Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Cytokines as Potential Therapeutic Targets and their Role in the Diagnosis and Prediction of Cancers

Author(s): Ikenna Uchendu*, Angelina Zhilenkova, Yuliya Pirogova, Maria Basova, Leonid Bagmet, Iana Kohanovskaia, Yvan Ngaha, Obinna Ikebunwa and Marina Sekacheva

Volume 29, Issue 32, 2023

Published on: 01 November, 2023

Page: [2552 - 2567] Pages: 16

DOI: 10.2174/0113816128268111231024054240

Price: $65

conference banner
Abstract

The death rate from cancer is declining as a result of earlier identification and more advanced treatments. Nevertheless, a number of unfavourable adverse effects, including prolonged, long-lasting inflammation and reduced immune function, usually coexist with anti-cancer therapies and lead to a general decline in quality of life. Improvements in standardized comprehensive therapy and early identification of a variety of aggressive tumors remain the main objectives of cancer research. Tumor markers in those with cancer are tumor- associated proteins that are clinically significant. Even while several tumor markers are routinely used, they don't always provide reliable diagnostic information. Serum cytokines are promising markers of tumor stage, prognosis, and responsiveness to therapy. In fact, several cytokines are currently proposed as potential biomarkers in a variety of cancers. It has actually been proposed that the study of circulatory cytokines together with biomarkers that are particular to cancer can enhance and accelerate cancer diagnosis and prediction, particularly via blood samples that require minimal to the absence of invasion. The purpose of this review was to critically examine relevant primary research literature in order to elucidate the role and importance of a few identified serum cytokines as prospective therapeutic targets in oncological diseases.

Keywords: Cytokines, cancer biomarkers, oncological diseases, cancer diagnosis, cancer prediction, therapeutic targets.

[1]
Marelli G, Sica A, Vannucci L, Allavena P. Inflammation as target in cancer therapy. Curr Opin Pharmacol 2017; 35: 57-65.
[http://dx.doi.org/10.1016/j.coph.2017.05.007] [PMID: 28618326]
[2]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[3]
Hojman P. Exercise protects from cancer through regulation of immune function and inflammation. Biochem Soc Trans 2017; 45(4): 905-11.
[http://dx.doi.org/10.1042/BST20160466] [PMID: 28673937]
[4]
Bower JE, Greendale G, Crosswell AD, et al. Yoga reduces inflammatory signaling in fatigued breast cancer survivors: A randomized controlled trial. Psychoneuroendocrinology 2014; 43: 20-9.
[http://dx.doi.org/10.1016/j.psyneuen.2014.01.019] [PMID: 24703167]
[5]
Khosravi N, Stoner L, Farajivafa V, Hanson ED. Exercise training, circulating cytokine levels and immune function in cancer survivors: A meta-analysis. Brain Behav Immun 2019; 81: 92-104.
[http://dx.doi.org/10.1016/j.bbi.2019.08.187] [PMID: 31454519]
[6]
Kruijsen-Jaarsma M, Révész D, Bierings MB, Buffart LM, Takken T. Effects of exercise on immune function in patients with cancer: A systematic review. Exerc Immunol Rev 2013; 19: 120-43.
[PMID: 23977724]
[7]
Stoner L, Lucero AA, Palmer BR, Jones LM, Young JM, Faulkner J. Inflammatory biomarkers for predicting cardiovascular disease. Clin Biochem 2013; 46(15): 1353-71.
[http://dx.doi.org/10.1016/j.clinbiochem.2013.05.070] [PMID: 23756129]
[8]
Singh N, Baby D, Rajguru J, Patil P, Thakkannavar S, Pujari V. Inflammation and cancer. Ann Afr Med 2019; 18(3): 121-6.
[http://dx.doi.org/10.4103/aam.aam_56_18] [PMID: 31417011]
[9]
Murata M. Inflammation and cancer. Environ Health Prev Med 2018; 23(1): 50.
[http://dx.doi.org/10.1186/s12199-018-0740-1] [PMID: 30340457]
[10]
Yao J, Caballero OL, Yung WKA, et al. Tumor subtype-specific cancer-testis antigens as potential biomarkers and immunotherapeutic targets for cancers. Cancer Immunol Res 2014; 2(4): 371-9.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0088] [PMID: 24764584]
[11]
Kartikasari AER, Huertas CS, Mitchell A, Plebanski M. Tumor-induced inflammatory cytokines and the emerging diagnostic devices for cancer detection and prognosis. Front Oncol 2021; 11: 692142.
[http://dx.doi.org/10.3389/fonc.2021.692142] [PMID: 34307156]
[12]
Stojkovic S, Kaun C, Heinz M, et al. Interleukin-33 induces urokinase in human endothelial cells-possible impact on angiogenesis. J Thromb Haemost 2014; 12(6): 948-57.
[http://dx.doi.org/10.1111/jth.12581] [PMID: 24702774]
[13]
Voronov E, Carmi Y, Apte RN. The role IL-1 in tumor-mediated angiogenesis. Front Physiol 2014; 5: 114.
[http://dx.doi.org/10.3389/fphys.2014.00114] [PMID: 24734023]
[14]
Watari K, Shibata T, Kawahara A, et al. Tumor-derived interleukin-1 promotes lymphangiogenesis and lymph node metastasis through M2-type macrophages. PLoS One 2014; 9(6): e99568.
[http://dx.doi.org/10.1371/journal.pone.0099568] [PMID: 24924428]
[15]
Sounni NE, Noel A. Targeting the tumor microenvironment for cancer therapy. Clin Chem 2013; 59(1): 85-93.
[http://dx.doi.org/10.1373/clinchem.2012.185363] [PMID: 23193058]
[16]
Jiang X, Wang J, Deng X, et al. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res 2020; 39(1): 204.
[http://dx.doi.org/10.1186/s13046-020-01709-5] [PMID: 32993787]
[17]
Voronov E, Apte RN. Targeting the tumor microenvironment by intervention in interleukin-1 biology. Curr Pharm Des 2017; 23(32): 4893-905.
[http://dx.doi.org/10.2174/1381612823666170613080919] [PMID: 28606052]
[18]
Gong Z, Ma J, Su H, et al. Interleukin-1 receptor antagonist inhibits angiogenesis in gastric cancer. Int J Clin Oncol 2018; 23(4): 659-70.
[http://dx.doi.org/10.1007/s10147-018-1242-2] [PMID: 29344744]
[19]
Dinarello CA. Why not treat human cancer with interleukin-1 blockade? Cancer Metastasis Rev 2010; 29(2): 317-29.
[http://dx.doi.org/10.1007/s10555-010-9229-0] [PMID: 20422276]
[20]
Bar D, Apte RN, Voronov E, Dinarello CA, Cohen S. A continuous delivery system of IL-1 receptor antagonist reduces angiogenesis and inhibits tumor development. FASEB J 2004; 18(1): 161-3.
[http://dx.doi.org/10.1096/fj.03-0483fje] [PMID: 14597552]
[21]
Slotwinski R, Olszewski WL, Slotkowski M, et al. Can the interleukin-1 receptor antagonist (IL-1ra) be a marker of anti-inflammatory response to enteral immunonutrition in malnourished patients after pancreaticoduodenectomy? JOP 2007; 8(6): 759-69.
[PMID: 17993728]
[22]
Mokart D, Capo C, Blache JL, et al. Early postoperative compensatory anti-inflammatory response syndrome is associated with septic complications after major surgical trauma in patients with cancer. Br J Surg 2002; 89(11): 1450-6.
[http://dx.doi.org/10.1046/j.1365-2168.2002.02218.x] [PMID: 12390391]
[23]
van der Sijde F, Dik W, Mustafa D, Vietsch E, van Eijck C. Circulating cytokine levels as biomarkers for response to FOLFIRINOX chemotherapy in pancreatic cancer patients. HPB (Oxford) 2021; 23: S233-4.
[http://dx.doi.org/10.1016/j.hpb.2020.11.586]
[24]
Jiang T, Zhou C, Ren S. Role of IL-2 in cancer immunotherapy. OncoImmunology 2016; 5(6): e1163462.
[http://dx.doi.org/10.1080/2162402X.2016.1163462] [PMID: 27471638]
[25]
Rosenberg SA. IL-2: The first effective immunotherapy for human cancer. J Immunol 2014; 192(12): 5451-8.
[http://dx.doi.org/10.4049/jimmunol.1490019] [PMID: 24907378]
[26]
Gerber SA, Sorensen EW, Sedlacek AL, et al. Local expression of interleukin-2 by B16 melanoma cells results in decreased tumour growth and long-term tumour dormancy. Immunology 2013; 138(3): 280-92.
[http://dx.doi.org/10.1111/imm.12037] [PMID: 23198850]
[27]
Forones NM, Mandowsky SV, Lourenço LG. Serum levels of interleukin-2 and tumor necrosis factor-alpha correlate to tumor progression in gastric cancer. Hepatogastroenterology 2001; 48(40): 1199-201.
[PMID: 11490833]
[28]
Nguyen LT, Saibil SD, Sotov V, et al. Phase II clinical trial of adoptive cell therapy for patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and low-dose interleukin-2. Cancer Immunol Immunother 2019; 68(5): 773-85.
[http://dx.doi.org/10.1007/s00262-019-02307-x] [PMID: 30747243]
[29]
Ackermann M, Haake K, Kempf H, et al. A 3D iPSC-differentiation model identifies interleukin-3 as a regulator of early human hematopoietic specification. Haematologica 2020; 106(5): 1354-67.
[http://dx.doi.org/10.3324/haematol.2019.228064] [PMID: 32327499]
[30]
Hatfield KJ, Reikvam H, Bruserud Ø. Identification of a subset of patients with acute myeloid leukemia characterized by long-term in vitro proliferation and altered cell cycle regulation of the leukemic cells. Expert Opin Ther Targets 2014; 18(11): 1237-51.
[http://dx.doi.org/10.1517/14728222.2014.957671] [PMID: 25200484]
[31]
Broughton SE, Dhagat U, Hercus TR, et al. The GMCSF / IL-3 / IL-5 cytokine receptor family: From ligand recognition to initiation of signaling. Immunol Rev 2012; 250(1): 277-302.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01164.x] [PMID: 23046136]
[32]
Pate M, Damarla V, Chi DS, Negi S, Krishnaswamy G. Endothelial cell biology: Role in the inflammatory response. Adv Clin Chem 2010; 52: 109-30.
[http://dx.doi.org/10.1016/S0065-2423(10)52004-3] [PMID: 21275341]
[33]
Bowers SLK, Kemp SS, Aguera KN, Koller GM, Forgy JC, Davis GE. Defining an upstream VEGF (vascular endothelial growth factor) priming signature for downstream factor-induced endothelial cell-pericyte tube network coassembly. Arterioscler Thromb Vasc Biol 2020; 40(12): 2891-909.
[http://dx.doi.org/10.1161/ATVBAHA.120.314517] [PMID: 33086871]
[34]
Lopati T, Grange C, Cavallari C, et al. Targeting IL-3Rα on tumor-derived endothelial cells blunts metastatic spread of triple-negative breast cancer via extracellular vesicle reprogramming. Oncogene 2020; 9(10): 1-14.
[35]
Chen J, Gong C, Mao H, et al. E2F1/SP3/STAT6 axis is required for IL-4-induced epithelial-mesenchymal transition of colorectal cancer cells. Int J Oncol 2018; 53(2): 567-78.
[http://dx.doi.org/10.3892/ijo.2018.4429] [PMID: 29901191]
[36]
Lin X, Wang S, Sun M, et al. miR-195-5p/NOTCH2-mediated EMT modulates IL-4 secretion in colorectal cancer to affect M2- like TAM polarization. J Hematol Oncol 2019; 12(1): 1-14.
[PMID: 30606227]
[37]
Xu JY, Xiong YY, Tang RJ, et al. Interleukin-5-induced eosinophil population improves cardiac function after myocardial infarction. Cardiovasc Res 2022; 118(9): 2165-78.
[http://dx.doi.org/10.1093/cvr/cvab237] [PMID: 34259869]
[38]
Gevaert P, Han JK, Smith SG, et al. The roles of eosinophils and interleukin-5 in the pathophysiology of chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2022; 12911(9): 1413-23.
[http://dx.doi.org/10.1002/alr.22994]
[39]
Ikutani M, Yanagibashi T, Ogasawara M, et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J Immunol 2012; 188(2): 703-13.
[http://dx.doi.org/10.4049/jimmunol.1101270] [PMID: 22174445]
[40]
Lee SJ, Lee EJ, Kim SK, et al. Identification of pro-inflammatory cytokines associated with muscle invasive bladder cancer; The roles of IL-5, IL-20, and IL-28A. PLoS One 2012; 7(9): e40267.
[http://dx.doi.org/10.1371/journal.pone.0040267] [PMID: 22962576]
[41]
Rose-John S. Interleukin-6 family cytokines. Cold Spring Harb Perspect Biol 2018; 10(2): a028415.
[http://dx.doi.org/10.1101/cshperspect.a028415] [PMID: 28620096]
[42]
Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015; 16(5): 448-57.
[http://dx.doi.org/10.1038/ni.3153] [PMID: 25898198]
[43]
Atsumi T, Singh R, Sabharwal L, et al. Inflammation amplifier, a new paradigm in cancer biology. Cancer Res 2014; 74(1): 8-14.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2322] [PMID: 24362915]
[44]
Phesse TJ, Buchert M, Stuart E, et al. Partial inhibition of gp130- Jak-Stat3 signaling prevents Wnt-β-catenin-mediated intestinal tumor growth and regeneration. Sci Signal 2014; 7(345): ra92-2.
[http://dx.doi.org/10.1126/scisignal.2005411] [PMID: 25270258]
[45]
Hu B, Elinav E, Huber S, et al. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci USA 2013; 110(24): 9862-7.
[http://dx.doi.org/10.1073/pnas.1307575110] [PMID: 23696660]
[46]
van Duijneveldt G, Griffin MDW, Putoczki TL. Emerging roles for the IL-6 family of cytokines in pancreatic cancer. Clin Sci (Lond) 2020; 134(16): 2091-115.
[http://dx.doi.org/10.1042/CS20191211] [PMID: 32808663]
[47]
Caetano MS, Zhang H, Cumpian AM, et al. IL6 blockade reprograms the lung tumor microenvironment to limit the development and progression of K-ras–mutant lung cancer. Cancer Res 2016; 76(11): 3189-99.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2840] [PMID: 27197187]
[48]
Xia L, Oyang L, Lin J, et al. The cancer metabolic reprogramming and immune response. Mol Cancer 2021; 20(1): 28.
[http://dx.doi.org/10.1186/s12943-021-01316-8] [PMID: 33546704]
[49]
Huynh J, Chand A, Gough D, Ernst M. Therapeutically exploiting STAT3 activity in cancer - using tissue repair as a road map. Nat Rev Cancer 2019; 19(2): 82-96.
[http://dx.doi.org/10.1038/s41568-018-0090-8] [PMID: 30578415]
[50]
Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol 2011; 11(5): 330-42.
[http://dx.doi.org/10.1038/nri2970] [PMID: 21508983]
[51]
Sportès C, Babb RR, Krumlauf MC, et al. Phase I study of recombinant human interleukin-7 administration in subjects with refractory malignancy. Clin Cancer Res 2010; 16(2): 727-35.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1303] [PMID: 20068111]
[52]
Krzystek-Korpacka M, Zawadzki M, Neubauer K, et al. Elevated systemic interleukin-7 in patients with colorectal cancer and individuals at high risk of cancer: Association with lymph node involvement and tumor location in the right colon. Cancer Immunol Immunother 2017; 66(2): 171-9.
[http://dx.doi.org/10.1007/s00262-016-1933-3] [PMID: 27866242]
[53]
Todorović-Raković N, Milovanović J. Interleukin-8 in breast cancer progression. J Interferon Cytokine Res 2013; 33(10): 563-70.
[http://dx.doi.org/10.1089/jir.2013.0023] [PMID: 23697558]
[54]
Green AR, Green VL, White MC, Speirs V. Expression of cytokine messenger RNA in normal and neoplastic human breast tissue: Identification of interleukin-8 as a potential regulatory factor in breast tumours. Int J Cancer 1997; 72(6): 937-41.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19970917)72:6<937::AID-IJC3>3.0.CO;2-Q] [PMID: 9378554]
[55]
De Larco JE, Wuertz BRK, Rosner KA, et al. A potential role for interleukin-8 in the metastatic phenotype of breast carcinoma cells. Am J Pathol 2001; 158(2): 639-46.
[http://dx.doi.org/10.1016/S0002-9440(10)64005-9] [PMID: 11159200]
[56]
Lee JE, Zhu Z, Bai Q, et al. The role of interleukin-9 in cancer. Pathol Oncol Res 2020; 26(4): 2017-22.
[http://dx.doi.org/10.1007/s12253-019-00665-6] [PMID: 31016637]
[57]
Ye ZJ, Zhou Q, Yin W, et al. Differentiation and immune regulation of IL-9-producing CD4+ T cells in malignant pleural effusion. Am J Respir Crit Care Med 2012; 186(11): 1168-79.
[http://dx.doi.org/10.1164/rccm.201207-1307OC] [PMID: 23065014]
[58]
Chen N, Lv X, Li P, Lu K, Wang X. Role of high expression of IL-9 in prognosis of CLL. Int J Clin Exp Pathol 2014; 7(2): 716-21.
[PMID: 24551294]
[59]
Wang J, Dong X, Zhu X, et al. Expression of interleukin-9 in colon cancer tissues and its clinical significance. Nan Fang Yi Ke Da Xue Xue Bao 2018; 38(8): 943-8.
[60]
Herbeuval JP, Lelievre E, Lambert C, Dy M, Genin C. Recruitment of STAT3 for production of IL-10 by colon carcinoma cells induced by macrophage-derived IL-6. J Immunol 2004; 172(7): 4630-6.
[http://dx.doi.org/10.4049/jimmunol.172.7.4630] [PMID: 15034082]
[61]
Kovacs E. Interleukin-6 leads to interleukin-10 production in several human multiple myeloma cell lines. Does interleukin-10 enhance the proliferation of these cells? Leuk Res 2010; 34(7): 912-6.
[http://dx.doi.org/10.1016/j.leukres.2009.08.012] [PMID: 19762082]
[62]
Jin JO, Han X, Yu Q. Interleukin-6 induces the generation of IL-10-producing Tr1 cells and suppresses autoimmune tissue inflammation. J Autoimmun 2013; 40: 28-44.
[http://dx.doi.org/10.1016/j.jaut.2012.07.009] [PMID: 22921334]
[63]
Lippitz BE. Cytokine patterns in patients with cancer: A systematic review. Lancet Oncol 2013; 14(6): e218-28.
[http://dx.doi.org/10.1016/S1470-2045(12)70582-X] [PMID: 23639322]
[64]
Putoczki TL, Ernst M. IL-11 signaling as a therapeutic target for cancer. Immunotherapy 2015; 7(4): 441-53.
[http://dx.doi.org/10.2217/imt.15.17] [PMID: 25917632]
[65]
Robb L, Li R, Hartley L, Nandurkar HH, Koentgen F, Begley CG. Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nat Med 1998; 4(3): 303-8.
[http://dx.doi.org/10.1038/nm0398-303] [PMID: 9500603]
[66]
Luis-Ravelo D, Antón I, Zandueta C, et al. A gene signature of bone metastatic colonization sensitizes for tumor-induced osteolysis and predicts survival in lung cancer. Oncogene 2014; 33(43): 5090-9.
[http://dx.doi.org/10.1038/onc.2013.440] [PMID: 24166494]
[67]
Torroella-Kouri M, Keith J, Ivanova M, Lopez D. IL-11-induced reduction of C/EBP transcription factor binding may contribute to the IL-12 downregulation in tumor-bearing mice. Int J Oncol 2003; 22(2): 439-48.
[http://dx.doi.org/10.3892/ijo.22.2.439] [PMID: 12527946]
[68]
Calon A, Espinet E, Palomo-Ponce S, et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 2012; 22(5): 571-84.
[http://dx.doi.org/10.1016/j.ccr.2012.08.013] [PMID: 23153532]
[69]
Trinchieri G. Interleukin-12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 1995; 13(1): 251-76.
[http://dx.doi.org/10.1146/annurev.iy.13.040195.001343] [PMID: 7612223]
[70]
Nguyen KG, Vrabel MR, Mantooth SM, et al. Localized interleukin-12 for cancer immunotherapy. Front Immunol 2020; 11: 575597.
[http://dx.doi.org/10.3389/fimmu.2020.575597] [PMID: 33178203]
[71]
Teicher BA, Holden SA, Ara G, et al. Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. Int J Cancer 1994; 57(6): 920-5.
[http://dx.doi.org/10.1002/ijc.2910570624] [PMID: 7515861]
[72]
Youssef SS, Mohammad MM, Ezz-El-Arab LR. Clinical significance of serum IL-12 level in patients with early breast carcinoma and its correlation with other tumor markers. Open Access Maced J Med Sci 2015; 3(4): 640-4.
[http://dx.doi.org/10.3889/oamjms.2015.106] [PMID: 27275301]
[73]
Huang D, Sun L, Huang L, Chen Y. Nanodrug delivery systems modulate tumor vessels to increase the enhanced permeability and retention effect. J Pers Med 2021; 11(2): 124.
[http://dx.doi.org/10.3390/jpm11020124] [PMID: 33672813]
[74]
Fang J, Islam W, Maeda H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv Drug Deliv Rev 2020; 157: 142-60.
[http://dx.doi.org/10.1016/j.addr.2020.06.005] [PMID: 32553783]
[75]
Fu T, Lin Y, Zeng Q, Yao W, Han L. Thoracic perfusion of recombinant mutant human tumor necrosis factor (rmhTNF) can be considered as a good adjunct in the treatment of malignant pleural effusion caused by lung cancer. BMC Pulm Med 2020; 20(1): 175.
[http://dx.doi.org/10.1186/s12890-020-01210-x] [PMID: 32552897]
[76]
Guo M, Wu F, Hu G, et al. Autologous tumor cell–derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Sci Transl Med 2019; 11(474): eaat5690.
[http://dx.doi.org/10.1126/scitranslmed.aat5690] [PMID: 30626714]
[77]
Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: Molecular insights and therapeutic approaches. Cell Oncol (Dordr) 2020; 43(1): 1-18.
[http://dx.doi.org/10.1007/s13402-019-00489-1] [PMID: 31900901]
[78]
Archer M, Dogra N, Kyprianou N. Inflammation as a driver of prostate cancer metastasis and therapeutic resistance. Cancers (Basel) 2020; 12(10): 2984.
[http://dx.doi.org/10.3390/cancers12102984] [PMID: 33076397]
[79]
Buhrmann C, Yazdi M, Popper B, et al. Evidence that TNF-β induces proliferation in colorectal cancer cells and resveratrol can down-modulate it. Exp Biol Med (Maywood) 2019; 244(1): 1-12.
[http://dx.doi.org/10.1177/1535370218824538] [PMID: 30661394]
[80]
Lai EW, Joshi BH, Martiniova L, et al. Overexpression of interleukin-13 receptor-α2 in neuroendocrine malignant pheochromocytoma: A novel target for receptor directed anti-cancer therapy. J Clin Endocrinol Metab 2009; 94(8): 2952-7.
[http://dx.doi.org/10.1210/jc.2009-0309] [PMID: 19491224]
[81]
Chavey C, Bibeau F, Gourgou-Bourgade S, et al. Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res 2007; 9(1): R15.
[http://dx.doi.org/10.1186/bcr1648] [PMID: 17261184]
[82]
Leonard WJ, Lin JX, O’Shea JJ. The γc family of cytokines: Basic biology to therapeutic ramifications. Immunity 2019; 50(4): 832-50.
[http://dx.doi.org/10.1016/j.immuni.2019.03.028] [PMID: 30995502]
[83]
Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: Implications for cancer therapy. Cancer Immunol Res 2015; 3(3): 219-27.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0009] [PMID: 25736261]
[84]
Robinson TO, Schluns KS. The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol Lett 2017; 190: 159-68.
[http://dx.doi.org/10.1016/j.imlet.2017.08.010] [PMID: 28823521]
[85]
Zhang M, Yao Z, Dubois S, Ju W, Müller JR, Waldmann TA. Interleukin-15 combined with an anti-CD40 antibody provides enhanced therapeutic efficacy for murine models of colon cancer. Proc Natl Acad Sci USA 2009; 106(18): 7513-8.
[http://dx.doi.org/10.1073/pnas.0902637106] [PMID: 19383782]
[86]
Neville LF, Mathiak G, Bagasra O. The immunobiology of interferon-gamma inducible protein 10 kD (IP-10): A novel, pleiotropic member of the C-X-C chemokine superfamily. Cytokine Growth Factor Rev 1997; 8(3): 207-19.
[http://dx.doi.org/10.1016/S1359-6101(97)00015-4] [PMID: 9462486]
[87]
Liu M, Guo S, Stiles JK. The emerging role of CXCL10 in cancer (Review). Oncol Lett 2011; 2(4): 583-9.
[http://dx.doi.org/10.3892/ol.2011.300] [PMID: 22848232]
[88]
Lee EY, Lee ZH, Song YW. CXCL10 and autoimmune diseases. Autoimmun Rev 2009; 8(5): 379-83.
[http://dx.doi.org/10.1016/j.autrev.2008.12.002] [PMID: 19105984]
[89]
Schulthess FT, Paroni F, Sauter NS, et al. CXCL10 impairs β cell function and viability in diabetes through TLR4 signaling. Cell Metab 2009; 9(2): 125-39.
[http://dx.doi.org/10.1016/j.cmet.2009.01.003] [PMID: 19187771]
[90]
Qiao Y, Li J, Yuh C, et al. Chemokine regulation in temporomandibular joint disease: A comprehensive review. Genes (Basel) 2023; 14(2): 408.
[http://dx.doi.org/10.3390/genes14020408] [PMID: 36833336]
[91]
Cui LY, Chu SF, Chen NH. The role of chemokines and chemokine receptors in multiple sclerosis. Int Immunopharmacol 2020; 83: 106314.
[http://dx.doi.org/10.1016/j.intimp.2020.106314] [PMID: 32197226]
[92]
Lv M, Xiaoping X, Cai H, et al. Cytokines as prognstic tool in breast carcinoma. Front Biosci 2011; 16(1): 2515-26.
[http://dx.doi.org/10.2741/3869] [PMID: 21622192]
[93]
Dehqanzada Z, Storrer C, Hueman M, et al. Assessing serum cytokine profiles in breast cancer patients receiving a HER2/neu vaccine using Luminex® technology. Oncol Rep 2007; 17(3): 687-94.
[http://dx.doi.org/10.3892/or.17.3.687] [PMID: 17273752]
[94]
Li L, Chen L, Zhang W, et al. Serum cytokine profile in patients with breast cancer. Cytokine 2017; 89: 173-8.
[http://dx.doi.org/10.1016/j.cyto.2015.12.017] [PMID: 26898119]
[95]
Yoshimura T. The chemokine MCP-1 (CCL2) in the host interaction with cancer: A foe or ally? Cell Mol Immunol 2018; 15(4): 335-45.
[http://dx.doi.org/10.1038/cmi.2017.135] [PMID: 29375123]
[96]
Monti P, Leone BE, Marchesi F, et al. The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: Regulation of expression and potential mechanisms of antimalignant activity. Cancer Res 2003; 63(21): 7451-61.
[PMID: 14612545]
[97]
Okada M, Saio M, Kito Y, et al. Tumor-associated macrophage/ microglia infiltration in human gliomas is correlated with MCP-3, but not MCP-1. Int J Oncol 2009; 34(6): 1621-7.
[PMID: 19424580]
[98]
Liu Y, Cai Y, Liu L, Wu Y, Xiong X. Crucial biological functions of CCL7 in cancer. PeerJ 2018; 6: e4928.
[http://dx.doi.org/10.7717/peerj.4928] [PMID: 29915688]
[99]
Hu JY, Li GC, Wang WM, et al. Transfection of colorectal cancer cells with chemokine MCP-3 (monocyte chemotactic protein-3) gene retards tumor growth and inhibits tumor metastasis. World J Gastroenterol 2002; 8(6): 1067-72.
[http://dx.doi.org/10.3748/wjg.v8.i6.1067] [PMID: 12439927]
[100]
Velasco-Velázquez M, Xolalpa W, Pestell RG. The potential to target CCL5/CCR5 in breast cancer. Expert Opin Ther Targets 2014; 18(11): 1265-75.
[http://dx.doi.org/10.1517/14728222.2014.949238] [PMID: 25256399]
[101]
Zhou B, Sun C, Li N, et al. Cisplatin-induced CCL5 secretion from CAFs promotes cisplatin-resistance in ovarian cancer via regulation of the STAT3 and PI3K/Akt signaling pathways. Int J Oncol 2016; 48(5): 2087-97.
[http://dx.doi.org/10.3892/ijo.2016.3442] [PMID: 26983899]
[102]
Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer 2013; 13(12): 871-82.
[http://dx.doi.org/10.1038/nrc3627] [PMID: 24263190]
[103]
Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions. Angiogenesis 2014; 17(3): 471-94.
[http://dx.doi.org/10.1007/s10456-014-9420-y] [PMID: 24482243]
[104]
Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med 2011; 17(7): 347-62.
[http://dx.doi.org/10.1016/j.molmed.2011.01.015] [PMID: 21481637]
[105]
Martins SF, Reis RM, Rodrigues AM, Baltazar F, Filho AL. Role of endoglin and VEGF family expression in colorectal cancer prognosis and anti-angiogenic therapies. World J Clin Oncol 2011; 2(6): 272-80.
[http://dx.doi.org/10.5306/wjco.v2.i6.272] [PMID: 21773077]
[106]
Cooper AM, Khader SA. IL-12p40: An inherently agonistic cytokine. Trends Immunol 2007; 28(1): 33-8.
[http://dx.doi.org/10.1016/j.it.2006.11.002] [PMID: 17126601]
[107]
Abdi K. IL-12: The role of p40 versus p75. Scand J Immunol 2002; 56(1): 1-11.
[http://dx.doi.org/10.1046/j.1365-3083.2002.01101.x] [PMID: 12100467]
[108]
Zijlmans HJM A A, Punt S, Fleuren GJ, Trimbos JB, Kenter GG, Gorter A. Role of IL-12p40 in cervical carcinoma. Br J Cancer 2012; 107(12): 1956-62.
[http://dx.doi.org/10.1038/bjc.2012.488] [PMID: 23099807]
[109]
Stanilov N, Miteva L, Jovchev J, Cirovski G, Stanilova S. The prognostic value of preoperative serum levels of IL-12p40 and IL-23 for survival of patients with colorectal cancer. Acta Pathol Microbiol Scand Suppl 2014; 122(12): 1223-9.
[http://dx.doi.org/10.1111/apm.12288] [PMID: 24909386]
[110]
Liu YL, Tsung JH, Fang CP, et al. Genetic polymorphisms on OPRM1 involved in multiple responses of a methadone maintenance population: Relationships with insomnia, libido, smoking, and chemokines. Neuropathol Drug Addict Subst Misuse 2016; 532-41.
[111]
Wiedemann GM, Knott MML, Vetter VK, et al. Cancer cell-derived IL-1α induces CCL22 and the recruitment of regulatory T cells. OncoImmunology 2016; 5(9): e1175794.
[http://dx.doi.org/10.1080/2162402X.2016.1175794] [PMID: 27757295]
[112]
Nakanishi T, Imaizumi K, Hasegawa Y, et al. Expression of macrophage-derived chemokine (MDC)/CCL22 in human lung cancer. Cancer Immunol Immunother 2006; 55(11): 1320-9.
[http://dx.doi.org/10.1007/s00262-006-0133-y] [PMID: 16453150]
[113]
Neuber B, Herth I, Tolliver C, et al. Lenalidomide enhances antigen-specific activity and decreases CD45RA expression of T cells from patients with multiple myeloma. J Immunol 2011; 187(2): 1047-56.
[http://dx.doi.org/10.4049/jimmunol.1002460] [PMID: 21677134]
[114]
Heckel MC, Wolfson A, Slachta CA, et al. Human breast tumor cells express IL-10 and IL-12p40 transcripts and proteins, but do not produce IL-12p70. Cell Immunol 2011; 266(2): 143-53.
[http://dx.doi.org/10.1016/j.cellimm.2010.09.010] [PMID: 21055733]
[115]
Li T, Liu M, Dai H, et al. Value of cytokine expression in early diagnosis and prognosis of tumor metastasis. J Oncol 2022; 2022: 1-9.
[http://dx.doi.org/10.1155/2022/8112190] [PMID: 36157224]
[116]
Heldin CH. Targeting the PDGF signaling pathway in tumor treatment. Cell Commun Signal 2013; 11(1): 97.
[http://dx.doi.org/10.1186/1478-811X-11-97] [PMID: 24359404]
[117]
Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev 2008; 22(10): 1276-312.
[http://dx.doi.org/10.1101/gad.1653708] [PMID: 18483217]
[118]
Ishii Y, Hamashima T, Yamamoto S, Sasahara M. Pathogenetic significance and possibility as a therapeutic target of platelet derived growth factor. Pathol Int 2017; 67(5): 235-46.
[http://dx.doi.org/10.1111/pin.12530] [PMID: 28393435]
[119]
Ehnman M, Östman A. Therapeutic targeting of platelet-derived growth factor receptors in solid tumors. Expert Opin Investig Drugs 2014; 23(2): 211-26.
[http://dx.doi.org/10.1517/13543784.2014.847086] [PMID: 24206431]
[120]
Papadopoulos N, Lennartsson J. The PDGF/PDGFR pathway as a drug target. Mol Aspects Med 2018; 62: 75-88.
[http://dx.doi.org/10.1016/j.mam.2017.11.007] [PMID: 29137923]
[121]
Plantureux L, Mège D, Crescence L, Dignat-George F, Dubois C, Panicot-Dubois L. Impacts of cancer on platelet production, activation and education and mechanisms of cancer-associated thrombosis. Cancers (Basel) 2018; 10(11): 441.
[http://dx.doi.org/10.3390/cancers10110441] [PMID: 30441823]
[122]
Ingersoll SB, Langer F, Walker JM, et al. Deficiencies in the CD40 and CD154 receptor-ligand system reduce experimental lung metastasis. Clin Exp Metastasis 2009; 26(7): 829-37.
[http://dx.doi.org/10.1007/s10585-009-9282-7] [PMID: 19642003]
[123]
Angelou A, Antoniou E, Garmpis N, Damaskos C, Theocharis S, Margonis GA. The role of soluble CD40L ligand in human carcinogenesis. Anticancer Res 2018; 38(5): 3199-201.
[PMID: 29715163]
[124]
Richmond J, Tuzova M, Cruikshank W, Center D. Regulation of cellular processes by interleukin-16 in homeostasis and cancer. J Cell Physiol 2014; 229(2): 139-47.
[http://dx.doi.org/10.1002/jcp.24441] [PMID: 23893766]
[125]
Overgaard NH, Jung JW, Steptoe RJ, Wells JW. CD4+/CD8+ double-positive T cells: More than just a developmental stage? J Leukoc Biol 2015; 97(1): 31-8.
[http://dx.doi.org/10.1189/jlb.1RU0814-382] [PMID: 25360000]
[126]
Akdis M, Aab A, Altunbulakli C, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J Allergy Clin Immunol 2016; 138(4): 984-1010.
[http://dx.doi.org/10.1016/j.jaci.2016.06.033] [PMID: 27577879]
[127]
Kovacs E. The serum levels of IL-12 and IL-16 in cancer patients. Relation to the tumour stage and previous therapy. Biomed Pharmacother 2001; 55(2): 111-6.
[http://dx.doi.org/10.1016/S0753-3322(00)00023-8] [PMID: 11293814]
[128]
Allegra A, Alonci A, Bellomo G, et al. Serum levels of Interleukin-16 in a multiple myeloma patient with cutaneous involvement. Int J Dermatol 2010; 49(4): 435-7.
[http://dx.doi.org/10.1111/j.1365-4632.2010.04321.x] [PMID: 20465701]
[129]
Yellapa A, Bahr JM, Bitterman P, et al. Association of interleukin 16 with the development of ovarian tumor and tumor-associated neoangiogenesis in laying hen model of spontaneous ovarian cancer. Int J Gynecol Cancer 2012; 22(2): 199-207.
[http://dx.doi.org/10.1097/IGC.0b013e318236a27b] [PMID: 22274315]
[130]
Chen WC, Lai YH, Chen HY, Guo HR, Su IJ, Chen HHW. Interleukin-17-producing cell infiltration in the breast cancer tumour microenvironment is a poor prognostic factor. Histopathology 2013; 63(2): 225-33.
[http://dx.doi.org/10.1111/his.12156] [PMID: 23738752]
[131]
Welte T, Zhang XH. Interleukin-17 could promote breast cancer progression at several stages of the disease. Mediators Inflamm 2015; 2015: 804347.
[http://dx.doi.org/10.1155/2015/804347]
[132]
Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 2011; 29(1): 71-109.
[http://dx.doi.org/10.1146/annurev-immunol-031210-101312] [PMID: 21166540]
[133]
Hsing CH, Hsieh MY, Chen WY, Cheung So E, Cheng BC, Chang MS. Induction of interleukin-19 and interleukin-22 after cardiac surgery with cardiopulmonary bypass. Ann Thorac Surg 2006; 81(6): 2196-201.
[http://dx.doi.org/10.1016/j.athoracsur.2006.01.092] [PMID: 16731153]
[134]
Bergmann CB, Beckmann N, Salyer CE, Hanschen M, Crisologo PA, Caldwell CC. Potential targets to mitigate trauma-or sepsis-induced immune suppression. Front Immunol 2021; 12: 622601.
[http://dx.doi.org/10.3389/fimmu.2021.622601] [PMID: 33717127]
[135]
Parma A, Cometi L, Leone MC, Lepri G, Talarico R, Guiducci S. One year in review 2016: Spondyloarthritis. Clin Exp Rheumatol 2017; 35(1): 3-17.
[PMID: 28150582]
[136]
Autieri MV. IL-19 and other IL-20 family member cytokines in vascular inflammatory diseases. Front Immunol 2018; 9: 700.
[http://dx.doi.org/10.3389/fimmu.2018.00700] [PMID: 29681905]
[137]
Fujimoto Y, Kuramoto N, Yoneyama M, Azuma YT. Interleukin-19 as an immunoregulatory cytokine. Curr Mol Pharmacol 2020; 14(2): 191-9.
[http://dx.doi.org/10.2174/1874467213666200424151528] [PMID: 32329704]
[138]
Bao L, Shi VY, Chan LS. IL-4 up-regulates epidermal chemotactic, angiogenic, and pro-inflammatory genes and down-regulates antimicrobial genes in vivo and in vitro: Relevant in the pathogenesis of atopic dermatitis. Cytokine 2013; 61(2): 419-25.
[http://dx.doi.org/10.1016/j.cyto.2012.10.031] [PMID: 23207180]
[139]
Hsing CH, Cheng HC, Hsu YH, et al. Upregulated IL-19 in breast cancer promotes tumor progression and affects clinical outcome. Clin Cancer Res 2012; 18(3): 713-25.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1532] [PMID: 22186257]
[140]
Weng YH, Chen WY, Lin YL, Wang JY, Chang MS. Blocking IL-19 signaling ameliorates allergen-induced airway inflammation. Front Immunol 2019; 10: 968.
[http://dx.doi.org/10.3389/fimmu.2019.00968] [PMID: 31114590]
[141]
Azuma YT, Nishiyama K. Interleukin-19 enhances cytokine production induced by lipopolysaccharide and inhibits cytokine production induced by polyI:C in BALB/c mice. J Vet Med Sci 2020; 82(7): 891-6.
[http://dx.doi.org/10.1292/jvms.20-0137] [PMID: 32378521]
[142]
Bazid H, Marae A, Tayel N, et al. Interleukin19 gene polymorphism and its serum level in acne vulgaris patients. J Immunoassay Immunochem 2022; 43(1): 1951291.
[http://dx.doi.org/10.1080/15321819.2021.1952425] [PMID: 34292139]
[143]
Hsing CH, Li HH, Hsu YH, et al. The distribution of interleukin-19 in healthy and neoplastic tissue. Cytokine 2008; 44(2): 221-8.
[http://dx.doi.org/10.1016/j.cyto.2008.06.007] [PMID: 18809337]
[144]
Gallagher G. Interleukin-19: Multiple roles in immune regulation and disease. Cytokine Growth Factor Rev 2010; 21(5): 345-52.
[http://dx.doi.org/10.1016/j.cytogfr.2010.08.005] [PMID: 20889366]
[145]
Niess JH, Hruz P, Kaymak T. The interleukin-20 cytokines in intestinal diseases. Front Immunol 2018; 9: 1373.
[http://dx.doi.org/10.3389/fimmu.2018.01373] [PMID: 29967613]
[146]
Sa SM, Valdez PA, Wu J, et al. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol 2007; 178(4): 2229-40.
[http://dx.doi.org/10.4049/jimmunol.178.4.2229] [PMID: 17277128]
[147]
Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines - from host defence to tissue homeostasis. Nat Rev Immunol 2014; 14(12): 783-95.
[http://dx.doi.org/10.1038/nri3766] [PMID: 25421700]
[148]
Hsu YH, Chang MS. The therapeutic potential of anti-interleukin-20 monoclonal antibody. Cell Transplant 2014; 23(4-5): 631-9.
[http://dx.doi.org/10.3727/096368914X678319] [PMID: 24816455]
[149]
Chen YC, Sosnoski DM, Mastro AM. Breast cancer metastasis to the bone: Mechanisms of bone loss. Breast Cancer Res 2010; 12(6): 215.
[http://dx.doi.org/10.1186/bcr2781] [PMID: 21176175]
[150]
Hsu YH, Hsing CH, Li CF, et al. Anti-IL-20 monoclonal antibody suppresses breast cancer progression and bone osteolysis in murine models. J Immunol 2012; 188(4): 1981-91.
[http://dx.doi.org/10.4049/jimmunol.1102843] [PMID: 22238453]
[151]
Li P, Leonard WJ. Chromatin accessibility and interactions in the transcriptional regulation of T cells. Front Immunol 2018; 9: 2738.
[http://dx.doi.org/10.3389/fimmu.2018.02738] [PMID: 30524449]
[152]
Spolski R, Leonard WJ. Interleukin-21: A double-edged sword with therapeutic potential. Nat Rev Drug Discov 2014; 13(5): 379-95.
[http://dx.doi.org/10.1038/nrd4296] [PMID: 24751819]
[153]
Skak K, Kragh M, Hausman D, Smyth MJ, Sivakumar PV. Interleukin 21: Combination strategies for cancer therapy. Nat Rev Drug Discov 2008; 7(3): 231-40.
[http://dx.doi.org/10.1038/nrd2482] [PMID: 18259184]
[154]
Steele N, Anthony A, Saunders M, et al. A phase 1 trial of recombinant human IL-21 in combination with cetuximab in patients with metastatic colorectal cancer. Br J Cancer 2012; 106(5): 793-8.
[http://dx.doi.org/10.1038/bjc.2011.599] [PMID: 22315057]
[155]
Dumoutier L, Van Roost E, Ameye G, Michaux L, Renauld J-C. IL-TIF/IL-22: Genomic organization and mapping of the human and mouse genes. Genes Immun 2000; 1(8): 488-94.
[http://dx.doi.org/10.1038/sj.gene.6363716] [PMID: 11197690]
[156]
Hrestak D, Matijašić M, Čipčić Paljetak H, Ledić Drvar D, Ljubojević Hadžavdić S, Perić M. Skin microbiota in atopic dermatitis. Int J Mol Sci 2022; 23(7): 3503.
[http://dx.doi.org/10.3390/ijms23073503] [PMID: 35408862]
[157]
Harker JA, Lloyd CM. Overlapping and distinct features of viral and allergen immunity in the human lung. Immunity 2021; 54(4): 617-31.
[http://dx.doi.org/10.1016/j.immuni.2021.03.010] [PMID: 33852829]
[158]
Glal D, Sudhakar JN, Lu HH, et al. ATF3 sustains IL-22-induced STAT3 phosphorylation to maintain mucosal immunity through inhibiting phosphatases. Front Immunol 2018; 9: 2522.
[http://dx.doi.org/10.3389/fimmu.2018.02522] [PMID: 30455690]
[159]
Leisman DE, Deutschman CS, Legrand M. Facing COVID-19 in the ICU: Vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med 2020; 46(6): 1105-8.
[http://dx.doi.org/10.1007/s00134-020-06059-6] [PMID: 32347323]
[160]
Monastero RN, Pentyala S. Cytokines as biomarkers and their respective clinical cutoff levels. Int J Inflamm 2017; 2017: 1-11.
[http://dx.doi.org/10.1155/2017/4309485] [PMID: 28487810]
[161]
Gulati K, Guhathakurta S, Joshi J, et al. Cytokines and their role in health and disease: A brief overview. MOJ Immunol 2016; 4(2): 00121.
[162]
Ma Y, Ren Y, Dai ZJ, Wu CJ, Ji YH, Xu J. IL-6, IL-8 and TNF-α levels correlate with disease stage in breast cancer patients. Adv Clin Exp Med 2017; 26(3): 421-6.
[http://dx.doi.org/10.17219/acem/62120] [PMID: 28791816]
[163]
Martínez-Reza I, Díaz L, García-Becerra R. Preclinical and clinical aspects of TNF-α and its receptors TNFR1 and TNFR2 in breast cancer. J Biomed Sci 2017; 24(1): 90.
[http://dx.doi.org/10.1186/s12929-017-0398-9] [PMID: 29202842]
[164]
Pradhan AK, Maji S, Bhoopathi P, et al. Pharmacological inhibition of MDA-9/Syntenin blocks breast cancer metastasis through suppression of IL-1β. Proc Natl Acad Sci USA 2021; 118(21): e2103180118.
[http://dx.doi.org/10.1073/pnas.2103180118] [PMID: 34016751]
[165]
Castaño Z, San Juan BP, Spiegel A, et al. IL-1β inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat Cell Biol 2018; 20(9): 1084-97.
[http://dx.doi.org/10.1038/s41556-018-0173-5] [PMID: 30154549]
[166]
Mendoza-Rodríguez M, Arévalo Romero H, Fuentes-Pananá EM, Ayala-Sumuano JT, Meza I. IL-1β induces up-regulation of BIRC3, a gene involved in chemoresistance to doxorubicin in breast cancer cells. Cancer Lett 2017; 390: 39-44.
[http://dx.doi.org/10.1016/j.canlet.2017.01.005] [PMID: 28093282]
[167]
Chen G, Liang Y, Guan X, et al. Circulating low IL-23: IL-35 cytokine ratio promotes progression associated with poor prognosisin breast cancer. Am J Transl Res 2016; 8(5): 2255-64.
[PMID: 27347332]
[168]
Yamaguchi M, Hashimoto K, Jijiwa M, Murata T. The inflammatory macrophages repress the growth of bone metastatic human prostate cancer cells via TNF-α and IL-6 signaling: Involvement of cell signaling regulator regucalcin. Cell Signal 2023; 107: 110663.
[http://dx.doi.org/10.1016/j.cellsig.2023.110663] [PMID: 37001596]
[169]
Mu HQ, He YH, Wang SB, et al. MiR-130b/TNF-α/NF-κB/VEGFA loop inhibits prostate cancer angiogenesis. Clin Transl Oncol 2020; 22(1): 111-21.
[http://dx.doi.org/10.1007/s12094-019-02217-5] [PMID: 31667686]
[170]
Méndez-Clemente A, Bravo-Cuellar A, González-Ochoa S, et al. Dual STAT-3 and IL-6R inhibition with stattic and tocilizumab decreases migration, invasion and proliferation of prostate cancer cells by targeting the IL-6/IL-6R/STAT-3 axis. Oncol Rep 2022; 48(2): 138.
[http://dx.doi.org/10.3892/or.2022.8349] [PMID: 35703345]
[171]
Zhang J, Tang X, Jin Z, Zhang H. Interleukin-6 promotes cervical cancer development through janus kinase 2/signal transducer and activator of transcription 6 signaling pathway. J Biomater Tissue Eng 2021; 11(1): 76-83.
[http://dx.doi.org/10.1166/jbt.2021.2526]
[172]
Zhou C, He X, Zeng Q, Zhang P, Wang C. CCDC7 activates interleukin-6 and vascular endothelial growth factor to promote proliferation via the JAK-STAT3 pathway in cervical cancer cells. OncoTargets Ther 2020; 13: 6229-44.
[http://dx.doi.org/10.2147/OTT.S244663] [PMID: 32669853]
[173]
Yan X, Hui Y, Hua Y, et al. EG-VEGF silencing inhibits cell proliferation and promotes cell apoptosis in pancreatic carcinoma via PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother 2019; 109: 762-9.
[http://dx.doi.org/10.1016/j.biopha.2018.10.125] [PMID: 30551529]
[174]
Pausch TM, Aue E, Wirsik NM, et al. Metastasis-associated fibroblasts promote angiogenesis in metastasized pancreatic cancer via the CXCL8 and the CCL2 axes. Sci Rep 2020; 10(1): 5420.
[http://dx.doi.org/10.1038/s41598-020-62416-x] [PMID: 32214219]
[175]
Vasiliades G, Kopanakis N, Vasiloglou M, et al. Role of the hematopoietic cytokines SCF, IL-3, GM-CSF and M-CSF in the diagnosis of pancreatic and ampullary cancer. Int J Biol Markers 2012; 27(3): 186-94.
[http://dx.doi.org/10.5301/JBM.2012.9348] [PMID: 22865301]
[176]
Shimizu M, Tanaka N. IL-8-induced O-GlcNAc modification via GLUT3 and GFAT regulates cancer stem cell-like properties in colon and lung cancer cells. Oncogene 2019; 38(9): 1520-33.
[http://dx.doi.org/10.1038/s41388-018-0533-4] [PMID: 30305725]
[177]
Liu YN, Chang TH, Tsai MF, et al. IL-8 confers resistance to EGFR inhibitors by inducing stem cell properties in lung cancer. Oncotarget 2015; 6(12): 10415-31.
[http://dx.doi.org/10.18632/oncotarget.3389] [PMID: 25871388]
[178]
Gong K, Guo G, Gerber DE, et al. TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer. J Clin Invest 2018; 128(6): 2500-18.
[http://dx.doi.org/10.1172/JCI96148] [PMID: 29613856]
[179]
Heim L, Yang Z, Tausche P, et al. IL-9 producing tumor-infiltrating lymphocytes and Treg subsets drive immune escape of tumor cells in non-small cell lung cancer. Front Immunol 2022; 13: 859738.
[http://dx.doi.org/10.3389/fimmu.2022.859738] [PMID: 35514957]
[180]
He J, Wang L, Zhang C, et al. Interleukin-9 promotes tumorigenesis through augmenting angiogenesis in non-small cell lung cancer. Int Immunopharmacol 2019; 75: 105766.
[http://dx.doi.org/10.1016/j.intimp.2019.105766] [PMID: 31352324]
[181]
Xu W, Wu Y, Liu W, et al. Tumor-associated macrophage-derived chemokine CCL5 facilitates the progression and immunosuppressive tumor microenvironment of clear cell renal cell carcinoma. Int J Biol Sci 2022; 18(13): 4884-900.
[http://dx.doi.org/10.7150/ijbs.74647] [PMID: 35982911]
[182]
Wang D, Yang L, Yue D, et al. Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Lett 2019; 452: 244-53.
[http://dx.doi.org/10.1016/j.canlet.2019.03.040] [PMID: 30928379]
[183]
Jasrotia S, Gupta R, Sharma A, Halder A, Kumar L. Cytokine profile in multiple myeloma. Cytokine 2020; 136: 155271.
[http://dx.doi.org/10.1016/j.cyto.2020.155271] [PMID: 32916474]
[184]
Jammal MP, Martins-Filho A, Silveira TP, Murta EF, Nomelin RS. Cytokines and prognostic factors in epithelial ovarian cancer. Clin Med Insights Oncol 2016; 10: 71-6.
[http://dx.doi.org/10.4137/CMO.S38333]
[185]
Li J, Xu L, Run ZC, et al. Multiple cytokine profiling in serum for early detection of gastric cancer. World J Gastroenterol 2018; 24(21): 2269-78.
[http://dx.doi.org/10.3748/wjg.v24.i21.2269] [PMID: 29881236]
[186]
Sánchez-Zauco N, Torres J, Gómez A, et al. Circulating blood levels of IL-6, IFN-γ, and IL-10 as potential diagnostic biomarkers in gastric cancer: A controlled study. BMC Cancer 2017; 17(1): 1-10.
[PMID: 28049525]
[187]
Zhao J, Mo H. The impact of different anesthesia methods on stress reaction and immune function of the patients with gastric cancer during peri-operative period. J Med Assoc Thai 2015; 98(6): 568-73.
[PMID: 26219161]
[188]
Zhang X, Hu F, Li G, et al. Human colorectal cancer-derived mesenchymal stem cells promote colorectal cancer progression through IL-6/JAK2/STAT3 signaling. Cell Death Dis 2018; 9(2): 25.
[http://dx.doi.org/10.1038/s41419-017-0176-3] [PMID: 29348540]
[189]
Liu H, Ren G, Wang T, et al. Aberrantly expressed Fra-1 by IL-6/STAT3 transactivation promotes colorectal cancer aggressiveness through epithelial–mesenchymal transition. Carcinogenesis 2015; 36(4): 459-68.
[http://dx.doi.org/10.1093/carcin/bgv017] [PMID: 25750173]
[190]
Wang J, Sun M, Zhao H, et al. IL-9 exerts antitumor effects in colon cancer and transforms the tumor microenvironment in vivo. Technol Cancer Res Treat 2019; 18
[http://dx.doi.org/10.1177/1533033819857737] [PMID: 31242804]
[191]
Xing X, Gu X, Ma T, Ye H. Biglycan up-regulated vascular endothelial growth factor (VEGF) expression and promoted angiogenesis in colon cancer. Tumour Biol 2015; 36(3): 1773-80.
[http://dx.doi.org/10.1007/s13277-014-2779-y] [PMID: 25371074]
[192]
Abbassy HA, Aboelwafa RA, Ghallab OM. Evaluation of interleukin-9 expression as a potential therapeutic target in chronic lymphocytic leukemia in a cohort of Egyptian patients. Indian J Hematol Blood Transfus 2017; 33(4): 477-82.
[http://dx.doi.org/10.1007/s12288-017-0804-1] [PMID: 29075057]
[193]
Lee EJ, Lee SJ, Kim S, et al. Interleukin-5 enhances the migration and invasion of bladder cancer cells via ERK1/2-mediated MMP-9/NF-κB/AP-1 pathway: Involvement of the p21WAF1 expression. Cell Signal 2013; 25(10): 2025-38.
[http://dx.doi.org/10.1016/j.cellsig.2013.06.004] [PMID: 23770289]
[194]
James N, Ozsoy M, Cruz PDL, Woodman M, Ribeiro J. 729 Immunologic tumor cell intrinsic effects of standard of care therapies for ovarian cancer. J Immunother Cancer 2021; 9(2) (Suppl. 2): A758.
[http://dx.doi.org/10.1136/jitc-2021-SITC2021.729]
[195]
Rahbar A, Cederarv M, Wolmer-Solberg N, et al. Enhanced neutrophil activity is associated with shorter time to tumor progression in glioblastoma patients. OncoImmunology 2016; 5(2): e1075693.
[http://dx.doi.org/10.1080/2162402X.2015.1075693] [PMID: 27057448]
[196]
Serhan CN, Petasis NA. Resolvins and protectins in inflammation resolution. Chem Rev 2011; 111(10): 5922-43.
[http://dx.doi.org/10.1021/cr100396c] [PMID: 21766791]
[197]
Bi Q, Wu JY, Qiu XM, Zhang JD, Sun ZJ, Wang W. Tumor-associated inflammation: The tumor-promoting immunity in the early stages of tumorigenesis. J Immunol Res 2022; 2022: 1-13.
[http://dx.doi.org/10.1155/2022/3128933] [PMID: 35733919]
[198]
Fernandes JV, Cobucci RNO, Jatobá CAN, de Medeiros Fernandes TAA, de Azevedo JWV, de Araújo JMG. The role of the mediators of inflammation in cancer development. Pathol Oncol Res 2015; 21(3): 527-34.
[http://dx.doi.org/10.1007/s12253-015-9913-z] [PMID: 25740073]
[199]
Singh S, Mehta N, Lilan J, Budhthoki MB, Chao F, Yong L. Initiative action of tumor-associated macrophage during tumor metastasis. Biochim Open 2017; 4: 8-18.
[http://dx.doi.org/10.1016/j.biopen.2016.11.002] [PMID: 29450136]
[200]
Das D, Karthik N, Taneja R. Crosstalk between inflammatory signaling and methylation in cancer. Front Cell Dev Biol 2021; 9: 756458.
[http://dx.doi.org/10.3389/fcell.2021.756458] [PMID: 34901003]
[201]
Sullivan R, Maresh G, Zhang X, et al. The emerging roles of extracellular vesicles as communication vehicles within the tumor microenvironment and beyond. Front Endocrinol (Lausanne) 2017; 8: 194.
[http://dx.doi.org/10.3389/fendo.2017.00194] [PMID: 28848498]
[202]
Gentric G, Mieulet V, Mechta-Grigoriou F. Heterogeneity in cancer metabolism: New concepts in an old field. Antioxid Redox Signal 2017; 26(9): 462-85.
[http://dx.doi.org/10.1089/ars.2016.6750] [PMID: 27228792]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy