Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Design of a New 99mTc-radiolabeled Cyclo-peptide as Promising Molecular Imaging Agent of CXCR4 Receptor: Molecular Docking, Synthesis, Radiolabeling, and Biological Evaluation

Author(s): Leila Hassanzadeh*, Mostafa Erfani, Safura Jokar and Marjan Shariatpanahi

Volume 17, Issue 1, 2024

Published on: 25 October, 2023

Page: [77 - 90] Pages: 14

DOI: 10.2174/0118744710249305231017073022

Price: $65

conference banner
Abstract

Introduction: C-X-C Chemokine receptor type 4 (CXCR4) is often overexpressed or overactivated in different types and stages of cancer disease. Therefore, it is considered a promising target for imaging and early detection of primary tumors and metastasis. In the present research, a new cyclo-peptide radiolabelled with 99mTc, 99mTc-Cyclo [D-Phe-D-Tyr-Lys (HYNIC)- D-Arg-2-Nal-Gly-Lys(iPr)], was designed based on the parental LY251029 peptide, as a potential in vivo imaging agent of CXCR4-expressing tumors.

Methods: The radioligand was successfully prepared using the method of Fmoc solid-phase peptide synthesis and was evaluated in biological assessment. Molecular docking findings revealed high affinity (binding energy of -9.7 kcal/mol) and effective interaction of Cyclo [D-Phe- D-Tyr-Lys (HYNIC)-D-Arg-2-Nal-Gly-Lys(iPr)] in the binding pocket of CXCR4 receptor (PDB code: 3OE0) as well. Result: The synthesized peptide and its purity were assessed by both reversed-phase high-performance liquid chromatography (RP-HPLC) and mass spectroscopy. High stability (95%, n = 3) in human serum and favorable affinity (Kd = 28.70 ± 13.56 nM and Bmax = 1.896 ± 0.123 fmol/mg protein) in the B16-F10 cell line resulted. Biodistribution evaluation findings and planar image interpretation of mice both showed high affinity and selectivity of the radiotracer to the CXCR4 receptors.

Conclusion: Therefore, the findings indicate this designed radioligand could be used as a potential SPECT imaging agent in highly proliferated CXCR4 receptor tumors.

Keywords: SPECT imaging, C-X-C chemokine, cancer, Technetium 99m, HYNIC, AMD3100.

Graphical Abstract
[1]
Pawnikar, S.; Miao, Y. Pathway and mechanism of drug binding to chemokine receptors revealed by accelerated molecular simulations. Future Med. Chem., 2020, 12(13), 1213-1225.
[http://dx.doi.org/10.4155/fmc-2020-0044]
[2]
Zhang, X.; You, L.; Chen, S.; Gao, M.; Guo, Z.; Du, J. Development of a novel 99m Tc-labeled small molecular antagonist for CXCR4 positive tumor imaging. J. Labelled Comp. Radiopharm., 2018, 61(5), 438-446.
[3]
Müller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.N.; Barrera, J.L.; Mohar, A.; Verástegui, E.; Zlotnik, A. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001, 410(6824), 50-56.
[http://dx.doi.org/10.1038/35065016] [PMID: 11242036]
[4]
Guo, F.; Wang, Y.; Liu, J.; Mok, S.C.; Xue, F.; Zhang, W. CXCL12/CXCR4: A symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene, 2016, 35(7), 816-826.
[http://dx.doi.org/10.1038/onc.2015.139] [PMID: 25961926]
[5]
Kircher, M.; Herhaus, P.; Schottelius, M.; Buck, A.K.; Werner, R.A.; Wester, H.J.; Keller, U.; Lapa, C. CXCR4-directed theranostics in oncology and inflammation. Ann. Nucl. Med., 2018, 32(8), 503-511.
[http://dx.doi.org/10.1007/s12149-018-1290-8] [PMID: 30105558]
[6]
Domanska, U.M.; Kruizinga, R.C.; Nagengast, W.B.; Timmer-Bosscha, H.; Huls, G.; de Vries, E.G. A review on CXCR4/CXCL12 axis in oncology: No place to hide. Eur. J. Cancer, 2013, 49(1), 219-230.
[7]
Bodart, V.; Anastassov, V.; Darkes, M.C.; Idzan, S.R.; Labrecque, J.; Lau, G.; Mosi, R.M.; Neff, K.S.; Nelson, K.L.; Ruzek, M.C.; Patel, K.; Santucci, Z.; Scarborough, R.; Wong, R.S.Y.; Bridger, G.J.; MacFarland, R.T.; Fricker, S.P. Pharmacology of AMD3465: A small molecule antagonist of the chemokine receptor CXCR4. Biochem. Pharmacol., 2009, 78(8), 993-1000.
[http://dx.doi.org/10.1016/j.bcp.2009.06.010] [PMID: 19540208]
[8]
Brave, M.; Farrell, A.; Ching Lin, S. Ocheltree, T.; Pope Miksinski, S.; Lee, S.L.; Saber, H.; Fourie, J.; Tornoe, C.; Booth, B.; Yuan, W.; He, K.; Justice, R.; Pazdur, R. FDA review summary: Mozobil in combination with granulocyte colony-stimulating factor to mobilize hematopoietic stem cells to the peripheral blood for collection and subsequent autologous transplantation. Oncology, 2010, 78(3-4), 282-288.
[http://dx.doi.org/10.1159/000315736] [PMID: 20530974]
[9]
Liang, Z.; Zhan, W.; Zhu, A.; Yoon, Y.; Lin, S.; Sasaki, M.; Klapproth, J.M.A.; Yang, H.; Grossniklaus, H.E.; Xu, J.; Rojas, M.; Voll, R.J.; Goodman, M.M.; Arrendale, R.F.; Liu, J.; Yun, C.C.; Snyder, J.P.; Liotta, D.C.; Shim, H. Development of a unique small molecule modulator of CXCR4. PLoS One, 2012, 7(4), e34038.
[http://dx.doi.org/10.1371/journal.pone.0034038] [PMID: 22485156]
[10]
Debnath, B.; Xu, S.; Grande, F.; Garofalo, A.; Neamati, N. Small molecule inhibitors of CXCR4. Theranostics, 2013, 3(1), 47-75.
[http://dx.doi.org/10.7150/thno.5376] [PMID: 23382786]
[11]
Cho, B.S.; Zeng, Z.; Mu, H.; Wang, Z.; Konoplev, S.; McQueen, T.; Protopopova, M.; Cortes, J.; Marszalek, J.R.; Peng, S.B.; Ma, W.; Davis, R.E.; Thornton, D.E.; Andreeff, M.; Konopleva, M. Antileukemia activity of the novel peptidic CXCR4 antagonist LY2510924 as monotherapy and in combination with chemotherapy. Blood, 2015, 126(2), 222-232.
[http://dx.doi.org/10.1182/blood-2015-02-628677] [PMID: 26031918]
[12]
Weiss, I.D.; Jacobson, O. Molecular imaging of chemokine receptor CXCR4. Theranostics, 2013, 3(1), 76-84.
[http://dx.doi.org/10.7150/thno.4835] [PMID: 23382787]
[13]
George, G.P.C.; Pisaneschi, F.; Nguyen, Q-D.; Aboagye, E.O. Positron emission tomographic imaging of CXCR4 in cancer: Challenges and promises. Mol. Imaging, 2015, 13.
[14]
Jacobson, O.; Weiss, I.D.; Szajek, L.; Farber, J.M.; Kiesewetter, D.O. 64Cu-AMD3100—A novel imaging agent for targeting chemokine receptor CXCR4. Bioorg. Med. Chem., 2009, 17(4), 1486-1493.
[http://dx.doi.org/10.1016/j.bmc.2009.01.014] [PMID: 19188071]
[15]
Kuil, J.; Buckle, T.; Oldenburg, J.; Yuan, H.; Borowsky, A.D.; Josephson, L.; van Leeuwen, F.W.B. Hybrid peptide dendrimers for imaging of chemokine receptor 4 (CXCR4) expression. Mol. Pharm., 2011, 8(6), 2444-2453.
[http://dx.doi.org/10.1021/mp200401p] [PMID: 22085282]
[16]
Hartimath, S.V.; Domanska, U.M.; Walenkamp, A.M.E.; Rudi, A.J.O. D.; de Vries, E.F.J. [⁹⁹mTc]O₂-AMD3100 as a SPECT tracer for CXCR4 receptor imaging. Nucl. Med. Biol., 2013, 40(4), 507-517.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.02.003] [PMID: 23522974]
[17]
George, G.P.C.; Stevens, E.; Åberg, O.; Nguyen, Q.D.; Pisaneschi, F.; Spivey, A.C.; Aboagye, E.O. Preclinical evaluation of a CXCR4-specific 68Ga-labelled TN14003 derivative for cancer PET imaging. Bioorg. Med. Chem., 2014, 22(2), 796-803.
[http://dx.doi.org/10.1016/j.bmc.2013.12.012] [PMID: 24365390]
[18]
Hartimath, S.V.; Khayum, M.A.; van Waarde, A.; Dierckx, R.A.J.O.; de Vries, E.F.J.N. -[11C]Methyl-AMD3465 PET as a tool for in vivo measurement of chemokine receptor 4 (cxcr4) occupancy by therapeutic drugs. Mol. Imaging Biol., 2017, 19(4), 570-577.
[http://dx.doi.org/10.1007/s11307-016-1028-8] [PMID: 27896627]
[19]
Nimmagadda, S.; Pullambhatla, M.; Stone, K.; Green, G.; Bhujwalla, Z.M.; Pomper, M.G. Molecular imaging of CXCR4 receptor expression in human cancer xenografts with [64Cu]AMD3100 positron emission tomography. Cancer Res., 2010, 70(10), 3935-3944.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4396] [PMID: 20460522]
[20]
Gourni, E.; Demmer, O.; Schottelius, M.; D’Alessandria, C.; Schulz, S.; Dijkgraaf, I. PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. J. Nucl. Med., 2011, 52(11), 1803-1810.
[21]
Wang, Z.; Zhang, M.; Wang, L.; Wang, S.; Kang, F.; Li, G.; Jacobson, O.; Niu, G.; Yang, W.; Wang, J.; Chen, X. Prospective study of 68 Ga-NOTA-NFB: Radiation dosimetry in healthy volunteers and first application in glioma patients. Theranostics, 2015, 5(8), 882-889.
[http://dx.doi.org/10.7150/thno.12303] [PMID: 26000059]
[22]
Wester, H.J.; Keller, U.; Schottelius, M.; Beer, A.; Philipp-Abbrederis, K.; Hoffmann, F. Šimeček, J.; Gerngross, C.; Lassmann, M.; Herrmann, K.; Pellegata, N.; Rudelius, M.; Kessler, H.; Schwaiger, M. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics, 2015, 5(6), 618-630.
[http://dx.doi.org/10.7150/thno.11251] [PMID: 25825601]
[23]
Demmer, O.; Dijkgraaf, I.; Schottelius, M.; Wester, H.J.; Kessler, H. Introduction of functional groups into peptides via N-alkylation. Org. Lett., 2008, 10(10), 2015-2018.
[http://dx.doi.org/10.1021/ol800654n] [PMID: 18407647]
[24]
Demmer, O.; Gourni, E.; Schumacher, U.; Kessler, H.; Wester, H.J. PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem, 2011, 6(10), 1789-1791.
[http://dx.doi.org/10.1002/cmdc.201100320] [PMID: 21780290]
[25]
Demmer, O.; Dijkgraaf, I.; Schumacher, U.; Marinelli, L.; Cosconati, S.; Gourni, E.; Wester, H.J.; Kessler, H. Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4. J. Med. Chem., 2011, 54(21), 7648-7662.
[http://dx.doi.org/10.1021/jm2009716] [PMID: 21905730]
[26]
Poschenrieder, A.; Schottelius, M.; Schwaiger, M.; Kessler, H.; Wester, H.J. The influence of different metal-chelate conjugates of pentixafor on the CXCR4 affinity. EJNMMI Res., 2016, 6(1), 36.
[http://dx.doi.org/10.1186/s13550-016-0193-8] [PMID: 27112767]
[27]
Schottelius, M.; Osl, T.; Poschenrieder, A.; Hoffmann, F.; Beykan, S.; Hänscheid, H.; Schirbel, A.; Buck, A.K.; Kropf, S.; Schwaiger, M.; Keller, U.; Lassmann, M.; Wester, H.J. [ 177 Lu]pentixather: Comprehensive preclinical characterization of a first CXCR4-directed endoradiotherapeutic agent. Theranostics, 2017, 7(9), 2350-2362.
[http://dx.doi.org/10.7150/thno.19119] [PMID: 28744319]
[28]
Galsky, M.D.; Vogelzang, N.J.; Conkling, P.; Raddad, E.; Polzer, J.; Roberson, S.; Stille, J.R.; Saleh, M.; Thornton, D. A phase I trial of LY2510924, a CXCR4 peptide antagonist, in patients with advanced cancer. Clin. Cancer Res., 2014, 20(13), 3581-3588.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2686] [PMID: 24727324]
[29]
Banerjee, S.; Ambikalmajan Pillai, M.R.; Ramamoorthy, N. Evolution of Tc-99m in diagnostic radiopharmaceuticals. Semin. Nucl. Med., 2001, 31(4), 260-277.
[http://dx.doi.org/10.1053/snuc.2001.26205] [PMID: 11710769]
[30]
Erfani, M.; Hassanzadeh, L.; Ebrahimi, S.E.S. 99mTc-labeling of a dithiocarbamate-DWAY fragment using [99mTcN] 2+ core for the preparation of potential 5HT1A receptor imaging agents. J. Radioanal. Nucl. Chem., 2013, 295(3), 1783-1788.
[31]
Abrams, M.J.; Juweid, M.; Tenkate, C.I.; Schwartz, D.A.; Hauser, M.M.; Gaul, F.E. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J. Nucl. Med., 1990, 31(12), 2022-2028.
[32]
Jokar, S.; Erfani, M.; Bavi, O.; Khazaei, S.; Sharifzadeh, M.; Hajiramezanali, M.; Beiki, D.; Shamloo, A. Design of peptide-based inhibitor agent against amyloid-β aggregation: Molecular docking, synthesis and in vitro evaluation. Bioorg. Chem., 2020, 102, 104050.
[http://dx.doi.org/10.1016/j.bioorg.2020.104050] [PMID: 32663672]
[33]
Erfani, M.; Malek, H. Ebrahimi, SES New 99m Tc(CO)3 -radiolabeled arylpiperazine pharmacophore as potent 5HT1A serotonin receptor radiotracer: Docking studies, chemical synthesis, radiolabeling, and biological evaluation. J. Labelled Comp. Radiopharm., 2019, 62(4), 166-177.
[34]
Wu, B.; Chien, E.Y.T.; Mol, C.D.; Fenalti, G.; Liu, W.; Katritch, V.; Abagyan, R.; Brooun, A.; Wells, P.; Bi, F.C.; Hamel, D.J.; Kuhn, P.; Handel, T.M.; Cherezov, V.; Stevens, R.C. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science, 2010, 330(6007), 1066-1071.
[http://dx.doi.org/10.1126/science.1194396] [PMID: 20929726]
[35]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[36]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[37]
Fields, G.B.; Noble, R.L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res., 1990, 35(3), 161-214.
[http://dx.doi.org/10.1111/j.1399-3011.1990.tb00939.x] [PMID: 2191922]
[38]
Hassanzadeh, L.; Erfani, M.; Sadat Ebrahimi, S.E. 2-Amino-3-(1-(4-(4-(2-methoxyphenyl) piperazine-1-yl)butyl)-1H-1,2,3-triazol-4-yl) propanoic acid: synthesized, 99mTc-tricarbonyl labeled, and bioevaluated as a potential 5HT1A receptor ligand. Wil. Analyt. Sci., 2012, 55(10), 371-376.
[39]
Bigott-Hennkens, H.M.; Dannoon, S.; Lewis, M.R.; Jurisson, S.S. In vitro receptor binding assays: General methods and considerations. Q. J. Nucl. Med. Mol. Imaging, 2008, 52(3), 245-253.
[40]
Kijima, T.; Maulik, G.; Ma, P.C.; Tibaldi, E.V.; Turner, R.E.; Rollins, B.; Sattler, M.; Johnson, B.E.; Salgia, R. Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. Cancer Res., 2002, 62(21), 6304-6311.
[PMID: 12414661]
[41]
Burger, M.; Glodek, A.; Hartmann, T.; Schmitt-Gräff, A.; Silberstein, L.E.; Fujii, N.; Kipps, T.J.; Burger, J.A. Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene, 2003, 22(50), 8093-8101.
[http://dx.doi.org/10.1038/sj.onc.1207097] [PMID: 14603250]
[42]
Hartmann, T.N.; Burger, J.A.; Glodek, A.; Fujii, N.; Burger, M. CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene, 2005, 24(27), 4462-4471.
[http://dx.doi.org/10.1038/sj.onc.1208621] [PMID: 15806155]
[43]
Taichman, R.S.; Cooper, C.; Keller, E.T.; Pienta, K.J.; Taichman, N.S.; McCauley, L.K. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res., 2002, 62(6), 1832-1837.
[PMID: 11912162]
[44]
Bartolomé, R.A.; Gálvez, B.G.; Longo, N.; Baleux, F.; van Muijen, G.N.P.; Sánchez-Mateos, P.; Arroyo, A.G.; Teixidó, J. Stromal cell-derived factor-1α promotes melanoma cell invasion across basement membranes involving stimulation of membrane-type 1 matrix metalloproteinase and Rho GTPase activities. Cancer Res., 2004, 64(7), 2534-2543.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3398] [PMID: 15059909]
[45]
Scala, S.; Giuliano, P.; Ascierto, P.A.; Ieranò, C.; Franco, R.; Napolitano, M.; Ottaiano, A.; Lombardi, M.L.; Luongo, M.; Simeone, E.; Castiglia, D.; Mauro, F.; De Michele, I.; Calemma, R.; Botti, G.; Caracò, C.; Nicoletti, G.; Satriano, R.A.; Castello, G. Human melanoma metastases express functional CXCR4. Clin. Cancer Res., 2006, 12(8), 2427-2433.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1940] [PMID: 16638848]
[46]
Barbero, S.; Bonavia, R.; Bajetto, A.; Porcile, C.; Pirani, P.; Ravetti, J.L.; Zona, G.L.; Spaziante, R.; Florio, T.; Schettini, G. Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res., 2003, 63(8), 1969-1974.
[PMID: 12702590]
[47]
Rubin, J.B.; Kung, A.L.; Klein, R.S.; Chan, J.A.; Sun, Y.; Schmidt, K.; Kieran, M.W.; Luster, A.D.; Segal, R.A. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc. Natl. Acad. Sci., 2003, 100(23), 13513-13518.
[http://dx.doi.org/10.1073/pnas.2235846100] [PMID: 14595012]
[48]
Ottaiano, A.; di Palma, A.; Napolitano, M.; Pisano, C.; Pignata, S.; Tatangelo, F.; Botti, G.; Acquaviva, A.M.; Castello, G.; Ascierto, P.A.; Iaffaioli, R.V.; Scala, S. Inhibitory effects of anti-CXCR4 antibodies on human colon cancer cells. Cancer Immunol. Immunother., 2005, 54(8), 781-791.
[http://dx.doi.org/10.1007/s00262-004-0636-3] [PMID: 15592929]
[49]
Ottaiano, A.; Santorsola, M.; Del Prete, P.; Perri, F.; Scala, S.; Caraglia, M.; Nasti, G. Prognostic significance of CXCR4 in colorectal cancer: An updated meta-analysis and critical appraisal. Cancers, 2021, 13(13), 3284.
[http://dx.doi.org/10.3390/cancers13133284] [PMID: 34209026]
[50]
Lesniak, W.G.; Azad, B.B.; Chatterjee, S.; Lisok, A.; Pomper, M.G. An evaluation of CXCR4 Targeting with PAMAM dendrimer conjugates for oncologic applications. Pharmaceutics, 2022, 14(3), 655.
[http://dx.doi.org/10.3390/pharmaceutics14030655]
[51]
Hassanzadeh, L.; Erfani, M.; Najafi, R.; Shafiei, M.; Amini, M.; Shafiee, A.; Ebrahimi, S.E.S. Synthesis, radiolabeling and bioevaluation of a novel arylpiperazine derivative containing triazole as a 5-HT1A receptor imaging agents. Nucl. Med. Biol., 2013, 40(2), 227-232.
[http://dx.doi.org/10.1016/j.nucmedbio.2012.10.004] [PMID: 23141548]
[52]
Peng, S.B.; Zhang, X.; Paul, D.; Kays, L.M.; Gough, W.; Stewart, J.; Uhlik, M.T.; Chen, Q.; Hui, Y.H.; Zamek-Gliszczynski, M.J.; Wijsman, J.A.; Credille, K.M.; Yan, L.Z. Identification of LY2510924, a novel cyclic peptide CXCR4 antagonist that exhibits antitumor activities in solid tumor and breast cancer metastatic models. Mol. Cancer Ther., 2015, 14(2), 480-490.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0850] [PMID: 25504752]
[53]
Karaboga, A.S.; Planesas, J.M.; Petronin, F.; Teixidó, J.; Souchet, M.; Pérez-Nueno, V.I. Highly specific and sensitive pharmacophore model for identifying CXCR4 antagonists. Comparison with docking and shape-matching virtual screening performance. J. Chem. Inf. Model., 2013, 53(5), 1043-1056.
[http://dx.doi.org/10.1021/ci400037y] [PMID: 23577723]
[54]
Planesas, J.M.; Pérez-Nueno, V.I.; Borrell, J.I.; Teixidó, J. Impact of the CXCR4 structure on docking-based virtual screening of HIV entry inhibitors. J. Mol. Graph. Model., 2012, 38, 123-136.
[http://dx.doi.org/10.1016/j.jmgm.2012.06.010] [PMID: 23079643]
[55]
Huang, X.; Shen, J.; Cui, M.; Shen, L.; Luo, X.; Ling, K.; Pei, G.; Jiang, H.; Chen, K. Molecular dynamics simulations on SDF-1α Binding with CXCR4 receptor. Biophys. J., 2003, 84(1), 171-184.
[http://dx.doi.org/10.1016/S0006-3495(03)74840-1] [PMID: 12524273]
[56]
Wang, Y.C.; Distefano, M.D. Solid-phase synthesis of C-terminal peptide libraries for studying the specificity of enzymatic protein prenylation. Chem. Commun., 2012, 48(66), 8228-8230.
[http://dx.doi.org/10.1039/c2cc31713c] [PMID: 22783549]
[57]
Diaz-Rodriguez, V.; Mullen, D.G.; Ganusova, E.; Becker, J.M.; Distefano, M.D. Synthesis of peptides containing C-terminal methyl esters using trityl side-chain anchoring: Application to the synthesis of a-factor and a-factor analogs. Org. Lett., 2012, 14(22), 5648-5651.
[http://dx.doi.org/10.1021/ol302592v] [PMID: 23121562]
[58]
Wang, Y-C Synthesis and screening of peptide libraries with free C-termini. Curr. Top. Pept. Protein Res., 2014, 15, 1-23.
[59]
Zhang, G.; Annan, R.S.; Carr, S.A. Overview of peptide and protein analysis by mass spectrometry. Curr. Protoc. Protein. Sci., 2010, Unit 16.1.
[60]
Ono, M.; Arano, Y.; Mukai, T.; Uehara, T.; Fujioka, Y.; Ogawa, K.; Namba, S.; Nakayama, M.; Saga, T.; Konishi, J.; Horiuchi, K.; Yokoyama, A.; Saji, H. Plasma protein binding of 99mTc-labeled hydrazino nicotinamide derivatized polypeptides and peptides. Nucl. Med. Biol., 2001, 28(2), 155-164.
[http://dx.doi.org/10.1016/S0969-8051(00)00200-6] [PMID: 11295426]
[61]
Decristoforo, C.; Faintuch-Linkowski, B.; Rey, A.; von Guggenberg, E.; Rupprich, M.; Hernandez-Gonzales, I.; Rodrigo, T.; Haubner, R. [99mTc]HYNIC-RGD for imaging integrin αvβ3 expression. Nucl. Med. Biol., 2006, 33(8), 945-952.
[http://dx.doi.org/10.1016/j.nucmedbio.2006.09.001] [PMID: 17127166]
[62]
Surfraz, M.B.U.; Biagini, S.C.G.; Blower, P.J. A technetium intermediate specifically promotes deprotection of trifluoroacetyl HYNIC during radiolabelling under mild conditions. Dalton Trans., 2008, (22), 2920-2922.
[http://dx.doi.org/10.1039/b805110k] [PMID: 18493625]
[63]
Meszaros, L.K.; Dose, A.; Biagini, S.C.G.; Blower, P.J. Hydrazinonicotinic acid (HYNIC): Coordination chemistry and applications in radiopharmaceutical chemistry. Inorg. Chim. Acta, 2010, 363(6), 1059-1069.
[http://dx.doi.org/10.1016/j.ica.2010.01.009]
[64]
Wu, Y.; Zhu, H.; Zhang, X.; Yu, P.; Gui, Y.; Xu, Z. Synthesis and evaluation of [99mTc]TcAMD3465 as a SPECT tracer for CXCR4 receptor imaging. J. Radioanaly. Nucl. Chem., 2021, 327(2), 627-633.
[65]
Hartimath, S.; Van Waarde, A.; Dierckx, R. Evaluation of N-[(11)C]methyl-AMD3465 as a PET tracer for imaging of CXCR4 receptor expression in a C6 glioma tumor model. Mol. Pharm., 2014, 11(11), 3810-3817.
[66]
Mikaeili, A.; Erfani, M.; Goudarzi, M.; Sabzevari, O. Breast tumor targeting in mice bearing 4T1 tumor with labeled CXCR4 antagonist analogue. Int. J. Pept. Res. Ther., 2021, 27(4), 2449-2457.
[http://dx.doi.org/10.1007/s10989-021-10264-2]
[67]
Mikaeili, A.; Erfani, M.; Shafiei, M.; Kobarfard, F.; Abdi, K.; Sabzevari, O. Development of a 99m Tc-labeled CXCR4 antagonist derivative as a new tumor radiotracer. Cancer Biother. Radiopharm., 2018, 33(1), 17-24.
[http://dx.doi.org/10.1089/cbr.2017.2226] [PMID: 29389241]
[68]
Ono, M.; Arano, Y.; Mukai, T.; Saga, T.; Fujioka, Y.; Ogawa, K. Control of radioactivity pharmacokinetics of 99mTc-HYNIC-labeled polypeptides derivatized with ternary ligand complexes. Bioconjug. Chem., 2002, 13(3), 491-501.
[69]
Weiss, I.D.; Huff, L.M.; Evbuomwan, M.O.; Xu, X.; Dang, H.D.; Velez, D.S.; Singh, S.P.; Zhang, H.H.; Gardina, P.J.; Lee, J.H.; Lindenberg, L.; Myers, T.G.; Paik, C.H.; Schrump, D.S.; Pittaluga, S.; Choyke, P.L.; Fojo, T.; Farber, J.M. Screening of cancer tissue arrays identifies CXCR4 on adrenocortical carcinoma: Correlates with expression and quantification on metastases using 64Cu-plerixafor PET. Oncotarget, 2017, 8(43), 73387-73406.
[http://dx.doi.org/10.18632/oncotarget.19945] [PMID: 29088715]
[70]
Mendt, M.; Cardier, J.E. Stromal-derived factor-1 and its receptor, CXCR4, are constitutively expressed by mouse liver sinusoidal endothelial cells: Implications for the regulation of hematopoietic cell migration to the liver during extramedullary hematopoiesis. Stem Cells Dev., 2012, 21(12), 2142-2151.
[http://dx.doi.org/10.1089/scd.2011.0565] [PMID: 22121892]
[71]
Weiss, I.D.; Jacobson, O.; Kiesewetter, D.O.; Jacobus, J.P.; Szajek, L.P.; Chen, X. Positron emission tomography imaging of tumors expressing the human chemokine receptor CXCR4 in mice with the use of 64Cu-AMD3100. Mol. Imaging Biol., 2012, 14(1), 106-114.
[72]
Taira, Y.; Uehara, T.; Tsuchiya, M.; Takemori, H.; Mizuno, Y.; Takahashi, S.; Suzuki, H.; Hanaoka, H.; Akizawa, H.; Arano, Y. Coordination-mediated synthesis of purification-free bivalent 99m tc-labeled probes for in vivo imaging of saturable system. Bioconjug. Chem., 2018, 29(2), 459-466.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00788] [PMID: 29320158]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy