microbial biofilms and chronic wounds. Microorganisms 2017; 5(1): 9.
[http://dx.doi.org/10.3390/microorganisms5010009] [PMID: 28272369]
[32]
Chahud F, Ramalho LNZ, Ramalho FS, Haddad A, Roque-Barreira MC. The lectin KM+ induces corneal epithelial wound healing in rabbits. Int J Exp Pathol 2009; 90(2): 166-73.
[http://dx.doi.org/10.1111/j.1365-2613.2008.00626.x] [PMID: 19335555]
[33]
Kim YJ, Carvalho FC, Souza JAC, et al. Topical application of the lectin Artin M accelerates wound healing in rat oral mucosa by enhancing TGF-β and VEGF production. Wound Repair Regen 2013; 21(3): 456-63.
[http://dx.doi.org/10.1111/wrr.12041] [PMID: 23627356]
[34]
Pereira-da-Silva G, Moreno AN, Marques F, et al. Neutrophil activation induced by the lectin KM+ involves binding to CXCR2. Biochim Biophys Acta, Gen Subj 2006; 1760(1): 86-94.
[http://dx.doi.org/10.1016/j.bbagen.2005.09.011] [PMID: 16260092]
[35]
Rosa JC, Greene LJ, De Oliveira PSÉRL, et al. KM+, a mannose-binding lectin from artocarpus integrifolia: Amino acid sequence, predicted tertiary structure, carbohydrate recognition, and analysis of the β-prism fold. Protein Sci 1999; 8(1): 13-24.
[http://dx.doi.org/10.1110/ps.8.1.13] [PMID: 10210179]
[36]
Correia MTS, Coelho LCBB. Purification of a glucose/mannose specific lectin, isoform 1, from seeds of Cratylia mollis mart. (Camaratu Bean). Appl Biochem Biotechnol 1995; 55(3): 261-73.
[http://dx.doi.org/10.1007/BF02786865] [PMID: 8579345]
[37]
Melo CML, Porto CS, Melo-Júnior MR, et al. Healing activity induced by Cramoll 1,4 lectin in healthy and immunocompromised mice. Int J Pharm 2011; 408(1-2): 113-9.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.011] [PMID: 21335081]
[38]
dos Santos Tavares Pereira D, Madruga Lima-Ribeiro MH, Santos-Oliveira R, et al. Topical application effect of the isolectin hydrogel (Cramoll 1,4) on second-degree burns: Experimental model. J Biomed Biotechnol 2012; 2012: 1-11.
[http://dx.doi.org/10.1155/2012/184538] [PMID: 22500079]
[39]
Coriolano MC, de Melo CML, Silva FO, et al. Parkia pendula seed lectin: Potential use to treat cutaneous wounds in healthy and immunocompromised mice. Appl Biochem Biotechnol 2014; 172(5): 2682-93.
[http://dx.doi.org/10.1007/s12010-013-0692-2] [PMID: 24425299]
[40]
Carneiro RF, Aguiar ES, Santos VF, et al. Elucidation of the primary structure and molecular modeling of Parkia pendula lectin and in vitro evaluation of the leishmanicidal activity. Process Biochem 2021; 101(6): 1-10.
[http://dx.doi.org/10.1016/j.procbio.2020.11.004]
[41]
do Nascimento Neto LG, Vasconcelos MA, Pinheiro AA, et al. Wound healing activity of lectin isolated from seeds of Centrolobium microchaete Mart. ex Benth. on cutaneous wounds in mice. Nat Prod Res 2022; 36(18): 4734-9.
[http://dx.doi.org/10.1080/14786419.2021.2005053] [PMID: 34812686]
[42]
Van Damme EJM. Lectins as tools to select for glycosylated proteins. Methods Mol Biol 2011; 753: 289-97.
[http://dx.doi.org/10.1007/978-1-61779-148-2_19] [PMID: 21604130]
[43]
Van Damme EJM, Lannoo N, Peumans WJ. Plant lectins. Adv Bot Res 2008; 48(8): 107-209.
[http://dx.doi.org/10.1016/S0065-2296(08)00403-5]
[44]
Sahana TG, Rekha PD. A novel exopolysaccharide from Marine bacterium Pantoea sp. YU16-S3 accelerates cutaneous wound healing through Wnt/β-catenin pathway. Carbohydr Polym 2020; 238: 116191.
[http://dx.doi.org/10.1016/j.carbpol.2020.116191] [PMID: 32299547]
[45]
Dziarski R, Gupta D. Role of MD-2 in TLR2- and TLR4-mediated recognition of Gram-negative and Gram-positive bacteria and activation of chemokine genes. J Endotoxin Res 2000; 6(5): 401-5.
[http://dx.doi.org/10.1177/09680519000060050101] [PMID: 11521063]
[46]
Mauris J, Woodward AM, Cao Z, Panjwani N, Argüeso P. Molecular basis for MMP9 induction and disruption of epithelial cell-cell contacts by galectin-3. J Cell Sci 2014; 127(Pt 14): jcs.148510.
[http://dx.doi.org/10.1242/jcs.148510] [PMID: 24829150]
[47]
Lagana A, Goetz JG, Cheung P, Raz A, Dennis JW, Nabi IR. Galectin binding to Mgat5-modified N-glycans regulates fibronectin matrix remodeling in tumor cells. Mol Cell Biol 2006; 26(8): 3181-93.
[http://dx.doi.org/10.1128/MCB.26.8.3181-3193.2006] [PMID: 16581792]
[48]
Friedrichs J, Manninen A, Muller DJ, Helenius J. Galectin-3 regulates integrin α2β1-mediated adhesion to collagen-I and -IV. J Biol Chem 2008; 283(47): 32264-72.
[http://dx.doi.org/10.1074/jbc.M803634200] [PMID: 18806266]
[49]
Ren S, Chen J, Duscher D, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways. Stem Cell Res Ther 2019; 10(1): 47.
[http://dx.doi.org/10.1186/s13287-019-1152-x] [PMID: 30704535]
[50]
Kawai T, Akira S. TLR signaling. Semin Immunol 2007; 19(1): 24-32.
[http://dx.doi.org/10.1016/j.smim.2006.12.004] [PMID: 17275323]
[51]
Yang HL, Tsai YC, Korivi M, Chang CT, Hseu YC. Lucidone promotes the cutaneous wound healing process via activation of the PI3 K/AKT, Wnt/β-catenin and NF-κB Signaling Pathways. Biochim Biophys Acta Mol Cell Res 2017; 1864(1): 151-68.
[http://dx.doi.org/10.1016/j.bbamcr.2016.10.021] [PMID: 27816443]
[52]
Xiao W, Tang H, Wu M, et al. Ozone oil promotes wound healing by increasing the migration of fibroblasts via PI3K/Akt/mTOR signaling pathway. Biosci Rep 2017; 37(6): BSR20170658.
[http://dx.doi.org/10.1042/BSR20170658] [PMID: 28864782]
[53]
Li JX, Liu JC, Wang K, Yang XG. Gadolinium-containing bioparticles as an active entity to promote cell cycle progression in mouse embryo fibroblast NIH3T3 cells. J Biol Inorg Chem 2010; 15(4): 547-57.
[http://dx.doi.org/10.1007/s00775-010-0622-5] [PMID: 20076980]
[54]
Toker A. Akt signaling: A damaging interaction makes good. Trends Biochem Sci 2008; 33(8): 356-9.
[http://dx.doi.org/10.1016/j.tibs.2008.05.003] [PMID: 18585043]
[55]
Navé BT, Ouwens DM, Withers DJ, Alessi DR, Shepherd PR. Mammalian target of rapamycin is a direct target for protein kinase B: Identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 1999; 344(2): 427-31.
[http://dx.doi.org/10.1042/bj3440427] [PMID: 10567225]
[56]
White NMA, Masui O, Newsted D, et al. Galectin-1 has potential prognostic significance and is implicated in clear cell renal cell carcinoma progression through the HIF/mTOR signaling axis. Br J Cancer 2014; 110(5): 1250-9.
[http://dx.doi.org/10.1038/bjc.2013.828] [PMID: 24496460]
[57]
Hecker L, Vittal R, Jones T, et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 2009; 15(9): 1077-81.
[http://dx.doi.org/10.1038/nm.2005] [PMID: 19701206]
[58]
Cucoranu I, Clempus R, Dikalova A, et al. NAD(P)H oxidase 4 mediates transforming growth factor-β1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 2005; 97(9): 900-7.
[http://dx.doi.org/10.1161/01.RES.0000187457.24338.3D] [PMID: 16179589]
[59]
Hsieh SH, Ying NW, Wu MH, et al. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene 2008; 27(26): 3746-53.
[http://dx.doi.org/10.1038/sj.onc.1211029] [PMID: 18223683]
[60]
Thijssen VLJL, Poirier F, Baum LG, Griffioen AW. Galectins in the tumor endothelium: Opportunities for combined cancer therapy. Blood 2007; 110(8): 2819-27.
[http://dx.doi.org/10.1182/blood-2007-03-077792] [PMID: 17591944]
[61]
Jain S, Ghanghas P, Rana C, Sanyal SN. Role of GSK-3β in regulation of canonical Wnt/β-catenin Signaling and PI3-K/Akt oncogenic pathway in colon cancer. Cancer Invest 2017; 35(7): 473-83.
[http://dx.doi.org/10.1080/07357907.2017.1337783] [PMID: 28718684]
[62]
Waikel RL, Kawachi Y, Waikel PA, Wang XJ, Roop DR. Deregulated expression of c-Myc depletes epidermal stem cells. Nat Genet 2001; 28(2): 165-8.
[http://dx.doi.org/10.1038/88889] [PMID: 11381265]
[63]
dos Santos MC, Kroetz T, Dora CL, et al. Elucidating Bauhinia variegata lectin/phosphatidylcholine interactions in lectin-containing liposomes. J Colloid Interface Sci 2018; 519: 232-41.
[http://dx.doi.org/10.1016/j.jcis.2018.02.028] [PMID: 29501995]
[64]
Wijetunge SS, Wen J, Yeh CK, Sun Y. Lectin-conjugated liposomes as biocompatible, bioadhesive drug carriers for the management of oral ulcerative lesions. ACS Appl Bio Mater 2018; 1(5): 1487-95.
[http://dx.doi.org/10.1021/acsabm.8b00425] [PMID: 34996253]
[65]
Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017; 122: 34-47.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.011] [PMID: 28107663]
[66]
Gao J, Zheng W, Zhang J, et al. Enzyme-controllable delivery of nitric oxide from a molecular hydrogel. Chem Commun 2013; 49(80): 9173-5.
[http://dx.doi.org/10.1039/c3cc45666h] [PMID: 23989671]
[67]
Mishra RP, Ganaie AA, Allaie AH. Isolation and purification of a galactose specific lectin from seeds of bauhinia variegata and evaluation of its antimicrobial potential. Int J Pharm Sci Res 2016; 7(2): 804-9.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.7(2).804-09]
[68]
Singh RS, Tiwary AK, Kennedy JF. Lectins: Sources, activities, and applications. Crit Rev Biotechnol 1999; 19(2): 145-78.
[http://dx.doi.org/10.1080/0738-859991229224]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy