Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Targeting SmCB1: Perspectives and Insights to Design Antischistosomal Drugs

Author(s): Igor José dos Santos Nascimento*, Sonaly Lima Albino, Karla Joane da Silva Menezes, Misael de Azevedo Teotônio Cavalcanti, Mozaniel Santana de Oliveira, Suraj N. Mali and Ricardo Olimpio de Moura

Volume 31, Issue 16, 2024

Published on: 25 October, 2023

Page: [2264 - 2284] Pages: 21

DOI: 10.2174/0109298673255826231011114249

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Neglected tropical diseases (NTDs) are prevalent in tropical and subtropical countries, and schistosomiasis is among the most relevant diseases worldwide. In addition, one of the two biggest problems in developing drugs against this disease is related to drug resistance, which promotes the demand to develop new drug candidates for this purpose. Thus, one of the drug targets most explored, Schistosoma mansoni Cathepsin B1 (SmCB1 or Sm31), provides new opportunities in drug development due to its essential functions for the parasite's survival. In this way, here, the latest developments in drug design studies targeting SmCB1 were approached, focusing on the most promising analogs of nitrile, vinyl sulphones, and peptidomimetics. Thus, it was shown that despite being a disease known since ancient times, it remains prevalent throughout the world, with high mortality rates. The therapeutic arsenal of antischistosomal drugs (ASD) consists only of praziquantel, which is widely used for this purpose and has several advantages, such as efficacy and safety. However, it has limitations, such as the impossibility of acting on the immature worm and exploring new targets to overcome these limitations. SmCB1 shows its potential as a cysteine protease with a catalytic triad consisting of Cys100, His270, and Asn290. Thus, design studies of new inhibitors focus on their catalytic mechanism for designing new analogs. In fact, nitrile and sulfonamide analogs show the most significant potential in drug development, showing that these chemical groups can be better exploited in drug discovery against schistosomiasis. We hope this manuscript guides the authors in searching for promising new antischistosomal drugs.

Keywords: Schistosoma, drug discovery, parasitic diseases, SmCB1, cysteine protease, molecular modeling.

[1]
Ferreira, L.L.G.; de Moraes, J.; Andricopulo, A.D. Approaches to advance drug discovery for neglected tropical diseases. Drug Discov. Today, 2022, 27(8), 2278-2287.
[http://dx.doi.org/10.1016/j.drudis.2022.04.004] [PMID: 35398562]
[2]
Nascimento, I.J.S.; Santos-Júnior, P.F.S.; Aquino, T.M.; Araújo-Júnior, J.X.; Silva-Júnior, E.F. Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur. J. Med. Chem., 2021, 224, 113698.
[http://dx.doi.org/10.1016/j.ejmech.2021.113698] [PMID: 34274831]
[3]
de Aquino, T.M.; França, P.H.B.; Rodrigues, É.E.E.S.; Nascimento, I.J.S.; Santos-Júnior, P.F.S.; Aquino, P.G.V.; Santos, M.S.; Queiroz, A.C.; Araújo, M.V.; Alexandre-Moreira, M.S.; Rodrigues, R.R.L.; Rodrigues, K.A.F.; Freitas, J.D.; Bricard, J.; Meneghetti, M.R.; Bourguignon, J.J.; Schmitt, M.; da Silva-Júnior, E.F.; de Araújo-Júnior, J.X. Synthesis, antileishmanial activity and in silico studies of aminoguanidine hydrazones (AGH) and thiosemicarbazones (TSC) against Leishmania chagasi Amastigotes. Med. Chem., 2022, 18(2), 151-169.
[http://dx.doi.org/10.2174/1573406417666210216154428] [PMID: 33593264]
[4]
WHO | World Health Organization. 2020. Neglected tropical diseases. Available at: https://www.who.int/neglected_diseases/diseases/en/ Accessed on: 06 Jun. 2023.
[5]
Ferreira, L.L.G.; Andricopulo, A.D. Drugs and vaccines in the 21st century for neglected diseases. Lancet Infect. Dis., 2019, 19(2), 125-127.
[http://dx.doi.org/10.1016/S1473-3099(19)30005-2] [PMID: 30712832]
[6]
dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Drug repurposing: A strategy for discovering inhibitors against emerging viral infections. Curr. Med. Chem., 2021, 28(15), 2887-2942.
[http://dx.doi.org/10.2174/1875533XMTA5rMDYp5] [PMID: 32787752]
[7]
dos Santos Nascimento, I.J.; da Silva Rodrigues, É.E.; da Silva, M.F.; de Araújo-Júnior, J.X.; de Moura, R.O. Advances in computational methods to discover new NS2B-NS3 inhibitors useful against dengue and zika viruses. Curr. Top. Med. Chem., 2022, 22(29), 2435-2462.
[http://dx.doi.org/10.2174/1568026623666221122121330] [PMID: 36415099]
[8]
da Conceição, J.R.; Lopes, C.P.G.; Ferreira, E.I.; Epiphanio, S.; Giarolla, J. Neglected tropical diseases and systemic racism especially in Brazil: from socio-economic aspects to the development of new drugs. Acta Trop., 2022, 235, 106654.
[http://dx.doi.org/10.1016/j.actatropica.2022.106654] [PMID: 35988823]
[9]
McManus, D.P.; Bergquist, R.; Cai, P.; Ranasinghe, S.; Tebeje, B.M.; You, H. Schistosomiasis-from immunopathology to vaccines. Semin. Immunopathol., 2020, 42(3), 355-371.
[http://dx.doi.org/10.1007/s00281-020-00789-x] [PMID: 32076812]
[10]
José dos, S.N.I.; de Aquino, M.T.; da Silva Santos-Júnior, F.P.; de Araújo-Júnior, X.J.; da Silva-Júnior, F.E. Molecular modeling applied to design of cysteine protease inhibitors – a powerful tool for the identification of hit compounds against neglected tropical diseases. In: Frontiers in Computational Chemistry; , 2020; p. 63-110.
[11]
Alzain, A.A.; Elbadwi, F.A. De novo design of cathepsin b1 inhibitors as potential anti-schistosomal agents using computational studies. Adv. Appl. Bioinform. Chem., 2022, 15, 29-41.
[http://dx.doi.org/10.2147/AABC.S361626] [PMID: 35935393]
[12]
Mansour, N.R.; Paveley, R.; Gardner, J.M.F.; Bell, A.S.; Parkinson, T.; Bickle, Q. High throughput screening identifies novel lead compounds with activity against larval, juvenile and adult Schistosoma mansoni. PLoS Negl. Trop. Dis., 2016, 10(4), e0004659.
[http://dx.doi.org/10.1371/journal.pntd.0004659] [PMID: 27128493]
[13]
McManus, D.P.; Dunne, D.W.; Sacko, M.; Utzinger, J.; Vennervald, B.J.; Zhou, X.N. Schistosomiasis. Nat. Rev. Dis. Primers, 2018, 4(1), 13.
[http://dx.doi.org/10.1038/s41572-018-0013-8] [PMID: 30093684]
[14]
dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Cruzain and rhodesain inhibitors: Last decade of advances in seeking for new compounds against American and African trypanosomiases. Curr. Top. Med. Chem., 2021, 21(21), 1871-1899.
[http://dx.doi.org/10.2174/18734294MTE10MTEoz] [PMID: 33797369]
[15]
Silva, L.R.; Guimarães, A.S.; do Nascimento, J.; do Santos Nascimento, I.J.; da Silva, E.B.; McKerrow, J.H.; Cardoso, S.H.; da Silva-Júnior, E.F. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg. Med. Chem., 2021, 41, 116213.
[http://dx.doi.org/10.1016/j.bmc.2021.116213] [PMID: 33992862]
[16]
Albino, S.L.; da Silva Moura, W.C.; Reis, M.M.L.; Sousa, G.L.S.; da Silva, P.R.; de Oliveira, M.G.C.; Borges, T.K.S.; Albuquerque, L.F.F.; de Almeida, S.M.V.; de Lima, M.C.A.; Kuckelhaus, S.A.S.; Nascimento, I.J.S.; Junior, F.J.B.M.; da Silva, T.G.; de Moura, R.O. ACW-02 an acridine triazolidine derivative presents antileishmanial activity mediated by dna interaction and immunomodulation. Pharmaceuticals, 2023, 16(2), 204.
[http://dx.doi.org/10.3390/ph16020204] [PMID: 37259353]
[17]
Correnti, J.M.; Brindley, P.J.; Pearce, E.J. Long-term suppression of cathepsin B levels by RNA interference retards schistosome growth. Mol. Biochem. Parasitol., 2005, 143(2), 209-215.
[http://dx.doi.org/10.1016/j.molbiopara.2005.06.007] [PMID: 16076506]
[18]
Jílková, A. Rubešová, P.; Fanfrlík, J.; Fajtová, P.; Řezáčová, P.; Brynda, J.; Lepšík, M.; Mertlíková-Kaiserová, H.; Emal, C.D.; Renslo, A.R.; Roush, W.R.; Horn, M.; Caffrey, C.R.; Mareš, M. Druggable hot spots in the schistosomiasis cathepsin B1 target identified by functional and binding mode analysis of potent vinyl sulfone inhibitors. ACS Infect. Dis., 2021, 7(5), 1077-1088.
[http://dx.doi.org/10.1021/acsinfecdis.0c00501] [PMID: 33175511]
[19]
Sajid, M.; McKerrow, J.H.; Hansell, E.; Mathieu, M.A.; Lucas, K.D.; Hsieh, I.; Greenbaum, D.; Bogyo, M.; Salter, J.P.; Lim, K.C.; Franklin, C.; Kim, J.H.; Caffrey, C.R. Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Mol. Biochem. Parasitol., 2003, 131(1), 65-75.
[http://dx.doi.org/10.1016/S0166-6851(03)00194-4] [PMID: 12967713]
[20]
Abdel Aziz, N.; Musaigwa, F.; Mosala, P.; Berkiks, I.; Brombacher, F. Type 2 immunity: A two-edged sword in schistosomiasis immunopathology. Trends Immunol., 2022, 43(8), 657-673.
[http://dx.doi.org/10.1016/j.it.2022.06.005] [PMID: 35835714]
[21]
Li, Q.; Xu, J.; Li, S.Z.; Utzinger, J.; McManus, D.P.; Zhou, X.N. Short-, mid-, and long-term epidemiological and economic effects of the world bank loan project on schistosomiasis control in the people’s republic of China. Diseases, 2022, 10(4), 84.
[http://dx.doi.org/10.3390/diseases10040084] [PMID: 36278583]
[22]
Schistosomiasis. Available from: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (Accessed on: Mar 6, 2023).
[23]
Karunamoorthi, K.; Almalki, M.; Ghailan, K. Schistosomiasis: A neglected tropical disease of poverty: A call for intersectoral mitigation strategies for better health. J. Health Res. Rev., 2018, 5(1), 1.
[http://dx.doi.org/10.4103/jhrr.jhrr_92_17]
[24]
Lancelot, J.; Cabezas-Cruz, A.; Caby, S.; Marek, M.; Schultz, J.; Romier, C.; Sippl, W.; Jung, M.; Pierce, R.J. Schistosome sirtuins as drug targets. Future Med. Chem., 2015, 7(6), 765-782.
[http://dx.doi.org/10.4155/fmc.15.24] [PMID: 25996069]
[25]
Barakat, R.M.R. Epidemiology of schistosomiasis in Egypt: Travel through time (Review). J. Adv. Res., 2013, 4(5), 425-432.
[http://dx.doi.org/10.1016/j.jare.2012.07.003] [PMID: 25685449]
[26]
Tan, S.Y.; Ahana, A. Theodor Bilharz (1825-1862): Discoverer of schistosomiasis. Singapore Med. J., 2007, 48(3), 184-185.
[PMID: 17342284]
[27]
Wu, K.; Zhai, X.; Huang, S.; Jiang, L.; Yu, Z.; Huang, J. Protein kinases: Potential drug targets against schistosoma japonicum. Front. Cell. Infect. Microbiol., 2021, 11, 691757.
[http://dx.doi.org/10.3389/fcimb.2021.691757] [PMID: 34277472]
[28]
Marker, E.; Debbert, S. Recent advances in anti-schistosomiasis drug discovery. In: Parasitic Helminths and Zoonoses - From Basic to Applied Research; IntechOpen, 2022.
[http://dx.doi.org/10.5772/intechopen.103056]
[29]
Xiao, S.H.; Sun, J.; Chen, M.G. Pharmacological and immunological effects of praziquantel against Schistosoma japonicum: A scoping review of experimental studies. Infect. Dis. Poverty, 2018, 7(1), 9.
[http://dx.doi.org/10.1186/s40249-018-0391-x] [PMID: 29409536]
[30]
Friedman, J.F.; Olveda, R.M.; Mirochnick, M.H.; Bustinduy, A.L.; Elliott, A.M. Praziquantel for the treatment of schistosomiasis during human pregnancy. Bull. World Health Organ., 2018, 96(1), 59-65.
[http://dx.doi.org/10.2471/BLT.17.198879] [PMID: 29403101]
[31]
Stothard, J.R.; Sousa-Figueiredo, J.C.; Navaratnam, A.M.D. Advocacy, policies and practicalities of preventive chemotherapy campaigns for African children with schistosomiasis. Expert Rev. Anti Infect. Ther., 2013, 11(7), 733-752.
[http://dx.doi.org/10.1586/14787210.2013.811931] [PMID: 23879611]
[32]
Knopp, S.; Becker, S.L.; Ingram, K.J.; Keiser, J.; Utzinger, J. Diagnosis and treatment of schistosomiasis in children in the era of intensified control. Expert Rev. Anti Infect. Ther., 2013, 11(11), 1237-1258.
[http://dx.doi.org/10.1586/14787210.2013.844066] [PMID: 24127662]
[33]
Doenhoff, M.J.; Cioli, D.; Utzinger, J. Praziquantel: Mechanisms of action, resistance and new derivatives for schistosomiasis. Curr. Opin. Infect. Dis., 2008, 21(6), 659-667.
[http://dx.doi.org/10.1097/QCO.0b013e328318978f] [PMID: 18978535]
[34]
Bottieau, E.; Clerinx, J.; de Vega, M.R.; Van den Enden, E.; Colebunders, R.; Van Esbroeck, M.; Vervoort, T.; Van Gompel, A.; Van den Ende, J. Imported Katayama fever: Clinical and biological features at presentation and during treatment. J. Infect., 2006, 52(5), 339-345.
[http://dx.doi.org/10.1016/j.jinf.2005.07.022] [PMID: 16169593]
[35]
Lambertucci, J.R.; Modha, J.; Curtis, R.; Doenhoff, M. The association of steroids and schistosomicides in the treatment of experimental schistosomiasis. Trans. R. Soc. Trop. Med. Hyg., 1989, 83(3), 354-357.
[http://dx.doi.org/10.1016/0035-9203(89)90502-6] [PMID: 2515622]
[36]
Lambertucci, J.R. Acute schistosomiasis mansoni: Revisited and reconsidered. Mem. Inst. Oswaldo Cruz, 2010, 105(4), 422-435.
[http://dx.doi.org/10.1590/S0074-02762010000400012] [PMID: 20721485]
[37]
El Guiniady, M.A.; Metwally, A.; Abdel-Bary, M.A.; Abdel-Fatah, S.A.; El Touny, M.A. Clinical and pharmacokinetic study of praziquantel in Egyptian Schistosomiasis patients with and without liver cell failure. Am. J. Trop. Med. Hyg., 1994, 51(6), 809-818.
[http://dx.doi.org/10.4269/ajtmh.1994.51.809] [PMID: 7810816]
[38]
Mandour, M.E.M.; Turabi, H.E.; Homeida, M.M.A.; Sadig, T.; Ali, H.M.; Bennett, J.L.; Leahey, W.J.; Harron, D.W.G. Pharmacokinetics of praziquantel in healthy volunteers and patients with schistosomiasis. Trans. R. Soc. Trop. Med. Hyg., 1990, 84(3), 389-393.
[http://dx.doi.org/10.1016/0035-9203(90)90333-A] [PMID: 2124391]
[39]
Ortega-Pacheco, A.; Poot-Ramos, A.; Chan-Pérez, J.I.; Gutiérrez-Blanco, E.; Acevedo-Arcique, C.M.; Baak-Baak, C.M.; Jiménez-Coello, M. Evaluation of the effectiveness of fluralaner against adult stages of Rhodnius prolixus in dogs. Parasitol. Int., 2022, 87, 102508.
[http://dx.doi.org/10.1016/j.parint.2021.102508] [PMID: 34781015]
[40]
Shuhua, X.; Binggui, S.; Chollet, J.; Utzinger, J.; Tanner, M. Tegumental alterations in juvenile Schistosoma haematobium harboured in hamsters following artemether treatment. Parasitol. Int., 2001, 50(3), 175-183.
[http://dx.doi.org/10.1016/S1383-5769(01)00076-9] [PMID: 11595574]
[41]
Saeed, M.E.M.; Krishna, S.; Greten, H.J.; Kremsner, P.G.; Efferth, T. Antischistosomal activity of artemisinin derivatives in vivo and in patients. Pharmacol. Res., 2016, 110, 216-226.
[http://dx.doi.org/10.1016/j.phrs.2016.02.017] [PMID: 26902577]
[42]
Shu-Hua, X. Development of antischistosomal drugs in China, with particular consideration to praziquantel and the artemisinins. Acta Trop., 2005, 96(2-3), 153-167.
[http://dx.doi.org/10.1016/j.actatropica.2005.07.010] [PMID: 16112072]
[43]
Njogu, P.M.; Okombo, J.; Chibale, K. Designed hybrid compounds for tropical parasitic diseases. In: Design of Hybrid Molecules for Drug Development; Elsevier, 2017; pp. 83-135.
[http://dx.doi.org/10.1016/B978-0-08-101011-2.00004-0]
[44]
Tripathi, T.; Chetri, P.B. Potent inhibitors of thioredoxin glutathione reductase: Grail of anti-schistosome drug within reach? ACS Infect. Dis., 2020, 6(5), 893-895.
[http://dx.doi.org/10.1021/acsinfecdis.0c00072] [PMID: 32159329]
[45]
Song, L.; Li, J.; Xie, S.; Qian, C.; Wang, J.; Zhang, W.; Yin, X.; Hua, Z.; Yu, C. Thioredoxin glutathione reductase as a novel drug target: Evidence from Schistosoma japonicum. PLoS One, 2012, 7(2), e31456.
[http://dx.doi.org/10.1371/journal.pone.0031456] [PMID: 22384025]
[46]
Kuntz, A.N.; Davioud-Charvet, E.; Sayed, A.A.; Califf, L.L.; Dessolin, J.; Arnér, E.S.J.; Williams, D.L. Thioredoxin glutathione reductase from Schistosoma mansoni: An essential parasite enzyme and a key drug target. PLoS Med., 2007, 4(6), e206.
[http://dx.doi.org/10.1371/journal.pmed.0040206] [PMID: 17579510]
[47]
Prast-Nielsen, S.; Huang, H.H.; Williams, D.L. Thioredoxin glutathione reductase: Its role in redox biology and potential as a target for drugs against neglected diseases. Biochim. Biophys. Acta, Gen. Subj., 2011, 1810(12), 1262-1271.
[http://dx.doi.org/10.1016/j.bbagen.2011.06.024] [PMID: 21782895]
[48]
Ghazy, E.; Abdelsalam, M.; Robaa, D.; Pierce, R.J.; Sippl, W. Histone deacetylase (HDAC) inhibitors for the treatment of schistosomiasis. Pharmaceuticals, 2022, 15(1), 80.
[http://dx.doi.org/10.3390/ph15010080] [PMID: 35056137]
[49]
Fennell, B.J.; Naughton, J.A.; Barlow, J.; Brennan, G.; Fairweather, I.; Hoey, E.; McFerran, N.; Trudgett, A.; Bell, A. Microtubules as antiparasitic drug targets. Expert Opin. Drug Discov., 2008, 3(5), 501-518.
[http://dx.doi.org/10.1517/17460441.3.5.501] [PMID: 23484923]
[50]
Chatterji, B.P.; Jindal, B.; Srivastava, S.; Panda, D. Microtubules as antifungal and antiparasitic drug targets. Expert Opin. Ther. Pat., 2011, 21(2), 167-186.
[http://dx.doi.org/10.1517/13543776.2011.545349] [PMID: 21204724]
[51]
Monti, L.; Cornec, A.S.; Oukoloff, K.; Kovalevich, J.; Prijs, K.; Alle, T.; Brunden, K.R.; Smith, A.B., III; El-Sakkary, N.; Liu, L.J.; Syed, A.; Skinner, D.E.; Ballatore, C.; Caffrey, C.R. Congeners derived from microtubule-active phenylpyrimidines produce a potent and long-lasting paralysis of Schistosoma mansoni in vitro. ACS Infect. Dis., 2021, 7(5), 1089-1103.
[http://dx.doi.org/10.1021/acsinfecdis.0c00508] [PMID: 33135408]
[52]
Oliveira, M.F.; d’Avila, J.C.P.; Torres, C.R.; Oliveira, P.L.; Tempone, A.J.; Rumjanek, F.D.; Braga, C.M.S.; Silva, J.R.; Dansa-Petretski, M.; Oliveira, M.A.; de Souza, W.; Ferreira, S.T. Haemozoin in Schistosoma mansoni. Mol. Biochem. Parasitol., 2000, 111(1), 217-221.
[http://dx.doi.org/10.1016/S0166-6851(00)00299-1] [PMID: 11087932]
[53]
Xiao, S.; Sun, J. Schistosoma hemozoin and its possible roles. Int. J. Parasitol., 2017, 47(4), 171-183.
[http://dx.doi.org/10.1016/j.ijpara.2016.10.005] [PMID: 28012717]
[54]
Corrêa Soares, J.B.R.; Menezes, D.; Vannier-Santos, M.A.; Ferreira-Pereira, A.; Almeida, G.T.; Venancio, T.M.; Verjovski-Almeida, S.; Zishiri, V.K.; Kuter, D.; Hunter, R.; Egan, T.J.; Oliveira, M.F. Interference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols. PLoS Negl. Trop. Dis., 2009, 3(7), e477.
[http://dx.doi.org/10.1371/journal.pntd.0000477] [PMID: 19597543]
[55]
De Villiers, K.; Egan, T. Recent advances in the discovery of haem-targeting drugs for malaria and schistosomiasis. Molecules, 2009, 14(8), 2868-2887.
[http://dx.doi.org/10.3390/molecules14082868] [PMID: 19701131]
[56]
Sun, J.; Li, C.; Wang, S. Organism-like formation of Schistosoma hemozoin and its function suggest a mechanism for anti-malarial action of artemisinin. Sci. Rep., 2016, 6(1), 34463.
[http://dx.doi.org/10.1038/srep34463] [PMID: 27694940]
[57]
Okombo, J.; Singh, K.; Mayoka, G.; Ndubi, F.; Barnard, L.; Njogu, P.M.; Njoroge, M.; Gibhard, L.; Brunschwig, C.; Vargas, M.; Keiser, J.; Egan, T.J.; Chibale, K. Antischistosomal activity of pyrido[1,2-a]benzimidazole derivatives and correlation with inhibition of β-hematin formation. ACS Infect. Dis., 2017, 3(6), 411-420.
[http://dx.doi.org/10.1021/acsinfecdis.6b00205] [PMID: 28440625]
[58]
Mayoka, G.; Keiser, J.; Häberli, C.; Chibale, K. Structure–activity relationship and in vitro absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies of N-aryl 3-trifluoromethyl pyrido[1,2-a]benzimidazoles that are efficacious in a mouse model of schistosomiasis. ACS Infect. Dis., 2019, 5(3), 418-429.
[http://dx.doi.org/10.1021/acsinfecdis.8b00313] [PMID: 30580519]
[59]
Probst, A.; Chisanga, K.; Dziwornu, G.A.; Haeberli, C.; Keiser, J.; Chibale, K. Expanding the activity profile of pyrido[1,2-a]benzimidazoles: synthesis and evaluation of novel n1-1-phenylethanamine derivatives against Schistosoma mansoni. ACS Infect. Dis., 2021, 7(5), 1032-1043.
[http://dx.doi.org/10.1021/acsinfecdis.0c00278] [PMID: 32786285]
[60]
Cruz, J.N.; Mali, S.N. Antimalarial hemozoin inhibitors (β-hematin formation inhibition): Latest updates. Comb. Chem. High Throughput Screen., 2022, 25(12), 1987-1990.
[http://dx.doi.org/10.2174/1386207325666220117145351] [PMID: 35040394]
[61]
Mali, S.N.; Pandey, A. Hemozoin (beta-hematin) formation inhibitors: Promising target for the development of new antimalarials: Current update and future prospect. Comb. Chem. High Throughput Screen., 2022, 25(11), 1859-1874.
[http://dx.doi.org/10.2174/1386207325666210924104036] [PMID: 34565319]
[62]
Mali, S.N.; Pandey, A. Synthesis, computational analysis, antimicrobial, antioxidant, trypan blue exclusion assay, β-hematin assay and anti-inflammatory studies of some hydrazones (Part-I); Curr. Comput. Aided Drug Des, 2022, p. 18.
[63]
Patra, M.; Ingram, K.; Pierroz, V.; Ferrari, S.; Spingler, B.; Keiser, J.; Gasser, G. Ferrocenyl derivatives of the anthelmintic praziquantel: Design, synthesis, and biological evaluation. J. Med. Chem., 2012, 55(20), 8790-8798.
[http://dx.doi.org/10.1021/jm301077m] [PMID: 23005702]
[64]
Patra, M. Ingram, K.; Pierroz, V.; Ferrari, S.; Spingler, B.; Gasser, R.B.; Keiser, J.; Gasser, G. [(η(6)-Praziquantel)Cr(CO)3] derivatives with remarkable in vitro anti-schistosomal activity. Chemistry, 2013, 19(7), 2232-2235.
[http://dx.doi.org/10.1002/chem.201204291] [PMID: 23296750]
[65]
Patra, M.; Ingram, K.; Leonidova, A.; Pierroz, V.; Ferrari, S.; Robertson, M.N.; Todd, M.H.; Keiser, J.; Gasser, G. In vitro metabolic profile and in vivo antischistosomal activity studies of (η(6)-praziquantel)Cr(CO)3 derivatives. J. Med. Chem., 2013, 56(22), 9192-9198.
[http://dx.doi.org/10.1021/jm401287m] [PMID: 24219617]
[66]
Fonseca, N.C.; da Cruz, L.F.; da Silva Villela, F.; do Nascimento Pereira, G.A.; de Siqueira-Neto, J.L.; Kellar, D.; Suzuki, B.M.; Ray, D.; de Souza, T.B.; Alves, R.J.; Júnior, P.A.S.; Romanha, A.J.; Murta, S.M.F.; McKerrow, J.H.; Caffrey, C.R.; de Oliveira, R.B.; Ferreira, R.S. Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob. Agents Chemother., 2015, 59(5), 2666-2677.
[http://dx.doi.org/10.1128/AAC.04601-14] [PMID: 25712353]
[67]
Jílková, A.; Řezáčová, P.; Lepšík, M.; Horn, M.; Váchová, J.; Fanfrlík, J.; Brynda, J.; McKerrow, J.H.; Caffrey, C.R.; Mareš, M. Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni. J. Biol. Chem., 2011, 286(41), 35770-35781.
[http://dx.doi.org/10.1074/jbc.M111.271304] [PMID: 21832058]
[68]
Krautz-Peterson, G.; Skelly, P.J. Schistosome asparaginyl endopeptidase (legumain) is not essential for cathepsin B1 activation in vivo. Mol. Biochem. Parasitol., 2008, 159(1), 54-58.
[http://dx.doi.org/10.1016/j.molbiopara.2007.12.011] [PMID: 18280591]
[69]
de Oliveira Fraga, L.A.; Lamb, E.W.; Moreno, E.C.; Chatterjee, M. Dvořák, J.; Delcroix, M.; Sajid, M.; Caffrey, C.R.; Davies, S.J. Rapid induction of IgE responses to a worm cysteine protease during murine pre-patent schistosome infection. BMC Immunol., 2010, 11(1), 56.
[http://dx.doi.org/10.1186/1471-2172-11-56] [PMID: 21078176]
[70]
Tallima, H.; Abou El Dahab, M.; Kareem, S.; Dalton, J.P.; El Ridi, R. Protection against Schistosoma haematobium infection in hamsters by immunization with Schistosoma mansoni gut-derived cysteine peptidases, SmCB1 and SmCL3. Vaccine, 2017, 35(50), 6977-6983.
[http://dx.doi.org/10.1016/j.vaccine.2017.10.069] [PMID: 29122387]
[71]
Jílková, A. Horn, M.; Fanfrlík, J.; Küppers, J.; Pachl, P.; Řezáčová, P.; Lepšík, M.; Fajtová, P.; Rubešová, P.; Chanová, M.; Caffrey, C.R.; Gütschow, M.; Mareš, M. Azanitrile inhibitors of the smcb1 protease target are lethal to Schistosoma mansoni: Structural and mechanistic insights into chemotype reactivity. ACS Infect. Dis., 2021, 7(1), 189-201.
[http://dx.doi.org/10.1021/acsinfecdis.0c00644] [PMID: 33301315]
[72]
Jílková, A. Horn, M.; Řezáčová, P.; Marešová, L.; Fajtová, P.; Brynda, J.; Vondrášek, J.; McKerrow, J.H.; Caffrey, C.R.; Mareš, M. Activation route of the Schistosoma mansoni cathepsin B1 drug target: Structural map with a glycosaminoglycan switch. Structure, 2014, 22(12), 1786-1798.
[http://dx.doi.org/10.1016/j.str.2014.09.015] [PMID: 25456815]
[73]
Ehmke, V.; Quinsaat, J.E.Q.; Rivera-Fuentes, P.; Heindl, C.; Freymond, C.; Rottmann, M.; Brun, R.; Schirmeister, T.; Diederich, F. Tuning and predicting biological affinity: Aryl nitriles as cysteine protease inhibitors. Org. Biomol. Chem., 2012, 10(30), 5764-5768.
[http://dx.doi.org/10.1039/c2ob00034b] [PMID: 22336919]
[74]
Yang, P.Y.; Wang, M.; Li, L.; Wu, H.; He, C.Y.; Yao, S.Q. Design, synthesis and biological evaluation of potent azadipeptide nitrile inhibitors and activity-based probes as promising anti-Trypanosoma brucei agents. Chemistry, 2012, 18(21), 6528-6541.
[http://dx.doi.org/10.1002/chem.201103322] [PMID: 22488888]
[75]
Ndao, M.; Beaulieu, C.; Black, W.C.; Isabel, E.; Vasquez-Camargo, F.; Nath-Chowdhury, M.; Massé, F.; Mellon, C.; Methot, N.; Nicoll-Griffith, D.A. Reversible cysteine protease inhibitors show promise for a Chagas disease cure. Antimicrob. Agents Chemother., 2014, 58(2), 1167-1178.
[http://dx.doi.org/10.1128/AAC.01855-13] [PMID: 24323474]
[76]
Quesne, M.G.; Ward, R.A.; de Visser, S.P. Cysteine protease inhibition by nitrile-based inhibitors: A computational study. Front Chem., 2013, 1, 39.
[http://dx.doi.org/10.3389/fchem.2013.00039] [PMID: 24790966]
[77]
Löser, R.; Frizler, M.; Schilling, K.; Gütschow, M. Azadipeptide nitriles: Highly potent and proteolytically stable inhibitors of papain-like cysteine proteases. Angew. Chem. Int. Ed., 2008, 47(23), 4331-4334.
[http://dx.doi.org/10.1002/anie.200705858] [PMID: 18404765]
[78]
Frizler, M.; Lohr, F.; Lülsdorff, M.; Gütschow, M. Facing the gem-dialkyl effect in enzyme inhibitor design: Preparation of homocycloleucine-based azadipeptide nitriles. Chemistry, 2011, 17(41), 11419-11423.
[http://dx.doi.org/10.1002/chem.201101350] [PMID: 21898616]
[79]
Laube, M.; Frizler, M.; Wodtke, R.; Neuber, C.; Belter, B.; Kniess, T.; Bachmann, M.; Gütschow, M.; Pietzsch, J.; Löser, R. Synthesis and preliminary radiopharmacological characterisation of an 11C‐labelled azadipeptide nitrile as potential PET tracer for imaging of cysteine cathepsins. J. Labelled Comp. Radiopharm., 2019, 62(8), 448-459.
[http://dx.doi.org/10.1002/jlcr.3729] [PMID: 30912586]
[80]
Fanfrlík, J. Brahmkshatriya, P.S.; Řezáč J.; Jílková, A.; Horn, M.; Mareš, M.; Hobza, P.; Lepšík, M. Quantum mechanics-based scoring rationalizes the irreversible inactivation of parasitic Schistosoma mansoni cysteine peptidase by vinyl sulfone inhibitors. J. Phys. Chem. B, 2013, 117(48), 14973-14982.
[http://dx.doi.org/10.1021/jp409604n] [PMID: 24195769]
[81]
Palmer, J.T.; Rasnick, D.; Klaus, J.L.; Brömme, D. Vinyl sulfones as mechanism-based cysteine protease inhibitors. J. Med. Chem., 1995, 38(17), 3193-3196.
[http://dx.doi.org/10.1021/jm00017a002] [PMID: 7650671]
[82]
Brömme, D.; Klaus, J.L.; Okamoto, K.; Rasnick, D.; Palmer, J.T. Peptidyl vinyl sulphones: A new class of potent and selective cysteine protease inhibitors: S2P2 specificity of human cathepsin O2 in comparison with cathepsins S and L. Biochem. J., 1996, 315(1), 85-89.
[http://dx.doi.org/10.1042/bj3150085] [PMID: 8670136]
[83]
Barr, S.C.; Warner, K.L.; Kornreic, B.G.; Piscitelli, J.; Wolfe, A.; Benet, L.; McKerrow, J.H. A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi. Antimicrob. Agents Chemother., 2005, 49(12), 5160-5161.
[http://dx.doi.org/10.1128/AAC.49.12.5160-5161.2005] [PMID: 16304193]
[84]
Abdulla, M.H.; Lim, K.C.; Sajid, M.; McKerrow, J.H.; Caffrey, C.R. Schistosomiasis mansoni: Novel chemotherapy using a cysteine protease inhibitor. PLoS Med., 2007, 4, 0130-0138.
[85]
Roush, W.R.; Gwaltney, S.L., II; Cheng, J.; Scheidt, K.A.; McKerrow, J.H.; Hansell, E. Vinyl sulfonate esters and vinyl sulfonamides: Potent, irreversible inhibitors of cysteine proteases. J. Am. Chem. Soc., 1998, 120(42), 10994-10995.
[http://dx.doi.org/10.1021/ja981792o]
[86]
Scheidt, K.A.; Roush, W.R.; McKerrow, J.H.; Selzer, P.M.; Hansell, E.; Rosenthal, P.J. Structure-based design, synthesis and evaluation of conformationally constrained cysteine protease inhibitors. Bioorg. Med. Chem., 1998, 6(12), 2477-2494.
[http://dx.doi.org/10.1016/S0968-0896(98)80022-9] [PMID: 9925304]
[87]
Somoza, J.R.; Zhan, H.; Bowman, K.K.; Yu, L.; Mortara, K.D.; Palmer, J.T.; Clark, J.M.; McGrath, M.E. Crystal structure of human cathepsin V. Biochemistry, 2000, 39(41), 12543-12551.
[http://dx.doi.org/10.1021/bi000951p] [PMID: 11027133]
[88]
Roush, W.R.; Cheng, J.; Knapp-Reed, B.; Alvarez-Hernandez, A.; McKerrow, J.H.; Hansell, E.; Engel, J.C. Potent second generation vinyl sulfonamide inhibitors of the trypanosomal cysteine protease cruzain. Bioorg. Med. Chem. Lett., 2001, 11(20), 2759-2762.
[http://dx.doi.org/10.1016/S0960-894X(01)00566-2] [PMID: 11591518]
[89]
Chen, Y.T.; Brinen, L.S.; Kerr, I.D.; Hansell, E.; Doyle, P.S.; McKerrow, J.H.; Roush, W.R. In vitro and in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2010, 4(9), e825.
[http://dx.doi.org/10.1371/journal.pntd.0000825] [PMID: 20856868]
[90]
Brinen, L.S.; Hansell, E.; Cheng, J.; Roush, W.R.; McKerrow, J.H.; Fletterick, R.J. A target within the target: Probing cruzain’s P1′ site to define structural determinants for the Chagas’ disease protease. Structure, 2000, 8(8), 831-840.
[http://dx.doi.org/10.1016/S0969-2126(00)00173-8] [PMID: 10997902]
[91]
Caffrey, C.R.; Hansell, E.; Lucas, K.D.; Brinen, L.S.; Alvarez Hernandez, A.; Cheng, J.; Gwaltney, S.L., II; Roush, W.R.; Stierhof, Y.D.; Bogyo, M.; Steverding, D.; McKerrow, J.H. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol. Biochem. Parasitol., 2001, 118(1), 61-73.
[http://dx.doi.org/10.1016/S0166-6851(01)00368-1] [PMID: 11704274]
[92]
Ang, K.K.H.; Ratnam, J.; Gut, J.; Legac, J.; Hansell, E.; Mackey, Z.B.; Skrzypczynska, K.M.; Debnath, A.; Engel, J.C.; Rosenthal, P.J.; McKerrow, J.H.; Arkin, M.R.; Renslo, A.R. Mining a cathepsin inhibitor library for new antiparasitic drug leads. PLoS Negl. Trop. Dis., 2011, 5(5), e1023.
[http://dx.doi.org/10.1371/journal.pntd.0001023] [PMID: 21572521]
[93]
Horn, M.; Jílková, A.; Vondrášek, J.; Marešová, L.; Caffrey, C.R.; Mareš, M. Mapping the pro-peptide of the Schistosoma mansoni cathepsin B1 drug target: Modulation of inhibition by heparin and design of mimetic inhibitors. ACS Chem. Biol., 2011, 6(6), 609-617.
[http://dx.doi.org/10.1021/cb100411v] [PMID: 21375333]
[94]
Chowdhury, S.F.; Sivaraman, J.; Wang, J.; Devanathan, G.; Lachance, P.; Qi, H.; Ménard, R.; Lefebvre, J.; Konishi, Y.; Cygler, M.; Sulea, T.; Purisima, E.O. Design of noncovalent inhibitors of human cathepsin L. from the 96-residue proregion to optimized tripeptides. J. Med. Chem., 2002, 45(24), 5321-5329.
[http://dx.doi.org/10.1021/jm020238t] [PMID: 12431059]
[95]
Choe, Y.; Leonetti, F.; Greenbaum, D.C.; Lecaille, F.; Bogyo, M.; Brömme, D.; Ellman, J.A.; Craik, C.S. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem., 2006, 281(18), 12824-12832.
[http://dx.doi.org/10.1074/jbc.M513331200] [PMID: 16520377]
[96]
de Moraes, J. Antischistosomal natural compounds: Present challenges for new drug screens. In: Current Topics in Tropical Medicine; IntechOpen, 2012.
[97]
Obe, A.F. Praziquantel: Do we need another antischistosoma treatment? Future Med. Chem., 2015, 7(6), 677-680.
[http://dx.doi.org/10.4155/fmc.15.16] [PMID: 25996058]
[98]
Bergquist, R.; Utzinger, J.; Keiser, J. Controlling schistosomiasis with praziquantel: How much longer without a viable alternative? Infect. Dis. Poverty, 2017, 6(1), 74.
[http://dx.doi.org/10.1186/s40249-017-0286-2] [PMID: 28351414]
[99]
Tavares, N.C.; de Aguiar, P.H.N.; Gava, S.G.; Oliveira, G.; Mourão, M.M. Schistosomiasis: Setting Routes for Drug Discovery In: Special Topics in Drug Discovery; , 2016.
[100]
Levecke, B.; Vlaminck, J.; Andriamaro, L.; Ame, S.; Belizario, V.; Degarege, A.; Engels, D.; Erko, B.; Garba, A.D.; Kaatano, G.M.; Mekonnen, Z.; Montresor, A.; Olliaro, P.; Pieri, O.S.; Sacko, M.; Sam-Wobo, S.O.; Tchuem Tchuenté, L.A.; Webster, J.P.; Vercruysse, J. Evaluation of the therapeutic efficacy of praziquantel against schistosomes in seven countries with ongoing large-scale deworming programs. Int. J. Parasitol. Drugs Drug Resist., 2020, 14, 183-187.
[http://dx.doi.org/10.1016/j.ijpddr.2020.10.003] [PMID: 33125936]
[101]
Yu, Q.F.; Zhang, J.Y.; Sun, M.T.; Gu, M.M.; Zou, H.Y.; Webster, J.P.; Lu, D.B. In vivo praziquantel efficacy of Schistosoma japonicum over time: A systematic review and meta-analysis. Acta Trop., 2021, 222, 106048.
[http://dx.doi.org/10.1016/j.actatropica.2021.106048] [PMID: 34273315]
[102]
Wang, W.; Wang, L.; Liang, Y.S. Susceptibility or resistance of praziquantel in human schistosomiasis: A review. Parasitol. Res., 2012, 111(5), 1871-1877.
[http://dx.doi.org/10.1007/s00436-012-3151-z] [PMID: 23052781]
[103]
Crellen, T.; Walker, M.; Lamberton, P.H.L.; Kabatereine, N.B.; Tukahebwa, E.M.; Cotton, J.A.; Webster, J.P. Reduced efficacy of praziquantel against schistosoma mansoni is associated with multiple rounds of mass drug administration. Clin. Infect. Dis., 2016, 63(9), 1151-1159.
[PMID: 27470241]
[104]
Lu, D.B.; Yu, Q.F.; Zhang, J.Y.; Sun, M.T.; Gu, M.M.; Webster, J.P.; Liang, Y.S. Extended survival and reproductive potential of single-sex male and female Schistosoma japonicum within definitive hosts. Int. J. Parasitol., 2021, 51(11), 887-891.
[http://dx.doi.org/10.1016/j.ijpara.2021.03.005] [PMID: 33905765]
[105]
Fallon, P.G.; Doenhoff, M.J. Drug-resistant schistosomiasis: Resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. Am. J. Trop. Med. Hyg., 1994, 51(1), 83-88.
[http://dx.doi.org/10.4269/ajtmh.1994.51.83] [PMID: 8059919]
[106]
Kwofie, S.K.; Agyenkwa-Mawuli, K.; Broni, E.; Miller, W.A., III; Wilson, M.D. Prediction of antischistosomal small molecules using machine learning in the era of big data. Mol. Divers., 2022, 26(3), 1597-1607.
[http://dx.doi.org/10.1007/s11030-021-10288-2] [PMID: 34351547]
[107]
Cioli, D.; Pica-Mattoccia, L.; Basso, A.; Guidi, A. Schistosomiasis control: Praziquantel forever? Mol. Biochem. Parasitol., 2014, 195(1), 23-29.
[http://dx.doi.org/10.1016/j.molbiopara.2014.06.002] [PMID: 24955523]
[108]
Gouveia, M.; Brindley, P.; Gärtner, F.; Costa, J.; Vale, N. Drug repurposing for schistosomiasis: Combinations of drugs or biomolecules. Pharmaceuticals, 2018, 11(1), 15.
[http://dx.doi.org/10.3390/ph11010015] [PMID: 29401734]
[109]
Spangenberg, T. Alternatives to praziquantel for the prevention and control of schistosomiasis. ACS Infect. Dis., 2021, 7(5), 939-942.
[http://dx.doi.org/10.1021/acsinfecdis.0c00542] [PMID: 32819092]
[110]
Pink, R.; Hudson, A.; Mouriès, M.A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov., 2005, 4(9), 727-740.
[http://dx.doi.org/10.1038/nrd1824] [PMID: 16138106]
[111]
Midzi, H.; Vengesai, A.; Muleya, V.; Kasambala, M.; Mduluza-Jokonya, T.L.; Chipako, I.; Siamayuwa, C.E.; Mutapi, F.M.; Naicker, T.; Mduluza, T. Metabolomics for biomarker discovery in schistosomiasis: A systematic scoping review. Front. Trop. Dis., 2023, 4, 1108317.
[112]
Protasio, A.V.; Tsai, I.J.; Babbage, A.; Nichol, S.; Hunt, M.; Aslett, M.A.; De Silva, N.; Velarde, G.S.; Anderson, T.J.C.; Clark, R.C.; Davidson, C.; Dillon, G.P.; Holroyd, N.E.; LoVerde, P.T.; Lloyd, C.; McQuillan, J.; Oliveira, G.; Otto, T.D.; Parker-Manuel, S.J.; Quail, M.A.; Wilson, R.A.; Zerlotini, A.; Dunne, D.W.; Berriman, M. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl. Trop. Dis., 2012, 6(1), e1455.
[http://dx.doi.org/10.1371/journal.pntd.0001455] [PMID: 22253936]
[113]
Berriman, M.; Haas, B.J.; LoVerde, P.T.; Wilson, R.A.; Dillon, G.P.; Cerqueira, G.C.; Mashiyama, S.T.; Al-Lazikani, B.; Andrade, L.F.; Ashton, P.D.; Aslett, M.A.; Bartholomeu, D.C.; Blandin, G.; Caffrey, C.R.; Coghlan, A.; Coulson, R.; Day, T.A.; Delcher, A.; DeMarco, R.; Djikeng, A.; Eyre, T.; Gamble, J.A.; Ghedin, E.; Gu, Y.; Hertz-Fowler, C.; Hirai, H.; Hirai, Y.; Houston, R.; Ivens, A.; Johnston, D.A.; Lacerda, D.; Macedo, C.D.; McVeigh, P.; Ning, Z.; Oliveira, G.; Overington, J.P.; Parkhill, J.; Pertea, M.; Pierce, R.J.; Protasio, A.V.; Quail, M.A.; Rajandream, M.A.; Rogers, J.; Sajid, M.; Salzberg, S.L.; Stanke, M.; Tivey, A.R.; White, O.; Williams, D.L.; Wortman, J.; Wu, W.; Zamanian, M.; Zerlotini, A.; Fraser-Liggett, C.M.; Barrell, B.G.; El-Sayed, N.M. The genome of the blood fluke Schistosoma mansoni. Nature, 2009, 460(7253), 352-358.
[http://dx.doi.org/10.1038/nature08160] [PMID: 19606141]
[114]
Luo, F.; Yin, M.; Mo, X.; Sun, C.; Wu, Q.; Zhu, B.; Xiang, M.; Wang, J.; Wang, Y.; Li, J.; Zhang, T.; Xu, B.; Zheng, H.; Feng, Z.; Hu, W. An improved genome assembly of the fluke Schistosoma japonicum. PLoS Negl. Trop. Dis., 2019, 13(8), e0007612.
[http://dx.doi.org/10.1371/journal.pntd.0007612] [PMID: 31390359]
[115]
Young, N.D.; Jex, A.R.; Li, B.; Liu, S.; Yang, L.; Xiong, Z.; Li, Y.; Cantacessi, C.; Hall, R.S.; Xu, X.; Chen, F.; Wu, X.; Zerlotini, A.; Oliveira, G.; Hofmann, A.; Zhang, G.; Fang, X.; Kang, Y.; Campbell, B.E.; Loukas, A.; Ranganathan, S.; Rollinson, D.; Rinaldi, G.; Brindley, P.J.; Yang, H.; Wang, J.; Wang, J.; Gasser, R.B. Whole-genome sequence of Schistosoma haematobium. Nat. Genet., 2012, 44(2), 221-225.
[http://dx.doi.org/10.1038/ng.1065] [PMID: 22246508]
[116]
Stroehlein, A.J.; Korhonen, P.K.; Chong, T.M.; Lim, Y.L.; Chan, K.G.; Webster, B.; Rollinson, D.; Brindley, P.J.; Gasser, R.B.; Young, N.D. High-quality Schistosoma haematobium genome achieved by single-molecule and long-range sequencing. Gigascience, 2019, 8(9), giz108.
[http://dx.doi.org/10.1093/gigascience/giz108] [PMID: 31494670]
[117]
Mourão, M.M.; Grunau, C. LoVERDE, P.T.; Jones, M.K.; Oliveira, G. Recent advances in Schistosoma genomics. Parasite Immunol., 2012, 34(2-3), 151-162.
[http://dx.doi.org/10.1111/j.1365-3024.2011.01349.x] [PMID: 22145587]
[118]
LoVerde, P.T.; Hirai, H.; Merrick, J.M.; Lee, N.H.; El-Sayed, N. Schistosoma mansoni genome project: An update. Parasitol. Int., 2004, 53(2), 183-192.
[http://dx.doi.org/10.1016/j.parint.2004.01.009] [PMID: 15081950]
[119]
Ferreira, L.G.; Oliva, G.; Andricopulo, A.D. Target-based molecular modeling strategies for schistosomiasis drug discovery. Future Med. Chem., 2015, 7(6), 753-764.
[http://dx.doi.org/10.4155/fmc.15.21] [PMID: 25996068]
[120]
Simoens, S. Isabelle, H. R&D costs of new medicines: A landscape analysis. Front. Med., 2021, 8, 760762.
[121]
Vemula, D.; Jayasurya, P.; Sushmitha, V.; Kumar, Y.N.; Bhandari, V. CADD, AI and ML in drug discovery: A comprehensive review. Eur. J. Pharm. Sci., 2023, 181, 106324.
[http://dx.doi.org/10.1016/j.ejps.2022.106324] [PMID: 36347444]
[122]
Surabhi, S.; Singh, B.K. Computer aided drug design: An overview. J. Drug Deliv. Ther., 2018, 8(5), 504-509.
[http://dx.doi.org/10.22270/jddt.v8i5.1894]
[123]
Taboureau, O.; Baell, J.B.; Fernández-Recio, J.; Villoutreix, B.O. Established and emerging trends in computational drug discovery in the structural genomics era. Chem. Biol., 2012, 19(1), 29-41.
[http://dx.doi.org/10.1016/j.chembiol.2011.12.007] [PMID: 22284352]
[124]
Mafud, A.C.; Ferreira, L.G.; Mascarenhas, Y.P.; Andricopulo, A.D.; de Moraes, J. Discovery of novel antischistosomal agents by molecular modeling approaches. Trends Parasitol., 2016, 32(11), 874-886.
[http://dx.doi.org/10.1016/j.pt.2016.08.002] [PMID: 27593339]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy