Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Therapeutic Potential and Prospects of L-arginine in Various Diseases and its Clinical Intervention

Author(s): Sushil Giri, Krishna Kumar Varshney and Rajnish Srivastava*

Volume 19, Issue 5, 2024

Published on: 01 November, 2023

Page: [529 - 545] Pages: 17

DOI: 10.2174/0115748855260802231019072509

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

The goal of this review is to explored the therapeutic application of L-Arginine (L-ARG) against various pathological illnesses, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), cardiovascular disorder, mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes (MELAS), sickle cell anemia, tumour, epilepsy, erectile dysfunction therapy (ED), gestational hypertension (GH), and menopause issues. L-ARG is an important semi-essential alpha-amino acid that serves as a natural precursor for the synthesis of nitric oxide (NO). It is generally synthesized from proteinogenic amino acid proline through glutamine and glutamate. The degradation of L-ARG is a complex process due to the expression of multiple enzymes in the form of a substrate. The metabolism of L-ARG takes place in various multiple pathways, such as nitric oxide synthase, Arginine glycine amidinotransferase, and Arginine decarboxylase which results in the production of a diverse range of biochemical compounds, such as nitric oxide, polyamines, proline, glutamate, creanine, agmatine homoarginine, and urea. NO is a highly diffusible free radicle with a regulatory function in the heart and acts as an important vasodilator in intact endothelium. NO serves as an important neurotransmitter in the brain and a mediator of host defense in the immune system. L-ARG is also needed for ammonia detoxification, which is a very toxic chemical to the central nervous system. This review article focuses on the relevance of L-ARG in the prevention and treatment of a variety of illnesses.

Keywords: L-arginin, nitric oxide, polyamines, heart, endothelium, immune system.

Graphical Abstract
[1]
McRae MP. Therapeutic benefits of l-arginine: An umbrella review of meta-analyses. J Chiropr Med 2016; 15(3): 184-9.
[http://dx.doi.org/10.1016/j.jcm.2016.06.002] [PMID: 27660594]
[2]
Wang R, Jiao H, Zhao J, Wang X, Lin H. L-arginine enhances protein synthesis by phosphorylating mTOR (Thr 2446) in a nitric oxide-dependent manner in C2C12 Cells. Oxid Med Cell Longev 2018; 2018: 1-13.
[http://dx.doi.org/10.1155/2018/7569127] [PMID: 29854093]
[3]
Wu G, Bazer FW, Davis TA, et al. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009; 37(1): 153-68.
[http://dx.doi.org/10.1007/s00726-008-0210-y] [PMID: 19030957]
[4]
Jansen A, Lewis S, Cattell V, Cook HT. Arginase is a major pathway of L-arginine metabolism in nephritic glomeruli. Kidney Int 1992; 42(5): 1107-12.
[http://dx.doi.org/10.1038/ki.1992.394] [PMID: 1280702]
[5]
Feng C. Mechanism of nitric oxide synthase regulation: Electron transfer and interdomain interactions. Coord Chem Rev 2012; 256(3-4): 393-411.
[http://dx.doi.org/10.1016/j.ccr.2011.10.011] [PMID: 22523434]
[6]
Schwedhelm E, Maas R, Freese R, et al. Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: Impact on nitric oxide metabolism. Br J Clin Pharmacol 2008; 65(1): 51-9.
[http://dx.doi.org/10.1111/j.1365-2125.2007.02990.x] [PMID: 17662090]
[7]
Watts DC, Anosike EO, Moreland B, Pollitt RJ, Lee CR. The use of arginine analogues for investigating the functional organization of the arginine-binding site in lobster muscle arginine kinase. Role of the ‘essential’ thiol group. Biochem J 1980; 185(3): 593-9.
[http://dx.doi.org/10.1042/bj1850593] [PMID: 6248027]
[8]
Morris SM Jr. Enzymes of arginine metabolism. J Nutr 2004; 134(10) (Suppl.): 2743S-7S.
[http://dx.doi.org/10.1093/jn/134.10.2743S] [PMID: 15465778]
[9]
Cau SBA, Carneiro FS, Tostes RC. Differential modulation of nitric oxide synthases in aging: Therapeutic opportunities. Front Physiol 2012; 3: 218.
[http://dx.doi.org/10.3389/fphys.2012.00218] [PMID: 22737132]
[10]
Quirino IEP, Cardoso VN, Santos RGC, et al. The role of L-arginine and inducible nitric oxide synthase in intestinal permeability and bacterial translocation. JPEN J Parenter Enteral Nutr 2013; 37(3): 392-400.
[http://dx.doi.org/10.1177/0148607112458325] [PMID: 22914893]
[11]
Kuriyama K, Ohkuma S. Role of nitric oxide in central synaptic transmission: Effects on neurotransmitter release. Jpn J Pharmacol 1995; 69(1): 1-8.
[http://dx.doi.org/10.1254/jjp.69.1] [PMID: 8847826]
[12]
Cespuglio R, Burlet S, Marinesco S, Robert F, Jouvet M. Voltammetric detection of cerebral NO in rats. Signal variations across the sleep-wake cycle. C R Acad Sci III 1996; 319(2): 191-200.
[13]
Cifuentes D, Poittevin M, Bonnin P, et al. Inactivation of nitric oxide synthesis exacerbates the development of alzheimer disease pathology in APPPS1 Mice (amyloid precursor protein/presenilin-1). Hypertension 2017; 70(3): 613-23.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09742] [PMID: 28760945]
[14]
Chianese R, Coccurello R, Viggiano A, et al. Impact of dietary fats on brain functions. Curr Neuropharmacol 2018; 16(7): 1059-85.
[http://dx.doi.org/10.2174/1570159X15666171017102547] [PMID: 29046155]
[15]
Yi J, Horky LL, Friedlich AL, Shi Y, Rogers JT, Huang X. L-arginine and Alzheimer’s disease. Int J Clin Exp Pathol 2009; 2(3): 211-38.
[PMID: 19079617]
[16]
Mukai T, Lajoie MJ, Englert M, Söll D. Rewriting the genetic code. Annu Rev Microbiol 2017; 71(1): 557-77.
[http://dx.doi.org/10.1146/annurev-micro-090816-093247] [PMID: 28697669]
[17]
Tuteja N, Chandra M, Tuteja R, Misra MK. Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J Biomed Biotechnol 2004; 2004(4): 227-37.
[http://dx.doi.org/10.1155/S1110724304402034] [PMID: 15467163]
[18]
Tykocki NR, Boerman EM, Jackson WF. Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Compr Physiol 2017; 7(2): 485-581.
[http://dx.doi.org/10.1002/cphy.c160011] [PMID: 28333380]
[19]
Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: Implications for the pathogenesis of Alzheimer’s disease. J Neuroinflammation 2011; 8(1): 26.
[http://dx.doi.org/10.1186/1742-2094-8-26] [PMID: 21439035]
[20]
Chen Z, Zhong C. Oxidative stress in Alzheimer’s disease. Neurosci Bull 2014; 30(2): 271-81.
[http://dx.doi.org/10.1007/s12264-013-1423-y] [PMID: 24664866]
[21]
Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 2018; 14: 450-64.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[22]
Toda N, Okamura T. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer’s disease. J Pharmacol Sci 2016; 131(4): 223-32.
[http://dx.doi.org/10.1016/j.jphs.2016.07.001] [PMID: 27530818]
[23]
Kuiper MA, Teerlink T, Visser JJ, Bergmans PLM, Scheltens P, Wolters EC. L-Glutamate, L-arginine and L-citrulline levels in cerebrospinal fluid of Parkinson’s disease, multiple system atrophy, and Alzheimer’s disease patients. J Neural Transm 2000; 107(2): 183-9.
[http://dx.doi.org/10.1007/s007020050016] [PMID: 10847559]
[24]
Dubey H, Dubey A, Gulati K, Ray A. Protective effects of L-arginine on cognitive deficits and biochemical parameters in an experimental model of type-2 diabetes mellitus induced Alzheimer’s disease in rats. J Physiol Pharmacol 2022; 73(1) .
[http://dx.doi.org/10.26402/jpp.2022.1.01] [PMID: 35639033]
[25]
Zhu R, Lei Y, Shi F, Tian Q, Zhou X. Arginine reduces glycation in γ2 Subunit of AMPK and pathologies in alzheimer’s disease model mice. Cells 2022; 11(21): 3520.
[http://dx.doi.org/10.3390/cells11213520] [PMID: 36359916]
[26]
Gupta SP, Yadav S, Singhal NK, Tiwari MN, Mishra SK, Singh MP. Does restraining nitric oxide biosynthesis rescue from toxins-induced parkinsonism and sporadic Parkinson’s disease? Mol Neurobiol 2014; 49(1): 262-75.
[http://dx.doi.org/10.1007/s12035-013-8517-4] [PMID: 23900742]
[27]
Paul V, Ekambaram P. Involvement of nitric oxide in learning & memory processes. Indian J Med Res 2011; 133(5): 471-8.
[PMID: 21623030]
[28]
Hami J, Hosseini M, Shahi S, Lotfi N, Talebi A, Afshar M. Effects of L-arginine pre-treatment in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s diseases in Balb/c mice. Iran J Neurol 2015; 14(4): 195-203.
[PMID: 26885338]
[29]
El-Sayed EK, Ahmed AAE, Morsy EME, Nofal S. Neuroprotective effect of agmatine (decarboxylated l -arginine) against oxidative stress and neuroinflammation in rotenone model of Parkinson’s disease. Hum Exp Toxicol 2019; 38(2): 173-84.
[http://dx.doi.org/10.1177/0960327118788139] [PMID: 30001633]
[30]
Wu W, Sung CC, Yu P, Li J, Chung KKK. Correction: S-Nitrosylation of G protein-coupled receptor kinase 6 and Casein kinase 2 alpha modulates their kinase activity toward alpha-synuclein phosphorylation in an animal model of Parkinson’s disease. PLoS One 2020; 15(6): e0235296.
[http://dx.doi.org/10.1371/journal.pone.0235296]
[31]
Williams D, Venardos KM, Byrne M, et al. Abnormal mitochondrial L-arginine transport contributes to the pathogenesis of heart failure and rexoygenation injury. PLoS One 2014; 9(8): e104643.
[http://dx.doi.org/10.1371/journal.pone.0104643] [PMID: 25111602]
[32]
Rajapakse NW, Karim F, Straznicky NE, et al. Augmented endothelial-specific L-arginine transport prevents obesity-induced hypertension. Acta Physiol 2014; 212(1): 39-48.
[http://dx.doi.org/10.1111/apha.12344] [PMID: 25041756]
[33]
Giam B, Kuruppu S, Head G, Kaye D, Rajapakse N. Effects of dietary l-arginine on nitric oxide bioavailability in obese normotensive and obese hypertensive subjects. Nutrients 2016; 8(6): 364.
[http://dx.doi.org/10.3390/nu8060364] [PMID: 27314383]
[34]
Ranjbar K, Rahmani-Nia F, Shahabpour E. Aerobic training and larginine supplementation promotes rat heart and hindleg muscles arteriogenesis after myocardial infarction. J Physiol Biochem 2016; 72(3): 393-404.
[http://dx.doi.org/10.1007/s13105-016-0480-x] [PMID: 27121159]
[35]
Bir SC, Pattillo CB, Pardue S, et al. Nitrite anion stimulates ischemic arteriogenesis involving NO metabolism. Am J Physiol Heart Circ Physiol 2012; 303(2): H178-88.
[http://dx.doi.org/10.1152/ajpheart.01086.2010] [PMID: 22610173]
[36]
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552(2): 335-44.
[http://dx.doi.org/10.1113/jphysiol.2003.049478] [PMID: 14561818]
[37]
Peralta JG, Finocchietto PV, Converso D, Schöpfer F, Carreras MC, Poderoso JJ. Modulation of mitochondrial nitric oxide synthase and energy expenditure in rats during cold acclimation. Am J Physiol Heart Circ Physiol 2003; Jun; 284(6): H2375-83. Epub 2003 Feb 27.
[http://dx.doi.org/10.1152/ajpheart.00785.2002] [PMID: 12609820]
[38]
Boveris A, D'Amico G, Lores-Arnaiz S, Costa LE. Enalapril increases mitochondrial nitric oxide synthase activity in heart and liver. Antioxid Redox Signal 2003; Dec; 5(6): 691-7.
[http://dx.doi.org/10.1089/152308603770379982] [PMID: 14588141] [http://dx.doi.org/10.3389/fchem.2020.00732] [PMID: 32974285]
[39]
Radi R, Cassina A, Hodara R, Quijano C, Castro L. Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 2002 Dec 1; 33(11): 1451-64.
[http://dx.doi.org/10.1016/s0891-5849(02)01111-5] [PMID: 12446202] [http://dx.doi.org/10.1152/ajpheart.00785.2002] [PMID: 12609820]
[40]
Chen W, Li D. Reactive oxygen species (ROS)-responsive nanomedicine for solving ischemia-reperfusion injury. Front Chem 2020. Aug 21; 8: 732. doi: 10.3389/fchem.2020.00732. PMID: 32974285; PMCID: PMC7472733. http://dx.doi.org/10.1089/152308603770379982 PMID: 14588141
[41]
Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E. Nitric oxide and mitochondria in metabolic syndrome. Front Physiol 2015; 6: 20.
[http://dx.doi.org/10.3389/fphys.2015.00020] [PMID: 25741283]
[42]
Dynnik VV, Grishina EV, Fedotcheva NI. Bidirectional control of mitochondrial respiration and permeability transition pore by nitric oxide donors and L-arginine. Implication of mitochondrial NO/cGMP/PKG-signaling system. bioRxiv 2018.
[43]
Venardos KM, Rajapakse NW, Williams D, Hoe LS, Peart JN, Kaye DM. Cardio-protective effects of combined l-arginine and insulin: Mechanism and therapeutic actions in myocardial ischemia-reperfusion injury. Eur J Pharmacol 2015; 769: 64-70.
[http://dx.doi.org/10.1016/j.ejphar.2015.10.046] [PMID: 26522927]
[44]
Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: A distinctive clinical syndrome. Ann Neurol 1984; 16(4): 481-8.
[http://dx.doi.org/10.1002/ana.410160409] [PMID: 6093682]
[45]
Goto Y, Nonaka I, Horai S. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1990; 348(6302): 651-3.
[http://dx.doi.org/10.1038/348651a0] [PMID: 2102678]
[46]
Yoneda M, Ikawa M, Arakawa K, et al. In vivo functional brain imaging and a therapeutic trial of l-arginine in MELAS patients. Biochim Biophys Acta, Gen Subj 2012; 1820(5): 615-8.
[http://dx.doi.org/10.1016/j.bbagen.2011.04.018] [PMID: 21600268]
[47]
Koga Y, Akita Y, Nishioka J, et al. L-Arginine improves the symptoms of strokelike episodes in MELAS. Neurology 2005; 64(4): 710-2.
[http://dx.doi.org/10.1212/01.WNL.0000151976.60624.01] [PMID: 15728297]
[48]
El-Hattab AW, Adesina AM, Jones J, Scaglia F. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab 2015; 116(1-2): 4-12.
[http://dx.doi.org/10.1016/j.ymgme.2015.06.004] [PMID: 26095523]
[49]
El-Hattab AW, Almannai M, Scaglia F. Arginine and citrulline for the treatment of MELAS syndrome. J Inborn Errors Metab Screen 2017; 5: 10.
[http://dx.doi.org/10.1177/2326409817697399]
[50]
El-Hattab AW, Almannai M, Scaglia F. GeneReviews®. Seattle (WA): University of Washington, Seattle 2001.; 1993–2023.
[51]
Argudo JM, Astudillo Moncayo OM, Insuasti W, et al. Arginine for the treatment of mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes: A systematic review. Cureus 2022; 14(12): e32709.
[http://dx.doi.org/10.7759/cureus.32709] [PMID: 36686069]
[52]
Scavella A, Leiva L, Monjure H, Zea AH, Gardner RV. Effect of Larginine supplementation on immune responsiveness in patients with sickle cell disease. Pediatr Blood Cancer 2010; 55(2): 318-23.
[http://dx.doi.org/10.1002/pbc.22562] [PMID: 20582959]
[53]
Kehinde MO, Ogungbemi SI, Anigbogu CN, Jaja SI. l-Arginine supplementation enhances antioxidant activity and erythrocyte integrity in sickle cell anaemia subjects. Pathophysiology 2015; 22(3): 137-42.
[http://dx.doi.org/10.1016/j.pathophys.2015.05.001] [PMID: 26051155]
[54]
Morris CR, Brown LAS, Reynolds M, et al. Impact of arginine therapy on mitochondrial function in children with sickle cell disease during vaso-occlusive pain. Blood 2020; 136(12): 1402-6.
[http://dx.doi.org/10.1182/blood.2019003672] [PMID: 32384147]
[55]
Geiger R, Rieckmann JC, Wolf T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 2016; 167(3): 829-842.e13.
[http://dx.doi.org/10.1016/j.cell.2016.09.031] [PMID: 27745970]
[56]
Szefel J, Danielak A, Kruszewski WJ. Metabolic pathways of L-arginine and therapeutic consequences in tumors. Adv Med Sci 2019; 64(1): 104-10.
[http://dx.doi.org/10.1016/j.advms.2018.08.018] [PMID: 30605863]
[57]
Ma Q, Wang Z, Zhang M, et al. Targeting the L-arginine-nitric oxide pathway for cancer treatment. Curr Pharm Des 2010; 16(4): 392-410.
[http://dx.doi.org/10.2174/138161210790232121] [PMID: 20236068]
[58]
Satoh Y, Kotani H, Iida Y, Taniura T, Notsu Y, Harada M. Supplementation of l ‐arginine boosts the therapeutic efficacy of anticancer chemoimmunotherapy. Cancer Sci 2020; 111(7): 2248-58.
[http://dx.doi.org/10.1111/cas.14490] [PMID: 32426941]
[59]
Minet P, Sarret C, Miret A, Mention K, Benoist JF, Remerand G. Clinical and biochemical outcome of a patient with pyridoxine-dependent epilepsy treated by triple therapy (pyridoxine supplementation, lysine-restricted diet, and arginine supplementation). Acta Neurol Belg 2021; 121(6): 1669-75.
[http://dx.doi.org/10.1007/s13760-020-01467-3] [PMID: 33113107]
[60]
Mercimek-Mahmutoglu S, Cordeiro D, Cruz V, et al. Novel therapy for pyridoxine dependent epilepsy due to ALDH7A1 genetic defect: l-arginine supplementation alternative to lysine-restricted diet. Eur J Paediatr Neurol 2014; 18(6): 741-6.
[http://dx.doi.org/10.1016/j.ejpn.2014.07.001] [PMID: 25127453]
[61]
Yuzyuk T, Thomas A, Viau K, et al. Effect of dietary lysine restriction and arginine supplementation in two patients with pyridoxine-dependent epilepsy. Mol Genet Metab 2016; 118(3): 167-72.
[http://dx.doi.org/10.1016/j.ymgme.2016.04.015] [PMID: 27324284]
[62]
Al Teneiji A, Bruun TUJ, Cordeiro D, et al. Phenotype, biochemical features, genotype and treatment outcome of pyridoxine-dependent epilepsy. Metab Brain Dis 2017; 32(2): 443-51.
[http://dx.doi.org/10.1007/s11011-016-9933-8] [PMID: 27882480]
[63]
Senbel AM, Omar AG, Abdel-Moneim LM, Mohamed HF, Daabees TT. Evaluation of l-arginine on kidney function and vascular reactivity following ischemic injury in rats: Protective effects and potential interactions. Pharmacol Rep 2014; 66(6): 976-83.
[http://dx.doi.org/10.1016/j.pharep.2014.06.013] [PMID: 25443724]
[64]
Elbassuoni EA, Ragy MM, Ahmed SM. Evidence of the protective effect of l-arginine and vitamin D against monosodium glutamateinduced liver and kidney dysfunction in rats. Biomed Pharmacother 2018; 108: 799-808.
[http://dx.doi.org/10.1016/j.biopha.2018.09.093] [PMID: 30253372]
[65]
Jadot I, Duquesne M, Declèves AE, Caron N, Colet JM, Nortier J. A translational metabonomic assessment of aristolochic acid-induced nephropathies. IntechOpen 2018.
[http://dx.doi.org/10.5772/intechopen.78288]
[66]
Huang J, Ladeiras D, Yu Y, Ming XF, Yang Z. Detrimental effects of chronic l-arginine rich food on aging kidney. Front Pharmacol 2021; 11: 582155.
[http://dx.doi.org/10.3389/fphar.2020.582155] [PMID: 33542686]
[67]
Barassi A, Corsi Romanelli MM, Pezzilli R, et al. Levels of l ‐arginine and l ‐citrulline in patients with erectile dysfunction of different etiology. Andrology 2017; 5(2): 256-61.
[http://dx.doi.org/10.1111/andr.12293] [PMID: 28178400]
[68]
Rhim HC, Kim MS, Park YJ, et al. The potential role of arginine supplements on erectile dysfunction: A systemic review and metaanalysis. J Sex Med 2019; 16(2): 223-34.
[http://dx.doi.org/10.1016/j.jsxm.2018.12.002] [PMID: 30770070]
[69]
Cartledge J, Minhas S, Eardley I. The role of nitric oxide in penile erection. Expert Opin Pharmacother 2001; 2(1): 95-107.
[http://dx.doi.org/10.1517/14656566.2.1.95] [PMID: 11336572]
[70]
Masuda H. Significance of nitric oxide and its modulation mechanisms by endogenous nitric oxide synthase inhibitors and arginase in the micturition disorders and erectile dysfunction. Int J Urol 2008; 15(2): 128-34.
[http://dx.doi.org/10.1111/j.1442-2042.2007.01973.x] [PMID: 18269446]
[71]
Maruta E, Wang J, Kotani T, et al. Association of serum asymmetric dimethylarginine, homocysteine, and l-arginine concentrations during early pregnancy with hypertensive disorders of pregnancy. Clin Chim Acta 2017; 475: 70-7.
[http://dx.doi.org/10.1016/j.cca.2017.10.007] [PMID: 29024618]
[72]
Wang J, Kotani T, Tsuda H, et al. Is the serum L-arginine level during early pregnancy a predictor of pregnancy-induced hypertension? J Clin Biochem Nutr 2015; 57(1): 74-81.
[http://dx.doi.org/10.3164/jcbn.14-104] [PMID: 26236104]
[73]
Facchinetti F, Saade GR, Neri I, Pizzi C, Longo M, Volpe A. Larginine supplementation in patients with gestational hypertension: A pilot study. Hypertens Pregnancy 2007; 26(1): 121-30.
[http://dx.doi.org/10.1080/10641950601147994] [PMID: 17454224]
[74]
Gui S, Jia J, Niu X, et al. Arginine supplementation for improving maternal and neonatal outcomes in hypertensive disorder of pregnancy: A systematic review. J Renin Angiotensin Aldosterone Syst 2014; 15(1): 88-96.
[http://dx.doi.org/10.1177/1470320313475910] [PMID: 23435582]
[75]
Cottrell E, Tropea T, Ormesher L, et al. Dietary interventions for fetal growth restriction : Therapeutic potential of dietary nitrate supplementation in pregnancy. J Physiol 2017; 595(15): 5095-102.
[http://dx.doi.org/10.1113/JP273331] [PMID: 28090634]
[76]
Izumi H, Yallampalli C, Garfield RE. Gestational changes in l-arginine-induced relaxation of pregnant rat and human myometrial smooth muscle. Am J Obstet Gynecol 1993; 169(5): 1327-37.
[http://dx.doi.org/10.1016/0002-9378(93)90301-X] [PMID: 8238202]
[77]
Mury WV, Brunini TMC, Abrantes DC, et al. Hyperaggregability and impaired nitric oxide production in platelets from postmenopausal women. Maturitas 2015; 80(1): 75-81.
[http://dx.doi.org/10.1016/j.maturitas.2014.10.002] [PMID: 25456263]
[78]
Blum A, Hathaway L, Mincemoyer R, et al. Effects of oral L-arginine on endothelium-dependent vasodilation and markers of inflammation in healthy postmenopausal women. J Am Coll Cardiol 2000; 35(2): 271-6.
[http://dx.doi.org/10.1016/S0735-1097(99)00553-7] [PMID: 10676669]
[79]
Klawitter J, Hildreth KL, Christians U, Kohrt WM, Moreau KL. A relative L-arginine deficiency contributes to endothelial dysfunction across the stages of the menopausal transition. Physiol Rep 2017; 5(17): e13409.
[http://dx.doi.org/10.14814/phy2.13409] [PMID: 28904082]
[80]
Fricke O, Baecker N, Heer M, Tutlewski B, Schoenau E. The effect of l-arginine administration on muscle force and power in postmenopausal women. Clin Physiol Funct Imaging 2008; 28(5): 307-11.
[http://dx.doi.org/10.1111/j.1475-097X.2008.00809.x] [PMID: 18510549]
[81]
Kamps N, Gerzer R, Heer M. Effects of L-arginine supplementation on bone metabolism. J Gravit Physiol 2002; 9(1): 179-80.
[PMID: 15002538]
[82]
Baecker N, Boese A, Schoenau E, Gerzer R, Heer M. L-arginine, the natural precursor of NO, is not effective for preventing bone loss in postmenopausal women. J Bone Miner Res 2005; 20(3): 471-9.
[http://dx.doi.org/10.1359/JBMR.041121] [PMID: 15746992]
[83]
Morita M, Hayashi T, Ochiai M, et al. Oral supplementation with a combination of l-citrulline and l-arginine rapidly increases plasma larginine concentration and enhances NO bioavailability. Biochem Biophys Res Commun 2014; 454(1): 53-7.
[http://dx.doi.org/10.1016/j.bbrc.2014.10.029] [PMID: 25445598]
[84]
Egashira K, Hirooka Y, Kuga T, Mohri M, Takeshita A. Effects of L-arginine supplementation on endothelium-dependent coronary vasodilation in patients with angina pectoris and normal coronary arteriograms. Circulation 1996; 94(2): 130-4.
[http://dx.doi.org/10.1161/01.CIR.94.2.130] [PMID: 8674170]
[85]
Schreiber C, Eilenberg MS, Panzenboeck A, et al. Combined oral administration of L‐arginine and tetrahydrobiopterin in a rat model of pulmonary arterial hypertension. Pulm Circ 2017; 7(1): 89-97.
[http://dx.doi.org/10.1086/689289] [PMID: 28680568]
[86]
Wu Z, Hou Y, Hu S, et al. Catabolism and safety of supplemental larginine in animals. Amino Acids 2016; 48(7): 1541-52.
[http://dx.doi.org/10.1007/s00726-016-2245-9] [PMID: 27156062]
[87]
Jensen M, Müller C, Schwedhelm E, et al. Homoarginine- and creatine-dependent gene regulation in murine brains with l-arginine:Glycine amidinotransferase deficiency. Int J Mol Sci 2020; 21(5): 1865.
[http://dx.doi.org/10.3390/ijms21051865] [PMID: 32182846]
[88]
Zaura E, Twetman S. Critical appraisal of oral pre- and probiotics for caries prevention and care. Caries Res 2019; 53(5): 514-26.
[http://dx.doi.org/10.1159/000499037] [PMID: 30947169]
[89]
Li X, Wang C, Jiang H, Luo C. A patent review of arginine methyltransferase inhibitors (2010-2018). Expert Opin Ther Pat 2019; 29(2): 97-114.
[http://dx.doi.org/10.1080/13543776.2019.1567711]
[90]
Zhou Y, Han S, Liang Z, Zhao M, Liu G, Wu J. Progress in argininebased gene delivery systems. J Mater Chem B Mater Biol Med 2020; 8(26): 5564-77.
[http://dx.doi.org/10.1039/D0TB00498G] [PMID: 32496488]
[91]
Vermeulen MAR, van de Poll MCG, Ligthart-Melis GC, et al. Specific amino acids in the critically ill patient—Exogenous glutamine/arginine: A common denominator? Crit Care Med 2007; 35(9) (Suppl.): S568-76.
[http://dx.doi.org/10.1097/01.CCM.0000278600.14265.95] [PMID: 17713411]
[92]
Barbul A. Proline precursors to sustain Mammalian collagen synthesis. J Nutr 2008; 138(10): 2021S-4S.
[http://dx.doi.org/10.1093/jn/138.10.2021S] [PMID: 18806118]
[93]
Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase: A multifaceted enzyme important in health and disease. Physiol Rev 2018; 98(2): 641-65.
[http://dx.doi.org/10.1152/physrev.00037.2016] [PMID: 29412048]
[94]
Stone WL, Basit H, Jaishankar GB. Urea Cycle Disorders. StatPearls Treasure Island, FL: StatPearls Publishing. 2023. Updated 2022 Aug 8 Available from: [https://www.ncbi.nlm.nih.gov/books/NBK482363/
[95]
Brzezinski M, Dincheva GR, Alloo K, et al. Combined intravenous sildenafil and l-arginine administration in a porcine animal model: Hemodynamic safety profile and effects on coronary blood flow. Drugs R D 2020; 20(3): 279-90.
[http://dx.doi.org/10.1007/s40268-020-00318-z] [PMID: 32720006]
[96]
Vemula P, Jing Y, Zhang H, et al. Altered brain arginine metabolism in a mouse model of tauopathy. Amino Acids 2019; 51(3): 513-28.
[http://dx.doi.org/10.1007/s00726-018-02687-x] [PMID: 30604097]
[97]
Anaeigoudari A, Shafei MN, Soukhtanloo M, et al. The effects of L-arginine on spatial memory and synaptic plasticity impairments induced by lipopolysaccharide. Adv Biomed Res 2015; 4: 202.
[http://dx.doi.org/10.4103/2277-9175.166138] [PMID: 26601090]
[98]
Lomonosova YN, Shenkman BS, Kalamkarov GR, Kostrominova TY, Nemirovskaya TL. L-arginine supplementation protects exercise performance and structural integrity of muscle fibers after a single bout of eccentric exercise in rats. PLoS One 2014; 9(4): e94448.
[http://dx.doi.org/10.1371/journal.pone.0094448] [PMID: 24736629]
[99]
Yavuz H, Turnagol H, Demirel H. Pre-exercise arginine supplementation increases time to exhaustion in elite male wrestlers. Biol Sport 2014; 31(3): 187-91.
[http://dx.doi.org/10.5604/20831862.1111436] [PMID: 25177096]
[100]
Siasos G, Tousoulis D, Vlachopoulos C, et al. The impact of oral Larginine supplementation on acute smoking-induced endothelial injury and arterial performance. Am J Hypertens 2009; 22(6): 586-92.
[http://dx.doi.org/10.1038/ajh.2009.57] [PMID: 19300425]
[101]
Klotz T, Mathers MJ, Braun M, Bloch W, Engelmann U. Effectiveness of oral L-arginine in first-line treatment of erectile dysfunction in a controlled crossover study. Urol Int 1999; 63(4): 220-3.
[http://dx.doi.org/10.1159/000030454] [PMID: 10743698]
[102]
Cherla G, Jaimes EA. Role of L-arginine in the pathogenesis and treatment of renal disease. J Nutr 2004; 134(10) (Suppl.): 2801S-6S.
[http://dx.doi.org/10.1093/jn/134.10.2801S] [PMID: 15465789]
[103]
Soni A, Garg S, Patel K, Patel Z. Role of l-Arginine in Oligohydramnios. J Obstet Gynaecol India 2016; 66(S1)(1): 279-83.
[http://dx.doi.org/10.1007/s13224-016-0853-7] [PMID: 27651617]
[104]
Adeghate E, Ponery AS, El-Sharkawy T, Parvez H. L-arginine stimulates insulin secretion from the pancreas of normal and diabetic rats. Amino Acids 2001; 21(2): 205-9.
[http://dx.doi.org/10.1007/s007260170028] [PMID: 11665817]
[105]
Gokce N. L-arginine and hypertension. J Nutr 2004; 134(10) (Suppl.): 2807S-11S.
[http://dx.doi.org/10.1093/jn/134.10.2807S] [PMID: 15465790]
[106]
Dhawan V, Handu SS, Nain CK, Ganguly NK. Chronic-arginine supplementation improves endothelial cell vasoactive functions in hypercholesterolemic and atherosclerotic monkeys. Mol Cell Biochem 2005; 269(1): 1-11.
[http://dx.doi.org/10.1007/s11010-005-1810-4] [PMID: 15786711]
[107]
Shin S, Awuah Boadi E, Shah S, Ezell M, Li P, Bandyopadhyay BC. Anti-inflammatory role of extracellular l-arginine through calcium sensing receptor in human renal proximal tubular epithelial (HK-2) cells. Int Immunopharmacol 2023; 117: 109853.
[http://dx.doi.org/10.1016/j.intimp.2023.109853] [PMID: 36827919]
[108]
Menichini D, Feliciello L, Neri I, Facchinetti F. L-Arginine supplementation in pregnancy: A systematic review of maternal and fetal outcomes. J Matern Fetal Neonatal Med 2023; 36(1): 2217465.
[http://dx.doi.org/10.1080/14767058.2023.2217465] [PMID: 37258415]
[109]
Forzano I, Avvisato R, Varzideh F, et al. L-Arginine in diabetes: Clinical and preclinical evidence. Cardiovasc Diabetol 2023; 22(1): 89.
[http://dx.doi.org/10.1186/s12933-023-01827-2] [PMID: 36609317]
[110]
Szlas A, Kurek JM, Krejpcio Z. The potential of L-arginine in prevention and treatment of disturbed carbohydrate and lipid metabolism: A review. Nutrients 2022; 14(5): 961.
[http://dx.doi.org/10.3390/nu14050961] [PMID: 35267936]
[111]
Hu S, Han M, Rezaei A, Li D, Wu G, Ma X. L-arginine modulates glucose and lipid metabolism in obesity and diabetes. Curr Protein Pept Sci 2017; 18(6): 599-608.
[http://dx.doi.org/10.2174/1389203717666160627074017] [PMID: 27356939]
[112]
Tsugawa Y, Handa H, Imai T. Arginine induces IGF-1 secretion from the endoplasmic reticulum. Biochem Biophys Res Commun 2019; 514(4): 1128-32.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.044] [PMID: 31101333]
[113]
Cho J, Hiramoto M, Masaike Y, et al. UGGT1 retains proinsulin in the endoplasmic reticulum in an arginine dependent manner. Biochem Biophys Res Commun 2020; 527(3): 668-75.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.158] [PMID: 32423812]
[114]
Smajilovic S, Clemmensen C, Johansen LD, et al. The l-α-amino acid receptor GPRC6A is expressed in the islets of Langerhans but is not involved in l-arginine-induced insulin release. Amino Acids 2013; 44(2): 383-90.
[http://dx.doi.org/10.1007/s00726-012-1341-8] [PMID: 22714012]
[115]
Monti LD, Galluccio E, Villa V, Fontana B, Spadoni S, Piatti PM. Decreased diabetes risk over 9 year after 18-month oral l-arginine treatment in middle-aged subjects with impaired glucose tolerance and metabolic syndrome (extension evaluation of l-arginine study). Eur J Nutr 2018; 57(8): 2805-17.
[http://dx.doi.org/10.1007/s00394-017-1548-2] [PMID: 29052766]
[116]
Zhang H, Wang L, Peng F, Wang X, Gong H. L-arginine ameliorates high-fat diet-induced atherosclerosis by downregulating miR-221. BioMed Res Int 2020; 2020: 1-7.
[http://dx.doi.org/10.1155/2020/4291327] [PMID: 32090093]
[117]
Méndez JD, Balderas F. Regulation of hyperglycemia and dyslipidemia by exogenous L-arginine in diabetic rats. Biochimie 2001; 83(5): 453-8.
[http://dx.doi.org/10.1016/S0300-9084(00)01192-5] [PMID: 11368855]
[118]
El-Kirsh AAA, Abd El-Wahab HMF, Abd-Ellah Sayed HF. The effect of L-arginine or L-citrulline supplementation on biochemical parameters and the vascular aortic wall in high-fat and high-cholesterol-fed rats. Cell Biochem Funct 2011; 29(5): 414-28.
[http://dx.doi.org/10.1002/cbf.1766] [PMID: 21638297]
[119]
Pahlavani N, Jafari M, Rezaei M, et al. L-arginine supplementation and risk factors of cardiovascular diseases in healthy men: A doubleblind randomized clinical trial. F1000 Res 2014; 3: 306.
[http://dx.doi.org/10.12688/f1000research.5877.1] [PMID: 28751963]
[120]
Dashtabi A, Mazloom Z, Fararouei M, Hejazi N. Oral L-arginine administration improves anthropometric and biochemical indices associated with cardiovascular diseases in obese patients: A randomized, single blind placebo controlled clinical trial. Res Cardiovasc Med 2015; 5(1): e29419.
[http://dx.doi.org/10.5812/cardiovascmed.29419] [PMID: 26889456]
[121]
Naylor EW, Chace DH. Automated tandem mass spectrometry for mass newborn screening for disorders in fatty acid, organic acid, and amino acid metabolism. J Child Neurol 1999; 14(1_suppl)(1): S4-8.
[http://dx.doi.org/10.1177/0883073899014001021] [PMID: 10593560]
[122]
Rashed MS. Clinical applications of tandem mass spectrometry: Ten years of diagnosis and screening for inherited metabolic diseases. J Chromatogr, Biomed Appl 2001; 758(1): 27-48.
[http://dx.doi.org/10.1016/S0378-4347(01)00100-1] [PMID: 11482732]
[123]
Sander J, Janzen N, Sander S, et al. Neonatal screening for citrullinaemia. Eur J Pediatr 2003; 162(6): 417-20.
[http://dx.doi.org/10.1007/s00431-003-1177-z] [PMID: 12684898]
[124]
Brusilow SW. Arginine, an indispensable amino acid for patients with inborn errors of urea synthesis. J Clin Invest 1984; 74(6): 2144-8.
[http://dx.doi.org/10.1172/JCI111640] [PMID: 6511918]
[125]
Häberle J, Boddaert N, Burlina A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis 2012; 7(1): 32.
[http://dx.doi.org/10.1186/1750-1172-7-32] [PMID: 22642880]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy