Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

轻度认知障碍患者动脉自旋标记测量脑血流及其连接模式的改变

卷 20, 期 8, 2023

发表于: 25 October, 2023

页: [567 - 576] 页: 10

弟呕挨: 10.2174/0115672050241163231017073139

价格: $65

conference banner
摘要

目的:脑血流(CBF)是衡量脑功能的重要指标。研究表明,在轻度认知障碍(MCI)中,脑脑血流的区域变化不一致。动脉自旋标记法(ASL)广泛应用于轻度认知损伤患者脑血流的研究。然而,这些患者脑血流连通性的改变仍然知之甚少。 方法:在本研究中,采用3D伪连续动脉自旋标记(3D- pcasl)技术研究了32名MCI患者和32名健康对照者的区域CBF和CBF连通性的变化。规范化CBF用于减少受试者间差异。评估两组CBF比较以及CBF改变与认知评分之间的相关性。脑区脑血流连通性也在组间进行了比较。 结果:我们发现,与对照组相比,MCI患者左侧顶叶上回的CBF明显减少,而左侧中央前回、右侧颞上回、右侧壳核和左侧辅助运动区CBF增加。在轻度认知障碍患者中,CBF和神经心理学量表之间存在显著相关性。重要的是,MCI患者表现出左侧辅助运动区和左侧顶叶上回之间的CBF断开。 结论:本研究发现,与对照组相比,MCI患者不仅存在区域CBF的变化,而且CBF连接模式也发生了变化。这些观察结果可能为阿尔茨海默病和轻度认知损伤患者病理生理的神经机制提供新的解释。

关键词: 轻度认知障碍,阿尔茨海默病,动脉自旋标记,脑血流,脑血流连通性,脑功能。

[1]
Chandra A, Dervenoulas G, Politis M. Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. J Neurol 2019; 266(6): 1293-302.
[http://dx.doi.org/10.1007/s00415-018-9016-3] [PMID: 30120563]
[2]
Morley JE. An overview of cognitive impairment. Clin Geriatr Med 2018; 34(4): 505-13.
[http://dx.doi.org/10.1016/j.cger.2018.06.003] [PMID: 30336985]
[3]
Zhang N, Gordon ML, Goldberg TE. Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer’s disease. Neurosci Biobehav Rev 2017; 72: 168-75.
[http://dx.doi.org/10.1016/j.neubiorev.2016.11.023] [PMID: 27908711]
[4]
Hernandez-Garcia L, Lahiri A, Schollenberger J. Recent progress in ASL. Neuroimage 2019; 187: 3-16.
[http://dx.doi.org/10.1016/j.neuroimage.2017.12.095] [PMID: 29305164]
[5]
van der Thiel M, Rodriguez C, Van De Ville D, Giannakopoulos P, Haller S. Regional cerebral perfusion and cerebrovascular reactivity in elderly controls with subtle cognitive deficits. Front Aging Neurosci 2019; 11: 19.
[http://dx.doi.org/10.3389/fnagi.2019.00019] [PMID: 30837863]
[6]
Wang X, Ding D, Zhao Q, et al. Brain hemodynamic changes in amnestic mild cognitive impairment measured by pulsed arterial spin labeling. Aging (Albany NY) 2020; 12(5): 4348-56.
[http://dx.doi.org/10.18632/aging.102888] [PMID: 32167487]
[7]
Alsop DC, Detre JA, Grossman M. Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann Neurol 2000; 47(1): 93-100.
[http://dx.doi.org/10.1002/1531-8249(200001)47:1<93:AID-ANA15>3.0.CO;2-8] [PMID: 10632106]
[8]
de Eulate RG, Goñi I, Galiano A, et al. Reduced cerebral blood flow in mild cognitive impairment assessed using phase-contrast MRI. J Alzheimers Dis 2017; 58(2): 585-95.
[http://dx.doi.org/10.3233/JAD-161222] [PMID: 28453476]
[9]
Benedictus MR, Leeuwis AE, Binnewijzend MAA, et al. Lower cerebral blood flow is associated with faster cognitive decline in Alzheimer’s disease. Eur Radiol 2017; 27(3): 1169-75.
[http://dx.doi.org/10.1007/s00330-016-4450-z] [PMID: 27334014]
[10]
Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010; 52(3): 1059-69.
[http://dx.doi.org/10.1016/j.neuroimage.2009.10.003] [PMID: 19819337]
[11]
Melie-García L, Sanabria-Diaz G, Sánchez-Catasús C. Studying the topological organization of the cerebral blood flow fluctuations in resting state. Neuroimage 2013; 64: 173-84.
[http://dx.doi.org/10.1016/j.neuroimage.2012.08.082] [PMID: 22975159]
[12]
Zhu J, Zhuo C, Xu L, Liu F, Qin W, Yu C. Altered coupling between resting-state cerebral blood flow and functional connectivity in schizophrenia. Schizophr Bull 2017; 43(6): 1363-74.
[http://dx.doi.org/10.1093/schbul/sbx051] [PMID: 28521048]
[13]
Liang X, Zou Q, He Y, Yang Y. Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proc Natl Acad Sci 2013; 110(5): 1929-34.
[http://dx.doi.org/10.1073/pnas.1214900110] [PMID: 23319644]
[14]
Göttler J, Preibisch C, Riederer I, et al. Reduced blood oxygenation level dependent connectivity is related to hypoperfusion in Alzheimer’s disease. J Cereb Blood Flow Metab 2019; 39(7): 1314-25.
[http://dx.doi.org/10.1177/0271678X18759182] [PMID: 29431005]
[15]
Dai W, Varma G, Scheidegger R, Alsop DC. Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI. J Cereb Blood Flow Metab 2016; 36(3): 463-73.
[http://dx.doi.org/10.1177/0271678X15615339] [PMID: 26661226]
[16]
Gardini S, Venneri A, Sambataro F, et al. Increased functional connectivity in the default mode network in mild cognitive impairment: a maladaptive compensatory mechanism associated with poor semantic memory performance. J Alzheimers Dis 2015; 45(2): 457-70.
[http://dx.doi.org/10.3233/JAD-142547] [PMID: 25547636]
[17]
Pinto TCC, Machado L, Bulgacov TM, et al. Is the Montreal Cognitive Assessment (MoCA) screening superior to the Mini-Mental State Examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer’s Disease (AD) in the elderly? Int Psychogeriatr 2019; 31(4): 491-504.
[http://dx.doi.org/10.1017/S1041610218001370] [PMID: 30426911]
[18]
Sierra-Marcos A. Regional cerebral blood flow in mild cognitive impairment and alzheimer’s disease measured with arterial spin labeling magnetic resonance imaging. Int J Alzheimers Dis 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/5479597] [PMID: 28573062]
[19]
Alexopoulos P, Sorg C, Förschler A, et al. Perfusion abnormalities in mild cognitive impairment and mild dementia in Alzheimer’s disease measured by pulsed arterial spin labeling MRI. Eur Arch Psychiatry Clin Neurosci 2012; 262(1): 69-77.
[http://dx.doi.org/10.1007/s00406-011-0226-2] [PMID: 21786091]
[20]
Okonkwo O, Xu G, Oh J, et al. Cerebral blood flow is diminished in asymptomatic middle-aged adults with maternal history of alzheimer’s disease. Cerebral Cortex 2014; 24(4): 978-88.
[21]
Hays CC, Zlatar ZZ, Wierenga CE. The utility of cerebral blood flow as a biomarker of preclinical Alzheimer’s Disease. Cell Mol Neurobiol 2016; 36(2): 167-79.
[http://dx.doi.org/10.1007/s10571-015-0261-z] [PMID: 26898552]
[22]
Park KW, Yoon HJ, Kang DY, Kim BC, Kim S, Kim JW. Regional cerebral blood flow differences in patients with mild cognitive impairment between those who did and did not develop Alzheimer’s disease. Psychiatry Res Neuroimaging 2012; 203(2-3): 201-6.
[http://dx.doi.org/10.1016/j.pscychresns.2011.12.007] [PMID: 22980226]
[23]
Wierenga CE, Hays CC, Zlatar ZZ. Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer’s disease. J Alzheimers Dis 2014; 42(S4): S411-9.
[http://dx.doi.org/10.3233/JAD-141467] [PMID: 25159672]
[24]
Alsop DC, Casement M, de Bazelaire C, Fong T, Press DZ. Hippocampal hyperperfusion in Alzheimer’s disease. Neuroimage 2008; 42(4): 1267-74.
[http://dx.doi.org/10.1016/j.neuroimage.2008.06.006] [PMID: 18602481]
[25]
Hansson O, Grothe MJ, Strandberg TO, et al. Tau pathology distribution in alzheimer’s disease corresponds differentially to cognition-relevant functional brain networks. Front Neurosci 2017; 11: 167.
[http://dx.doi.org/10.3389/fnins.2017.00167] [PMID: 28408865]
[26]
Meng M, Liu F, Ma Y, et al. The identification and cognitive correlation of perfusion patterns measured with arterial spin labeling MRI in Alzheimer’s disease. Alzheimers Res Ther 2023; 15(1): 75.
[http://dx.doi.org/10.1186/s13195-023-01222-9] [PMID: 37038198]
[27]
Ding B, Ling HW, Huang J, et al. Pattern of cerebral hyperperfusion in Alzheimer’s disease and amnestic mild cognitive impairment using voxel-based analysis of 3D arterial spin-labeling imaging: initial experience. Clin Interv Aging 2014; 9: 493-500.
[http://dx.doi.org/10.2147/CIA.S58879] [PMID: 24707173]
[28]
Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM. Mild cognitive impairment and alzheimer disease: Patterns of altered cerebral blood flow at MR imaging. Radiology 2009; 250(3): 856-66.
[http://dx.doi.org/10.1148/radiol.2503080751] [PMID: 19164119]
[29]
Clément F, Belleville S. Compensation and disease severity on the memory-related activations in mild cognitive impairment. Biol Psychiatry 2010; 68(10): 894-902.
[http://dx.doi.org/10.1016/j.biopsych.2010.02.004] [PMID: 20359695]
[30]
Tetreault AM, Phan T, Orlando D, et al. Network localization of clinical, cognitive, and neuropsychiatric symptoms in Alzheimer’s disease. Brain 2020; 143(4): 1249-60.
[http://dx.doi.org/10.1093/brain/awaa058] [PMID: 32176777]
[31]
Zheng D, Xia W, Yi ZQ, et al. Alterations of brain local functional connectivity in amnestic mild cognitive impairment. Transl Neurodegener 2018; 7(1): 26.
[http://dx.doi.org/10.1186/s40035-018-0134-8] [PMID: 30443345]
[32]
Boscolo Galazzo I, Storti SF, Barnes A, et al. Arterial spin labeling reveals disrupted brain networks and functional connectivity in drug-resistant temporal epilepsy. Front Neuroinform 2019; 12: 101.
[http://dx.doi.org/10.3389/fninf.2018.00101] [PMID: 30894811]
[33]
Wang Z. Characterizing early Alzheimer’s disease and disease progression using hippocampal volume and arterial spin labeling perfusion MRI. J Alzheimers Dis 2014; 42(S4): S495-502.
[http://dx.doi.org/10.3233/JAD-141419] [PMID: 25182742]
[34]
Xu W, Chen S, Xue C, et al. Functional MRI-specific alterations in executive control network in mild cognitive impairment: An ALE meta-analysis. Front Aging Neurosci 2020; 12: 578863.
[http://dx.doi.org/10.3389/fnagi.2020.578863] [PMID: 33192472]
[35]
Jann K, Gee DG, Kilroy E, et al. Functional connectivity in BOLD and CBF data: Similarity and reliability of resting brain networks. Neuroimage 2015; 106: 111-22.
[http://dx.doi.org/10.1016/j.neuroimage.2014.11.028] [PMID: 25463468]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy