Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Design and Simulation of the Microcantilever Biosensor for MITF Antigen and D5 Monoclonal Antibody Interaction Finite Element Analysis, and Experimental

Author(s): Pelin Akcali, Kübra Kelleci* and Sevil Ozer

Volume 25, Issue 3, 2024

Published on: 25 October, 2023

Page: [256 - 266] Pages: 11

DOI: 10.2174/0113892037259122231013153546

Price: $65

conference banner
Abstract

Background: Biosensors and MEMS have witnessed rapid development and enormous interest over the past decades. Constant advancement in diagnostic, medical, and chemical applications has been demonstrated in several platforms and tools. In this study, the analytical and FEA of the microcantilever used in biomolecular analyses were compared with the experimental analysis results.

Methods: In this study, MITF antigen, which is a melanoma biomarker, and anti-MITF antibody (D5) were selected as biomolecules. A MEMS-type microcantilever biosensor was designed by functionalizing the AFM cantilever by utilizing the specific interaction dynamics and intermolecular binding ability between both molecules. Surface functionalization of cantilever micro biosensors was performed by using FEA. The stress that will occur as a result of the interactions between the MITF-D5 has been determined from the deviation in the resonant frequency of the cantilever.

Results: It has been found that the simulation results are supported by analytical calculations and experimental results.

Conclusion: The fact that the results of the simulation study overlap with the experimental and mathematical results allows us to get much cheaper and faster answers compared to expensive and time-consuming experimental approaches.

Keywords: Resonance frequency, mode shapes, finite element analysis, antibody-antigen interaction, AFM cantilever, anti- MITF antibody.

« Previous
Graphical Abstract
[1]
Villarreal-Gómez, L. J.; Soria-Mercado, I. E.; Hernandez-Gómez, M.; Giraldi, R. G. Detection of molecular markers of cancer through the use of biosensors. Biol Med (Aligarh), 2015.
[http://dx.doi.org/10.4172/0974-8369.1000s2-005]
[2]
Andor, N.; Graham, T.A.; Jansen, M.; Xia, L.C.; Aktipis, C.A.; Petritsch, C.; Ji, H.P.; Maley, C.C. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med., 2016, 22(1), 105-113.
[http://dx.doi.org/10.1038/nm.3984] [PMID: 26618723]
[3]
Weinstein, D.; Leininger, J.; Hamby, C.; Safai, B. Diagnostic and prognostic biomarkers in melanoma. J. Clin. Aesthet. Dermatol., 2014, 7(6), 13-24.
[PMID: 25013535]
[4]
Víšová, I.; Smolková, B.; Uzhytchak, M.; Vrabcová, M.; Zhigunova, Y.; Houska, M.; Surman, F.; de los Santos Pereira, A.; Lunov, O.; Dejneka, A.; Vaisocherová-Lísalová, H. Modulation of living cell behavior with ultra-low fouling polymer brush interfaces. Macromol. Biosci., 2020, 20(3), 1900351.
[PMID: 32045093]
[5]
Patel, R.; Mitra, B.; Vinchurkar, M.; Adami, A.; Patkar, R.; Giacomozzi, F.; Lorenzelli, L.; Baghini, M.S. Plant pathogenicity and associated/related detection systems. A review. Talanta, 2023, 251, 123808.
[http://dx.doi.org/10.1016/j.talanta.2022.123808] [PMID: 35944418]
[6]
Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K.; Banavoth, M.; Sonar, P.; Badoni, B.; Chakravorty, A. Recent progress and growth in biosensors technology: A critical review. J. Ind. Eng. Chem., 2022, 109, 21-51.
[http://dx.doi.org/10.1016/j.jiec.2022.02.010]
[7]
Futane, A.; Narayanamurthy, V.; Jadhav, P.; Srinivasan, A. Aptamer-based rapid diagnosis for point-of-care application. Microfluid. Nanofluidics, 2023, 27(2), 15.
[http://dx.doi.org/10.1007/s10404-022-02622-3] [PMID: 36688097]
[8]
Kharati, M.; Rabiee, M.; Rostami-Nejad, M.; Aghamohammadi, E.; Asadzadeh-Aghdaei, H.; Zali, M.R.; Rabiee, N.; Fatahi, Y.; Bagherzadeh, M.; Webster, T.J. Development of a nano biosensor for anti-gliadin detection for Celiac disease based on suspension microarrays. Biomed. Phys. Eng. Express, 2020, 6(5), 055015.
[http://dx.doi.org/10.1088/2057-1976/aba7ca] [PMID: 33444246]
[9]
Gan, Z.; Zhou, Q.; Zheng, C.; Wang, J. Challenges and applications of volatile organic compounds monitoring technology in plant disease diagnosis. Biosens. Bioelectron., 2023, 237, 115540.
[http://dx.doi.org/10.1016/j.bios.2023.115540] [PMID: 37523812]
[10]
Chien, C.C.; Jiang, J.; Gong, B.; Li, T.; Gaitas, A. AFM microfluidic cantilevers as weight sensors for live single cell mass measurements. Meas. Sci. Technol., 2022, 33(9), 095009.
[http://dx.doi.org/10.1088/1361-6501/ac7280] [PMID: 35832465]
[11]
Wang, J.; Xu, B.; Zhu, Y.; Zhao, J. Microcantilever sensors for biochemical detection. J. Semicond., 2023, 44(2), 023105.
[http://dx.doi.org/10.1088/1674-4926/44/2/023105]
[12]
Saharan, S.; Yadav, B.; Grover, A.; Saini, S. Fabrication Methods for Bio-MEMS. Advances in MEMS and Microfluidic Systems; IGI Global, 2023, pp. 210-227.
[http://dx.doi.org/10.4018/978-1-6684-6952-1.ch011]
[13]
Avila-Sierra, A.; Moreno, J.A.; Goode, K.; Zhu, T.; Fryer, P.J.; Taylor, A.; Zhang, Z.J. Effects of structural and chemical properties of surface coatings on the adsorption characteristics of proteins. Surf. Coat. Tech., 2023, 452, 129054.
[http://dx.doi.org/10.1016/j.surfcoat.2022.129054]
[14]
Sujan, K.B.; Shanmuganantham, T. Bio-MEMS cantilever sensor design and analysis for detecting multiple diseases. 2017IEEE International Conference on Circuits and Systems (ICCS), , pp. 206-210.
[http://dx.doi.org/10.1109/ICCS1.2017.8325991]
[15]
Agarwal, D.K.; Nandwana, V.; Henrich, S.E.; Josyula, V.P.V.N.; Thaxton, C.S.; Qi, C.; Simons, L.M.; Hultquist, J.F.; Ozer, E.A.; Shekhawat, G.S.; Dravid, V.P. Highly sensitive and ultra-rapid antigen-based detection of SARS-CoV-2 using nanomechanical sensor platform. Biosens. Bioelectron., 2022, 195, 113647.
[http://dx.doi.org/10.1016/j.bios.2021.113647] [PMID: 34583103]
[16]
Agarwal, D.K.; Prasad, A.; Vinchurkar, M.; Gandhi, S.; Prabhakar, D.; Mukherji, S.; Rao, V.R. Detection of heart-type fatty acid-binding protein (h-FABP) using piezoresistive polymer microcantilevers functionalized by a dry method. Appl. Nanosci., 2018, 8(5), 1031-1042.
[http://dx.doi.org/10.1007/s13204-018-0723-y]
[17]
Lavrik, N.V.; Sepaniak, M.J.; Datskos, P.G. Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum., 2004, 75(7), 2229-2253.
[http://dx.doi.org/10.1063/1.1763252]
[18]
Agarwal, D.K.; Kushagra, A.; Ashwin, M.; Shukla, A.S.; Palaparthy, V. Sensitive detection of cardiac troponin-I protein using fabricated piezoresistive microcantilevers by a novel method of asymmetric biofunctionalization. Nanotechnology, 2020, 31(11), 115503.
[http://dx.doi.org/10.1088/1361-6528/ab5a18] [PMID: 31751958]
[19]
Jainish, P.; Prittesh, P. Biosensors and biomarkers: promising tools for cancer diagnosis. Int. J. Biosens. Bioelectron., 2017, 3(4), 00072.
[20]
Agarwal, D.K.; Hunt, A.C.; Shekhawat, G.S.; Carter, L.; Chan, S.; Wu, K.; Dravid, V.P. Rapid and sensitive detection of antigen from SARS-CoV-2 variants of concern by a multivalent minibinder-functionalized nanomechanical sensor. Anal. Chem., 2022, 94(23)
[21]
Kharati, M.; Foroutanparsa, S.; Rabiee, M.; Salarian, R.; Rabiee, N.; Rabiee, G. Early diagnosis of multiple sclerosis based on optical and electrochemical biosensors: Comprehensive perspective. Curr. Anal. Chem., 2020, 16(5), 557-569.
[http://dx.doi.org/10.2174/1573411014666180829111004]
[22]
Rigo, A.A.; Cezaro, A.M.D.; Muenchen, D.K.; Martinazzo, J.; Manzoli, A.; Steffens, J.; Steffens, C. Heavy metals detection in river water with cantilever nanobiosensor. J. Environ. Sci. Health B, 2020, 55(3), 239-249.
[http://dx.doi.org/10.1080/03601234.2019.1685318] [PMID: 31680618]
[23]
Rotake, D.; Darji, A.D. Heavy metal ion detection in water using MEMS based sensor. Mater. Today Proc., 2018, 5(1), 1530-1536.
[http://dx.doi.org/10.1016/j.matpr.2017.11.242]
[24]
Zhao, J.; Wang, L.; Fu, D.; Zhao, D.; Wang, Y.; Yuan, Q.; Zhu, Y.; Yang, J.; Yang, F. Gold nanoparticles amplified microcantilever biosensor for detecting protein biomarkers with high sensitivity. Sens. Actuators A Phys., 2021, 321, 112563.
[http://dx.doi.org/10.1016/j.sna.2021.112563]
[25]
Li, C.; Zhang, M.; Zhang, Z.; Tang, J.; Zhang, B. Microcantilever aptasensor for detecting epithelial tumor marker Mucin 1 and diagnosing human breast carcinoma MCF-7 cells. Sens. Actuators B Chem., 2019, 297, 126759.
[http://dx.doi.org/10.1016/j.snb.2019.126759]
[26]
Zhang, Y.; Shi, F.; Zhang, C.; Sheng, X.; Zhong, Y.; Chong, H. Detection of avian influenza virus H9N2 based on self-driving and self-sensing microcantilever piezoelectric sensor. Chin. Chem. Lett., 2022.
[27]
Fathy, J.; Lai, Y. A V-Shaped microcantilever sensor based on a gap method for real-time detection of E. coli bacteria. Biosensors (Basel), 2022, 12(4), 194.
[http://dx.doi.org/10.3390/bios12040194] [PMID: 35448254]
[28]
Zhu, Z.; He, J.; Jia, X.; Jiang, J.; Bai, R.; Yu, X.; Lv, L.; Fan, R.; He, X.; Geng, J.; You, R.; Dong, Y.; Qiao, D.; Lee, K.B.; Smith, G.W.; Dong, C. MicroRNA-25 functions in regulation of pigmentation by targeting the transcription factor MITF in alpaca (Lama pacos) skin melanocytes. Domest. Anim. Endocrinol., 2010, 38(3), 200-209.
[http://dx.doi.org/10.1016/j.domaniend.2009.10.004] [PMID: 20036482]
[29]
Miettinen, M.; Fernandez, M.; Franssila, K.; Gatalica, Z.; Lasota, J.; Sarlomo-Rikala, M. Microphthalmia transcription factor in the immunohistochemical diagnosis of metastatic melanoma: comparison with four other melanoma markers. Am. J. Surg. Pathol., 2001, 25(2), 205-211.
[http://dx.doi.org/10.1097/00000478-200102000-00008] [PMID: 11176069]
[30]
Katta, M.; Sandanalakshmi, R. Simultaneous tropical disease identification with PZT-5H piezoelectric material including molecular mass biosensor microcantilever collection. Sens. Biosensing Res., 2021, 32, 100413.
[http://dx.doi.org/10.1016/j.sbsr.2021.100413]
[31]
Van Eysden, C.A.; Sader, J.E. Resonant frequencies of a rectangular cantilever beam immersed in a fluid. J. Appl. Phys., 2006, 100(11), 114916.
[http://dx.doi.org/10.1063/1.2401053]
[32]
Elmer, F.J.; Dreier, M. Eigenfrequencies of a rectangular atomic force microscope cantilever in a medium. J. Appl. Phys., 1997, 81(12), 7709-7714.
[http://dx.doi.org/10.1063/1.365379]
[33]
Green, C.P.; Sader, J.E. Torsional frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys., 2002, 92(10), 6262-6274.
[http://dx.doi.org/10.1063/1.1512318]
[34]
Looker, J.R.; Sader, J.E. Flexural resonant frequencies of thin rectangular cantilever plates. J. Appl. Mech., 2008, 75(1)
[http://dx.doi.org/10.1115/1.2745377]
[35]
Sevim, S.; Ozer, S.; Jones, G.; Wurzel, J.; Feng, L.; Fakhraee, A.; Shamsudhin, N.; Ergeneman, O.; Pellicer, E.; Sort, J.; Pané, S.; Nelson, B.J.; Torun, H.; Lühmann, T. Nanomechanics on FGF-2 and heparin reveal slip bond characteristics with pH dependency. ACS Biomater. Sci. Eng., 2017, 3(6), 1000-1007.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00723] [PMID: 33429571]
[36]
Müller, M.; Schimmel, T.; Häußler, P.; Fettig, H.; Müller, O.; Albers, A. Finite element analysis of V-shaped cantilevers for atomic force microscopy under normal and lateral force loads. Surf. Interface Anal., 2006, 38(6), 1090-1095.
[37]
Hosseini, R.; Hamedi, M. Resonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester. J. Comput. Appl. Res. Mech. Eng., 2016, 6(1), 65-73. [JCARME]
[38]
BRUKER AFM PROBS (MLCT). Available from: https://www.brukerafmprobes.com/p-3444-mlct.aspx
[39]
Microphthalmia Transcription Factor (MiTF) (C5/D5) Mouse Monoclonal Antibody. Cell Marque. Available from: https://www.cellmarque.com/antibodies/CM/2024/Microphthalmia-Transcription-Factor-MiTF_C5-D5
[40]
SinoBiology. MITF protein overview: sequence, structure, function and protein interaction., Available from: https://www.sinobiologi-cal.com/resource/mitf/proteins
[41]
Veigas, B.; Matias, A.; Calmeiro, T.; Fortunato, E.; Fernandes, A.R.; Baptista, P.V. Antibody modified gold nanoparticles for fast colorimetric screening of rheumatoid arthritis. Analyst (Lond.), 2019, 144(11), 3613-3619.
[http://dx.doi.org/10.1039/C9AN00319C] [PMID: 31070614]
[42]
Binnig, G.; Quate, C.F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett., 1986, 56(9), 930-933.
[http://dx.doi.org/10.1103/PhysRevLett.56.930] [PMID: 10033323]
[43]
Gopal, S.; Chiappini, C.; Armstrong, J.P.K.; Chen, Q.; Serio, A.; Hsu, C.C.; Meinert, C.; Klein, T.J.; Hutmacher, D.W.; Rothery, S.; Stevens, M.M. Immunogold FIB-SEM: Combining volumetric ultrastructure visualization with 3d biomolecular analysis to dissect cell–environment interactions. Adv. Mater., 2019, 31(32), 1900488.
[http://dx.doi.org/10.1002/adma.201900488] [PMID: 31197896]
[44]
Guo, R.; Franco-Palacios, M.; Russell, M.; Goddard, L.; Hassell, L.; Gillies, E.; Fung, K.M. Micropthalmia transcription factor (MITF) as a diagnostic marker for metastatic melanomas negative for other melanoma markers. Int. J. Clin. Exp. Pathol., 2013, 6(8), 1658-1664.
[PMID: 23923085]
[45]
Louarn, G.; Cuenot, S. Finite element modelling of micro-cantilevers used as chemical sensors. , arXiv preprint arXiv:0904.3999.2009
[46]
Murthy, K.S.N.; Prasad, G.R.K.; Saikiran, N.L.N.V.; Manoj, T.V.S. Design and simulation of MEMS biosensor for the detection of tuberculosis. Indian J. Sci. Technol., 2016, 9(31), 31.
[http://dx.doi.org/10.17485/ijst/2016/v9i31/90638]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy