Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Diabetic Neuropathy: An Overview of Molecular Pathways and Protective Mechanisms of Phytobioactives

Author(s): Mohd Hashim, Badruddeen*, Juber Akhtar, Mohammad Irfan Khan, Mohammad Ahmad, Anas Islam and Asad Ahmad

Volume 24, Issue 7, 2024

Published on: 20 October, 2023

Page: [758 - 776] Pages: 19

DOI: 10.2174/0118715303266444231008143430

Price: $65

conference banner
Abstract

Diabetic neuropathy (DN) is a common and debilitating complication of diabetes mellitus that affects the peripheral nerves and causes pain, numbness, and impaired function. The pathogenesis of DN involves multiple molecular mechanisms, such as oxidative stress, inflammation, and pathways of advanced glycation end products, polyol, hexosamine, and protein kinase C. Phytochemicals are natural compounds derived from plants that have various biological activities and therapeutic potential. Flavonoids, terpenes, alkaloids, stilbenes, and tannins are some of the phytochemicals that have been identified as having protective potential for diabetic neuropathy. These compounds can modulate various cellular pathways involved in the development and progression of neuropathy, including reducing oxidative stress and inflammation and promoting nerve growth and repair. In this review, the current evidence on the effects of phytochemicals on DN by focusing on five major classes, flavonoids, terpenes, alkaloids, stilbenes, and tannins, are summarized. This compilation also discusses the possible molecular targets of numerous pathways of DN that these phytochemicals modulate. These phytochemicals may offer a promising alternative or complementary approach to conventional drugs for DN management by modulating multiple pathological pathways and restoring nerve function.

Keywords: Diabetes, neuropathy, inflammation, phytochemicals, flavonoids, alkaloids.

Graphical Abstract
[1]
Hammi, C.; Yeung, B. Neuropathy. In: Stat Pearls; Stat Pearls Publishing, 2022.
[3]
Said, G. Diabetic neuropathy—a review. Nat. Clin. Pract. Neurol., 2007, 3(6), 331-340.
[http://dx.doi.org/10.1038/ncpneuro0504] [PMID: 17549059]
[4]
Dineen, J.; Freeman, R. Autonomic neuropathy. Semin. Neurol., 2015, 35(4), 458-468.
[http://dx.doi.org/10.1055/s-0035-1558983]
[5]
Bansal, V.; Kalita, J.; Misra, U.K. Diabetic neuropathy. Postgrad. Med. J., 2006, 82(964), 95-100.
[http://dx.doi.org/10.1136/pgmj.2005.036137] [PMID: 16461471]
[6]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[7]
Pop-Busui, R.; Boulton, A.J.M.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic neuropathy: A position statement by the American Diabetes Association. Diabetes Care, 2017, 40(1), 136-154.
[http://dx.doi.org/10.2337/dc16-2042] [PMID: 27999003]
[8]
Callaghan, B.C.; Cheng, H.T.; Stables, C.L.; Smith, A.L.; Feldman, E.L. Diabetic neuropathy: Clinical manifestations and current treatments. Lancet Neurol., 2012, 11(6), 521-534.
[http://dx.doi.org/10.1016/S1474-4422(12)70065-0] [PMID: 22608666]
[9]
Tiwari, R.; Siddiqui, M.H.; Mahmood, T.; Bagga, P.; Ahsan, F.; Shamim, A. Herbal remedies: A boon for diabetic neuropathy. J. Diet. Suppl., 2019, 16(4), 470-490.
[http://dx.doi.org/10.1080/19390211.2018.1441203] [PMID: 29580105]
[10]
Gordois, A.; Scuffham, P.; Shearer, A.; Oglesby, A.; Tobian, J.A. The health care costs of diabetic peripheral neuropathy in the US. Diabetes Care, 2003, 26(6), 1790-1795.
[http://dx.doi.org/10.2337/diacare.26.6.1790] [PMID: 12766111]
[11]
Thomas, P.K. Diabetic peripheral neuropathies: Their cost to patient and society and the value of knowledge of risk factors for development of interventions. Eur. Neurol., 1999, 41(S1), 35-43.
[http://dx.doi.org/10.1159/000052078] [PMID: 10023127]
[12]
Low, P.A.; Dotson, R.M. Symptomatic treatment of painful neuropathy. JAMA, 1998, 280(21), 1863-1864.
[http://dx.doi.org/10.1001/jama.280.21.1863] [PMID: 9846782]
[13]
Tesfaye, S.; Malik, R.; Harris, N.; Jakubowski, J.J.; Mody, C.; Rennie, I.G.; Ward, J.D. Arterio-venous shunting and proliferating new vessels in acute painful neuropathy of rapid glycaemic control (insulin neuritis). Diabetologia, 1996, 39, 329-335.
[14]
Quattrini, C.; Tesfaye, S. Understanding the impact of painful diabetic neuropathy. Diabetes Metab. Res. Rev., 2003, 19(S1), S2-S8.
[http://dx.doi.org/10.1002/dmrr.360] [PMID: 12577252]
[15]
Feldman, E.L.; Nave, K.A.; Jensen, T.S.; Bennett, D.L.H. New horizons in diabetic neuropathy: Mechanisms, bioenergetics, and pain. Neuron, 2017, 93(6), 1296-1313.
[http://dx.doi.org/10.1016/j.neuron.2017.02.005] [PMID: 28334605]
[16]
Tesfaye, S. Recent advances in the management of diabetic distal symmetrical polyneuropathy. J. Diabetes Investig., 2011, 2(1), 33-42.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00083.x] [PMID: 24843458]
[17]
Athans, W.; Stephens, H. Open calcaneal fractures in diabetic patients with neuropathy: A report of three cases and literature review. Foot Ankle Int., 2008, 29(10), 1049-1053.
[http://dx.doi.org/10.3113/FAI.2008.1049] [PMID: 18851825]
[18]
Veves, A.; Backonja, M.; Malik, R.A. Painful diabetic neuropathy: Epidemiology, natural history, early diagnosis, and treatment options. Pain Med., 2008, 9(6), 660-674.
[http://dx.doi.org/10.1111/j.1526-4637.2007.00347.x] [PMID: 18828198]
[19]
Obrosova, I.G. Diabetic painful and insensate neuropathy: Pathogenesis and potential treatments. Neurotherapeutics, 2009, 6(4), 638-647.
[http://dx.doi.org/10.1016/j.nurt.2009.07.004] [PMID: 19789069]
[20]
Gandhi, R.A.; Marques, J.L.B.; Selvarajah, D.; Emery, C.J.; Tesfaye, S. Painful diabetic neuropathy is associated with greater autonomic dysfunction than painless diabetic neuropathy. Diabetes Care, 2010, 33(7), 1585-1590.
[http://dx.doi.org/10.2337/dc09-2314] [PMID: 20587724]
[21]
Sima, A.A.F.; Sugimoto, K. Experimental diabetic neuropathy: An update. Diabetologia, 1999, 42(7), 773-788.
[http://dx.doi.org/10.1007/s001250051227] [PMID: 10440118]
[22]
Ward, J.D. Diabetic neuropathy. Br. Med. Bull., 1989, 45(1), 111-126.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a072307] [PMID: 2507085]
[23]
Singh, R.; Kishore, L.; Kaur, N. Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol. Res., 2014, 80, 21-35.
[http://dx.doi.org/10.1016/j.phrs.2013.12.005] [PMID: 24373831]
[24]
Oates, P.J. Polyol pathway and diabetic peripheral neuropathy. Int. Rev. Neurobiol., 2002, 50, 325-392.
[http://dx.doi.org/10.1016/S0074-7742(02)50082-9] [PMID: 12198816]
[25]
Toth, C.; Rong, L.L.; Yang, C.; Martinez, J.; Song, F.; Ramji, N.; Brussee, V.; Liu, W.; Durand, J.; Nguyen, M.D.; Schmidt, A.M.; Zochodne, D.W. Receptor for advanced glycation end products (RAGEs) and experimental diabetic neuropathy. Diabetes, 2008, 57(4), 1002-1017.
[http://dx.doi.org/10.2337/db07-0339] [PMID: 18039814]
[26]
Xia, P.; Kramer, R.M.; King, G.L. Identification of the mechanism for the inhibition of Na+,K(+)-adenosine triphosphatase by hyperglycemia involving activation of protein kinase C and cytosolic phospholipase A2. J. Clin. Invest., 1995, 96(2), 733-740.
[http://dx.doi.org/10.1172/JCI118117] [PMID: 7635966]
[27]
Tomlinson, D.R. Mitogen-activated protein kinases as glucose transducers for diabetic complications. Diabetologia, 1999, 42(11), 1271-1281.
[http://dx.doi.org/10.1007/s001250051439] [PMID: 10550410]
[28]
Vareniuk, I.; Pavlov, I.A.; Obrosova, I.G. Inducible nitric oxide synthase gene deficiency counteracts multiple manifestations of peripheral neuropathy in a streptozotocin-induced mouse model of diabetes. Diabetologia, 2008, 51(11), 2126-2133.
[http://dx.doi.org/10.1007/s00125-008-1136-3] [PMID: 18802679]
[29]
Low, P.A.; Lagerlund, T.D.; McManis, P.G. Nerve blood flow and oxygen delivery in normal, diabetic, and ischemic neuropathy. Int. Rev. Neurobiol., 1989, 31, 355-438.
[http://dx.doi.org/10.1016/S0074-7742(08)60283-4] [PMID: 2557297]
[30]
Yamakawa, I.; Kojima, H.; Terashima, T.; Katagi, M.; Oi, J.; Urabe, H.; Sanada, M.; Kawai, H.; Chan, L.; Yasuda, H.; Maegawa, H.; Kimura, H. Inactivation of TNF-α ameliorates diabetic neuropathy in mice. Am. J. Physiol. Endocrinol. Metab., 2011, 301(5), E844-E852.
[http://dx.doi.org/10.1152/ajpendo.00029.2011] [PMID: 21810933]
[31]
Cameron, N.; Cotter, M. Pro-inflammatory mechanisms in diabetic neuropathy: Focus on the nuclear factor kappa B pathway. Curr. Drug Targets, 2008, 9(1), 60-67.
[http://dx.doi.org/10.2174/138945008783431718] [PMID: 18220713]
[32]
Leinninger, G.M.; Vincent, A.M.; Feldman, E.L. The role of growth factors in diabetic peripheral neuropathy. J. Peripher. Nerv. Syst., 2004, 9(1), 26-53.
[http://dx.doi.org/10.1111/j.1085-9489.2004.09105.x] [PMID: 14871451]
[33]
Jack, M.; Wright, D. Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy. Transl. Res., 2012, 159(5), 355-365.
[http://dx.doi.org/10.1016/j.trsl.2011.12.004] [PMID: 22500508]
[34]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[35]
Schmidt, A.M.; Yan, S.D.; Wautier, J.L.; Stern, D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ. Res., 1999, 84(5), 489-497.
[http://dx.doi.org/10.1161/01.RES.84.5.489] [PMID: 10082470]
[36]
Mastrocola, R.; Restivo, F.; Vercellinatto, I.; Danni, O.; Brignardello, E.; Aragno, M.; Boccuzzi, G. Oxidative and nitrosative stress in brain mitochondria of diabetic rats. J. Endocrinol., 2005, 187(1), 37-44.
[http://dx.doi.org/10.1677/joe.1.06269] [PMID: 16214939]
[37]
Somfai, G.M.; Knippel, B.; Ruzicska, É.; Stadler, K.; Tóth, M.; Salacz, G.; Magyar, K.; Somogyi, A. Soluble semicarbazide-sensitive amine oxidase (SSAO) activity is related to oxidative stress and subchronic inflammation in streptozotocin-induced diabetic rats. Neurochem. Int., 2006, 48(8), 746-752.
[http://dx.doi.org/10.1016/j.neuint.2005.12.009] [PMID: 16524643]
[38]
Vincent, A.M.; Hinder, L.M.; Pop-Busui, R.; Feldman, E.L. Hyperlipidemia: A new therapeutic target for diabetic neuropathy. J. Peripher. Nerv. Syst., 2009, 14(4), 257-267.
[http://dx.doi.org/10.1111/j.1529-8027.2009.00237.x] [PMID: 20021567]
[39]
Boden, G. Free fatty acids, insulin resistance, and type 2 diabetes mellitus. Proc. Assoc. Am. Physicians, 1999, 111(3), 241-248.
[http://dx.doi.org/10.1046/j.1525-1381.1999.99220.x] [PMID: 10354364]
[40]
Nolan, C.J.; Larter, C.Z. Lipotoxicity: Why do saturated fatty acids cause and monounsaturates protect against it? J. Gastroenterol. Hepatol., 2009, 24(5), 703-706.
[http://dx.doi.org/10.1111/j.1440-1746.2009.05823.x] [PMID: 19646010]
[41]
Hinder, L.M.; Vincent, A.M.; Burant, C.F.; Pennathur, S.; Feldman, E.L. Bioenergetics in diabetic neuropathy: What we need to know. J. Peripher. Nerv. Syst., 2012, 17(S2), 10-14.
[http://dx.doi.org/10.1111/j.1529-8027.2012.00389.x] [PMID: 22548617]
[42]
Rumora, A.E.; Lentz, S.I.; Hinder, L.M.; Jackson, S.W.; Valesano, A.; Levinson, G.E.; Feldman, E.L. Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons. FASEB J., 2018, 32(1), 195-207.
[http://dx.doi.org/10.1096/fj.201700206R] [PMID: 28904018]
[43]
Schönfeld, P.; Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J. Lipid Res., 2016, 57(6), 943-954.
[http://dx.doi.org/10.1194/jlr.R067629] [PMID: 27080715]
[44]
Papamandjaris, A.A.; Macdougall, D.E.; Jones, P.J.H. Medium chain fatty acid metabolism and energy expenditure: Obesity treatment implications. Life Sci., 1998, 62(14), 1203-1215.
[http://dx.doi.org/10.1016/S0024-3205(97)01143-0] [PMID: 9570335]
[45]
Sheng, Z.H. Mitochondrial trafficking and anchoring in neurons: New insight and implications. J. Cell Biol., 2014, 204(7), 1087-1098.
[http://dx.doi.org/10.1083/jcb.201312123] [PMID: 24687278]
[46]
Rumora, A.E.; LoGrasso, G.; Haidar, J.A.; Dolkowski, J.J.; Lentz, S.I.; Feldman, E.L. Chain length of saturated fatty acids regulates mitochondrial trafficking and function in sensory neurons. J. Lipid Res., 2019, 60(1), 58-70.
[http://dx.doi.org/10.1194/jlr.M086843] [PMID: 30442656]
[47]
Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocr. Rev., 2002, 23(5), 599-622.
[http://dx.doi.org/10.1210/er.2001-0039] [PMID: 12372842]
[48]
Pop-Busui, R.; Herman, W.H.; Feldman, E.L.; Low, P.A.; Martin, C.L.; Cleary, P.A.; Waberski, B.H.; Lachin, J.M.; Albers, J.W. DCCT and EDIC studies in type 1 diabetes: Lessons for diabetic neuropathy regarding metabolic memory and natural history. Curr. Diab. Rep., 2010, 10(4), 276-282.
[http://dx.doi.org/10.1007/s11892-010-0120-8] [PMID: 20464532]
[49]
Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[50]
Geraldes, P.; King, G.L. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ. Res., 2010, 106(8), 1319-1331.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.217117] [PMID: 20431074]
[51]
Cameron, N.E.; Cotter, M.A. Effects of protein kinase C? inhibition on neurovascular dysfunction in diabetic rats: Interaction with oxidative stress and essential fatty acid dysmetabolism. Diabetes Metab. Res. Rev., 2002, 18(4), 315-323.
[http://dx.doi.org/10.1002/dmrr.307] [PMID: 12203947]
[52]
Cotter, M.A.; Jack, A.M.; Cameron, N.E. Effects of the protein kinase C beta inhibitor LY333531 on neural and vascular function in rats with streptozotocin-induced diabetes. J. Peripher. Nerv. Syst., 2003, 8(2), 128-133.
[http://dx.doi.org/10.1046/j.1529-8027.2003.03016_14.x]
[53]
Rajbhandari, S.M.; Piya, M.K. A brief review on the pathogenesis of human diabetic neuropathy: observations and postulations. DOAJ, 2005, 13, 135-140.
[54]
Edwards, J.L.; Vincent, A.M.; Cheng, H.T.; Feldman, E.L. Diabetic neuropathy: Mechanisms to management. Pharmacol. Ther., 2008, 120(1), 1-34.
[http://dx.doi.org/10.1016/j.pharmthera.2008.05.005] [PMID: 18616962]
[55]
Mahmood, D.; Singh, B.K.; Akhtar, M. Diabetic neuropathy: Therapies on the horizon. J. Pharm. Pharmacol., 2010, 61(9), 1137-1145.
[http://dx.doi.org/10.1211/jpp.61.09.0002] [PMID: 19703362]
[56]
Du, X.L.; Edelstein, D.; Rossetti, L.; Fantus, I.G.; Goldberg, H.; Ziyadeh, F.; Wu, J.; Brownlee, M. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl. Acad. Sci. USA, 2000, 97(22), 12222-12226.
[http://dx.doi.org/10.1073/pnas.97.22.12222] [PMID: 11050244]
[57]
Kolm-Litty, V.; Sauer, U.; Nerlich, A.; Lehmann, R.; Schleicher, E.D. High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J. Clin. Invest., 1998, 101(1), 160-169.
[http://dx.doi.org/10.1172/JCI119875] [PMID: 9421478]
[58]
Sayeski, P.P.; Kudlow, J.E. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-α gene transcription. J. Biol. Chem., 1996, 271(25), 15237-15243.
[http://dx.doi.org/10.1074/jbc.271.25.15237] [PMID: 8663078]
[59]
Chen, Y.Q.; Su, M.; Walia, R.R.; Hao, Q.; Covington, J.W.; Vaughan, D.E. Sp1 sites mediate activation of the plasminogen activator inhibitor-1 promoter by glucose in vascular smooth muscle cells. J. Biol. Chem., 1998, 273(14), 8225-8231.
[http://dx.doi.org/10.1074/jbc.273.14.8225] [PMID: 9525928]
[60]
Hart, G.W. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu. Rev. Biochem., 1997, 66(1), 315-335.
[http://dx.doi.org/10.1146/annurev.biochem.66.1.315] [PMID: 9242909]
[61]
Du, X.L.; Edelstein, D.; Dimmeler, S.; Ju, Q.; Sui, C.; Brownlee, M. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J. Clin. Invest., 2001, 108(9), 1341-1348.
[http://dx.doi.org/10.1172/JCI11235] [PMID: 11696579]
[62]
Marshall, S.; Bacote, V.; Traxinger, R.R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem., 1991, 266(8), 4706-4712.
[http://dx.doi.org/10.1016/S0021-9258(19)67706-9] [PMID: 2002019]
[63]
Negi, G.; Kumar, A.; Joshi, R.P.; Ruby, P.K.; Sharma, S.S. Oxidative stress and diabetic neuropathy: current status of antioxidants. Institute of Integrative Omics and Applied Biotechnology Journal., 2011, 2(6), 71-78.
[64]
Obrosova, I.G.; Drel, V.R.; Pacher, P.; Ilnytska, O.; Wang, Z.Q.; Stevens, M.J.; Yorek, M.A. Oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: the relation is revisited. Diabetes, 2005, 54(12), 3435-3441.
[http://dx.doi.org/10.2337/diabetes.54.12.3435] [PMID: 16306359]
[65]
Yagihashi, S.; Mizukami, H.; Sugimoto, K. Mechanism of diabetic neuropathy: Where are we now and where to go? J. Diabetes Investig., 2011, 2(1), 18-32.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00070.x] [PMID: 24843457]
[66]
Pop-Busui, R.; Marinescu, V.; Van Huysen, C.; Li, F.; Sullivan, K.; Greene, D.A.; Larkin, D.; Stevens, M.J. Dissection of metabolic, vascular, and nerve conduction interrelationships in experimental diabetic neuropathy by cyclooxygenase inhibition and acetyl-L-carnitine administration. Diabetes, 2002, 51(8), 2619-2628.
[http://dx.doi.org/10.2337/diabetes.51.8.2619] [PMID: 12145179]
[67]
Bierhaus, A.; Haslbeck, K.M.; Humpert, P.M.; Liliensiek, B.; Dehmer, T.; Morcos, M.; Sayed, A.A.R.; Andrassy, M.; Schiekofer, S.; Schneider, J.G.; Schulz, J.B.; Heuss, D.; Neundörfer, B.; Dierl, S.; Huber, J.; Tritschler, H.; Schmidt, A.M.; Schwaninger, M.; Haering, H.U.; Schleicher, E.; Kasper, M.; Stern, D.M.; Arnold, B.; Nawroth, P.P. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J. Clin. Invest., 2004, 114(12), 1741-1751.
[http://dx.doi.org/10.1172/JCI18058] [PMID: 15599399]
[68]
Hosseini, A.; Abdollahi, M. Diabetic neuropathy and oxidative stress: Therapeutic perspectives. Oxid. Med. Cell. Longev., 2013, 2013, 168039.
[http://dx.doi.org/10.1155/2013/168039]
[69]
Zheng, H.; Whitman, S.A.; Wu, W.; Wondrak, G.T.; Wong, P.K.; Fang, D.; Zhang, D.D. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes, 2011, 60(11), 3055-3066.
[http://dx.doi.org/10.2337/db11-0807] [PMID: 22025779]
[70]
Palsamy, P.; Subramanian, S. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2–Keap1 signaling. Biochim. Biophys. Acta Mol. Basis Dis., 2011, 1812(7), 719-731.
[http://dx.doi.org/10.1016/j.bbadis.2011.03.008] [PMID: 21439372]
[71]
Bhattacharjee, N.; Barma, S.; Konwar, N.; Dewanjee, S.; Manna, P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update. Eur. J. Pharmacol., 2016, 791, 8-24.
[http://dx.doi.org/10.1016/j.ejphar.2016.08.022] [PMID: 27568833]
[72]
Szabó, C.; Wong, H.; Bauer, P.; Kirsten, E.; O’Connor, M.; Zingarelli, B.; Mendeleyev, J.; Hasko, G.; Vizi, E.; Salzman, A.; Kun, E. Regulation of components of the inflammatory response by 5-iodo-6-amino-1,2-benzopyrone, an inhibitor of poly(ADP-ribose) synthetase and pleiotropic modifier of cellular signal pathways. Int. J. Oncol., 1997, 10(6), 1093-1101.
[http://dx.doi.org/10.3892/ijo.10.6.1093] [PMID: 21533489]
[73]
Szabó, G.; Bährle, S.; Stumpf, N.; Sonnenberg, K.; Szabó, É.; Pacher, P.; Csont, T.; Schulz, R.; Dengler, T.J.; Liaudet, L.; Jagtap, P.G.; Southan, G.J.; Vahl, C.F.; Hagl, S.; Szabó, C. Poly(ADP-Ribose) polymerase inhibition reduces reperfusion injury after heart transplantation. Circ. Res., 2002, 90(1), 100-106.
[http://dx.doi.org/10.1161/hh0102.102657] [PMID: 11786525]
[74]
Zingarelli, B.; Salzman, A.L.; Szabó, C. Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ. Res., 1998, 83(1), 85-94.
[http://dx.doi.org/10.1161/01.RES.83.1.85] [PMID: 9670921]
[75]
Drel, V.; Pacher, P.; Vareniuk, I.; Pavlov, I.; Ilnytska, O.; Lyzogubov, V.; Bell, S.; Groves, J.; Obrosova, I. Evaluation of the peroxynitrite decomposition catalyst Fe(III) tetra-mesitylporphyrin octasulfonate on peripheral neuropathy in a mouse model of type 1 diabetes. Int. J. Mol. Med., 2007, 20(6), 783-792.
[http://dx.doi.org/10.3892/ijmm.20.6.783] [PMID: 17982684]
[76]
Li, F.; Szabó, C.; Pacher, P.; Southan, G.J.; Abatan, O.I.; Charniauskaya, T.; Stevens, M.J.; Obrosova, I.G. Evaluation of orally active poly(ADP-ribose) polymerase inhibitor in streptozotocin-diabetic rat model of early peripheral neuropathy. Diabetologia, 2004, 47(4), 710-717.
[http://dx.doi.org/10.1007/s00125-004-1356-0] [PMID: 15298348]
[77]
Obrosova, I.G.; Ilnytska, O.; Lyzogubov, V.V.; Pavlov, I.A.; Mashtalir, N.; Nadler, J.L.; Drel, V.R. High-fat diet induced neuropathy of pre-diabetes and obesity: effects of “healthy” diet and aldose reductase inhibition. Diabetes, 2007, 56(10), 2598-2608.
[http://dx.doi.org/10.2337/db06-1176] [PMID: 17626889]
[78]
Obrosova, I.G.; Li, F.; Abatan, O.I.; Forsell, M.A.; Komjáti, K.; Pacher, P.; Szabó, C.; Stevens, M.J. Role of poly(ADP-ribose) polymerase activation in diabetic neuropathy. Diabetes, 2004, 53(3), 711-720.
[http://dx.doi.org/10.2337/diabetes.53.3.711] [PMID: 14988256]
[79]
Obrosova, I.G.; Xu, W.; Lyzogubov, V.V.; Ilnytska, O.; Mashtalir, N.; Vareniuk, I.; Pavlov, I.A.; Zhang, J.; Slusher, B.; Drel, V.R. PARP inhibition or gene deficiency counteracts intraepidermal nerve fiber loss and neuropathic pain in advanced diabetic neuropathy. Free Radic. Biol. Med., 2008, 44(6), 972-981.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.09.013] [PMID: 17976390]
[80]
Vareniuk, I.; Pavlov, I.A.; Drel, V.R.; Lyzogubov, V.V.; Ilnytska, O.; Bell, S.R.; Tibrewala, J.; Groves, J.T.; Obrosova, I.G. Nitrosative stress and peripheral diabetic neuropathy in leptin-deficient (ob/ob) mice. Exp. Neurol., 2007, 205(2), 425-436.
[http://dx.doi.org/10.1016/j.expneurol.2007.03.019] [PMID: 17475250]
[81]
Park, K.S.; Kim, J.H.; Kim, M.S.; Kim, J.M.; Kim, S.K.; Choi, J.Y.; Chung, M.H.; Han, B.; Kim, S.Y.; Lee, H.K. Effects of insulin and antioxidant on plasma 8-hydroxyguanine and tissue 8-hydroxydeoxyguanosine in streptozotocin-induced diabetic rats. Diabetes, 2001, 50(12), 2837-2841.
[http://dx.doi.org/10.2337/diabetes.50.12.2837] [PMID: 11723068]
[82]
Homburg, S.; Visochek, L.; Moran, N.; Dantzer, F.; Priel, E.; Asculai, E.; Schwartz, D.; Rotter, V.; Dekel, N.; Cohen-Armon, M. A fast signal-induced activation of Poly(ADP-ribose) polymerase: a novel downstream target of phospholipase c. J. Cell Biol., 2000, 150(2), 293-308.
[http://dx.doi.org/10.1083/jcb.150.2.293] [PMID: 10908573]
[83]
Drel, V.R.; Xu, W.; Zhang, J.; Kador, P.F.; Ali, T.K.; Shin, J.; Julius, U.; Slusher, B.; El-Remessy, A.B.; Obrosova, I.G. Poly(ADP-ribose)polymerase inhibition counteracts cataract formation and early retinal changes in streptozotocin-diabetic rats. Invest. Ophthalmol. Vis. Sci., 2009, 50(4), 1778-1790.
[http://dx.doi.org/10.1167/iovs.08-2191] [PMID: 19098320]
[84]
Szabó, C.; Biser, A. Benkő, R.; Böttinger, E.; Suszták, K. Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of type 2 diabetic Leprdb/db mice. Diabetes, 2006, 55(11), 3004-3012.
[http://dx.doi.org/10.2337/db06-0147] [PMID: 17065336]
[85]
Ha, H.C.; Hester, L.D.; Snyder, S.H. Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc. Natl. Acad. Sci., 2002, 99(5), 3270-3275.
[http://dx.doi.org/10.1073/pnas.052712399] [PMID: 11854472]
[86]
Obrosova, I.G.; Van Huysen, C.; Fathallah, L.; Cao, X.; Stevens, M.J.; Greene, D.A. Evaluation of α1-adrenoceptor antagonist on diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J., 2000, 14.
[http://dx.doi.org/10.1096/fj.99-0803com]
[87]
Km, A.R.; Badruddeen, A.J.; Mohammad, K.J.; Mohammad, K.A. An outlook on pathological pathways of diabetes and molecular mechanisms of anti-diabetic phytobioactives. J. Funct. Foods, 2024, 1, e180723218858.
[88]
Koche, D.; Shirsat, R.; Kawale, M.A. An overerview of major classes of phytochemicals: their types and role in disease prevention. Hislopia Journal, 2016, 9(1/2), 2016.
[89]
Huang, W.; He, J.; Nisar, M.F.; Li, H.; Wan, C. Phytochemical and pharmacological properties of Chaenomeles speciosa: An edible medicinal Chinese mugua. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/9591845] [PMID: 30622618]
[90]
Cook, N.; Samman, S. Flavonoids-Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem., 1996, 7(2), 66-76.
[http://dx.doi.org/10.1016/0955-2863(95)00168-9]
[91]
Croft, K.D. The chemistry and biological effects of flavonoids and phenolic acids. Ann. N. Y. Acad. Sci., 1998, 854, 435-442.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb09922.x] [PMID: 9928450]
[92]
Peterson, J.; Dwyer, J. Flavonoids: Dietary occurrence and biochemical activity. Nutr. Res., 1998, 18(12), 1995-2018.
[http://dx.doi.org/10.1016/S0271-5317(98)00169-9]
[93]
Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr., 2002, 22(1), 19-34.
[http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957] [PMID: 12055336]
[94]
Hanasaki, Y.; Ogawa, S.; Fukui, S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic. Biol. Med., 1994, 16(6), 845-850.
[http://dx.doi.org/10.1016/0891-5849(94)90202-X] [PMID: 8070690]
[95]
Duarte, J.; Vizcaíno, F.P.; Utrilla, P.; Jiménez, J.; Tamargo, J.; Zarzuelo, A. Vasodilatory effects of flavonoids in rat aortic smooth muscle. Structure-activity relationships. Gen. Pharmacol., 1993, 24(4), 857-862.
[http://dx.doi.org/10.1016/0306-3623(93)90159-U] [PMID: 8224739]
[96]
Kaul, T.N.; Middleton, E., Jr; Ogra, P.L. Antiviral effect of flavonoids on human viruses. J. Med. Virol., 1985, 15(1), 71-79.
[http://dx.doi.org/10.1002/jmv.1890150110] [PMID: 2981979]
[97]
Ferreira, P.E.B.; Lopes, C.R.; Alves, A.M.; Alves, É.P.; Linden, D.R.; Zanoni, J.N.; Buttow, N.C. Diabetic neuropathy: An evaluation of the use of quercetin in the cecum of rats. World J. Gastroenterol., 2013, 19(38), 6416-6426.
[http://dx.doi.org/10.3748/wjg.v19.i38.6416] [PMID: 24151360]
[98]
Xie, J.; Song, W.; Liang, X.; Zhang, Q.; Shi, Y.; Liu, W.; Shi, X. Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level. Biomed. Pharmacother., 2020, 127, 110147.
[http://dx.doi.org/10.1016/j.biopha.2020.110147] [PMID: 32559841]
[99]
Goswami, K. Flavonoids, isoflavonoids and others bioactives for insulin sensitizations. Curr. Diabetes Rev., 2023.
[100]
Wang, R.; Qiu, Z.; Wang, G.; Hu, Q.; Shi, N.; Zhang, Z.; Wu, Y.; Zhou, C. Quercetin attenuates diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn of db/db mice. Eur. J. Pharmacol., 2020, 882, 173266.
[http://dx.doi.org/10.1016/j.ejphar.2020.173266] [PMID: 32553736]
[101]
Yang, R.; Li, L.; Yuan, H.; Liu, H.; Gong, Y.; Zou, L.; Li, S.; Wang, Z.; Shi, L.; Jia, T.; Zhao, S.; Wu, B.; Yi, Z.; Gao, Y.; Li, G.; Xu, H.; Liu, S.; Zhang, C.; Li, G.; Liang, S. Quercetin relieved diabetic neuropathic pain by inhibiting upregulated P2X 4 receptor in dorsal root ganglia. J. Cell. Physiol., 2019, 234(3), 2756-2764.
[http://dx.doi.org/10.1002/jcp.27091] [PMID: 30145789]
[102]
Valensi, P.; Le Devehat, C.; Richard, J.L.; Farez, C.; Khodabandehlou, T.; Rosenbloom, R.A.; LeFante, C. A multicenter, double-blind, safety study of QR-333 for the treatment of symptomatic diabetic peripheral neuropathy. J. Diabetes Complications, 2005, 19(5), 247-253.
[http://dx.doi.org/10.1016/j.jdiacomp.2005.05.011] [PMID: 16112498]
[103]
Anjaneyulu, M.; Chopra, K. Quercetin, a bioflavonoid, attenuates thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(6), 1001-1005.
[http://dx.doi.org/10.1016/S0278-5846(03)00160-X] [PMID: 14499317]
[104]
Hewlings, S.; Kalman, D. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[105]
Aggarwal, BB; Kumar, A; Bharti, AC Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23(1/A), 363-398.
[106]
Banafshe, H.R.; Hamidi, G.A.; Noureddini, M.; Mirhashemi, S.M.; Mokhtari, R.; Shoferpour, M. Effect of curcumin on diabetic peripheral neuropathic pain: Possible involvement of opioid system. Eur. J. Pharmacol., 2014, 723, 202-206.
[http://dx.doi.org/10.1016/j.ejphar.2013.11.033] [PMID: 24315931]
[107]
Li, Y.; Zhang, Y.; Liu, D.; Liu, H.; Hou, W.; Dong, Y. Curcumin attenuates diabetic neuropathic pain by downregulating TNF-α in a rat model. Int. J. Med. Sci., 2013, 10(4), 377-381.
[http://dx.doi.org/10.7150/ijms.5224] [PMID: 23471081]
[108]
Zhao, W.C.; Zhang, B.; Liao, M.J.; Zhang, W.X.; He, W.Y.; Wang, H.B.; Yang, C.X. Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord. Neurosci. Lett., 2014, 560, 81-85.
[http://dx.doi.org/10.1016/j.neulet.2013.12.019] [PMID: 24370596]
[109]
BHASKAR NAGILLA PR. Neuroprotective and antinociceptive effect of curcumin in diabetic neuropathy in rats. Int. J. Pharm. Pharm. Sci., 2014, 6(5), 131-138.
[110]
Jia, T.; Rao, J.; Zou, L.; Zhao, S.; Yi, Z.; Wu, B.; Li, L.; Yuan, H.; Shi, L.; Zhang, C.; Gao, Y.; Liu, S.; Xu, H.; Liu, H.; Liang, S.; Li, G. Nanoparticle-encapsulated curcumin inhibits diabetic neuropathic pain involving the P2Y12 receptor in the dorsal root ganglia. Front. Neurosci., 2018, 11, 755.
[http://dx.doi.org/10.3389/fnins.2017.00755] [PMID: 29422835]
[111]
Park, H.; Lee, J.H.; Sim, J.H.; Park, J.; Choi, S.S.; Leem, J.G. Effects of curcumin treatment in a diabetic neuropathic pain model of rats: involvement of c-Jun N-terminal kinase located in the astrocytes and neurons of the dorsal root ganglion. Pain Res. Manag., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/8787231] [PMID: 33532012]
[112]
Lv, J.; Cao, L.; Zhang, R.; Bai, F.; Wei, P. A curcumin derivative J147 ameliorates diabetic peripheral neuropathy in streptozotocin (STZ)-induced DPN rat models through negative regulation AMPK on TRPA1. Acta Cir. Bras., 2018, 33(6), 533-541.
[http://dx.doi.org/10.1590/s0102-865020180060000008] [PMID: 30020315]
[113]
Daugherty, D.J.; Marquez, A.; Calcutt, N.A.; Schubert, D. A novel curcumin derivative for the treatment of diabetic neuropathy. Neuropharmacology, 2018, 129, 26-35.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.007] [PMID: 29122628]
[114]
Attia, H.N. AL-Rasheed, N.M.; AL-Rasheed, N.M.; Maklad, Y.A.; Ahmed, A.A.E.; Kenawy, S.A.B. Protective effects of combined therapy of gliclazide with curcumin in experimental diabetic neuropathy in rats. Behav. Pharmacol., 2012, 23(2), 153-161.
[http://dx.doi.org/10.1097/FBP.0b013e3283512c00] [PMID: 22411174]
[115]
Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr., 2004, 59(3), 113-122.
[http://dx.doi.org/10.1007/s11130-004-0049-7] [PMID: 15678717]
[116]
Abo-Salem, O.M. Kaempferol attenuates the development of diabetic neuropathic pain in mice: Possible anti-inflammatory and anti-oxidant mechanisms. Open Access Maced. J. Med. Sci., 2014, 2(3), 424-430.
[http://dx.doi.org/10.3889/oamjms.2014.073]
[117]
Jabbari, S.; Bananej, M.; Zarei, M.; Komaki, A.; Hajikhani, R. Possible Involvement of Serotonergic Mechanism (s) in the Antinociceptive Effects of kaempferol. Avicenna J. Neuropsychophysiol., 2021, 8(2), 64-70.
[118]
Kishore, L.; Kaur, N.; Singh, R. Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy. Inflammopharmacology, 2018, 26(4), 993-1003.
[http://dx.doi.org/10.1007/s10787-017-0416-2] [PMID: 29159712]
[119]
Pyrzynska, K. Hesperidin: A review on extraction methods, stability and biological activities. Nutrients, 2022, 14(12), 2387.
[http://dx.doi.org/10.3390/nu14122387] [PMID: 35745117]
[120]
Visnagri, A.; Kandhare, A.D.; Chakravarty, S.; Ghosh, P.; Bodhankar, S.L. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm. Biol., 2014, 52(7), 814-828.
[http://dx.doi.org/10.3109/13880209.2013.870584] [PMID: 24559476]
[121]
Syed, A.A.; Reza, M.I.; Yadav, H.; Gayen, J.R. Hesperidin inhibits NOX4 mediated oxidative stress and inflammation by upregulating SIRT1 in experimental diabetic neuropathy. Exp. Gerontol., 2023, 172, 112064.
[http://dx.doi.org/10.1016/j.exger.2022.112064] [PMID: 36528304]
[122]
Osama, H.; Hamed, E.O.; Mahmoud, M.A.; Abdelrahim, M.E. The effect of hesperidin and diosmin individually or in combination on metabolic profile and neuropathy among diabetic patients with metabolic syndrome: A randomized controlled trial. J. Diet. Suppl., 2023, 20(5), 749-762.
[PMID: 35946912]
[123]
Hong, J.S.; Feng, J.H.; Park, J.S.; Lee, H.J.; Lee, J.Y.; Lim, S.S.; Suh, H.W. Antinociceptive effect of chrysin in diabetic neuropathy and formalin-induced pain models. Anim. Cells Syst., 2020, 24(3), 143-150.
[http://dx.doi.org/10.1080/19768354.2020.1765019] [PMID: 33209194]
[124]
Skindar, H.; Jaspreet, K.; Singh, B.S.; Deepak, K. Evaluation of chronic constriction injury induced neuropathic pain using chrysin in rats. Indian J. Pharm. Educ. Res, 2022, 56(3s), s462-s468.
[http://dx.doi.org/10.5530/ijper.56.3s.154]
[125]
El-Marasy, S.A.; AbouSamra, M.M.; El-Mosallamy, A.E.M.K.; Emam, A.N.; Mabrok, H.B.; Galal, A.F.; Ahmed-Farid, O.A.; Abd El-Rahman, S.S.; Moustafa, P.E. Chrysin loaded nanovesicles ameliorated diabetic peripheral neuropathy. Role of NGF/AKT/GSK-3β pathway. Chem. Biol. Interact., 2023, 375, 110402.
[http://dx.doi.org/10.1016/j.cbi.2023.110402] [PMID: 36804429]
[126]
Farkhondeh, T.; Samarghandian, S.; Roshanravan, B. Impact of chrysin on the molecular mechanisms underlying diabetic complications. J. Cell. Physiol., 2019, 234(10), 17144-17158.
[http://dx.doi.org/10.1002/jcp.28488] [PMID: 30916403]
[127]
Li, R.; Zang, A.; Zhang, L.; Zhang, H.; Zhao, L.; Qi, Z.; Wang, H. Chrysin ameliorates diabetes-associated cognitive deficits in Wistar rats. Neurol. Sci., 2014, 35(10), 1527-1532.
[http://dx.doi.org/10.1007/s10072-014-1784-7] [PMID: 24737349]
[128]
Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Crocin attenuate Tumor Necrosis Factor-alpha (TNF-α) and interleukin-6 (IL-6) in streptozotocin-induced diabetic rat aorta. Cytokine, 2016, 88, 20-28.
[http://dx.doi.org/10.1016/j.cyto.2016.08.002] [PMID: 27529541]
[129]
Hasanzadeh, M.; Samarghandian, S.; Azimi-Nezhad, M.; Borji, A.; Jabbari, F.; Farkhondeh, T.; Samini, M. Inhibitory and cytotoxic activities of chrysin on human breast adenocarcinoma cells by induction of apoptosis. Pharmacogn. Mag., 2016, 12(47), 436.
[http://dx.doi.org/10.4103/0973-1296.191453] [PMID: 27761071]
[130]
Samarghandian, S.; Azimi-Nezhad, M.; Samini, F.; Farkhondeh, T. Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Can. J. Physiol. Pharmacol., 2016, 94(4), 388-393.
[http://dx.doi.org/10.1139/cjpp-2014-0412] [PMID: 26863330]
[131]
Ghanbari-Movahed, M.; Jackson, G.; Farzaei, M.H.; Bishayee, A. A systematic review of the preventive and therapeutic effects of naringin against human malignancies. Front. Pharmacol., 2021, 12, 639840.
[http://dx.doi.org/10.3389/fphar.2021.639840] [PMID: 33854437]
[132]
Yang, Y.; Trevethan, M.; Wang, S.; Zhao, L. Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: An update on bioavailability, pharmacokinetics, and mechanisms. J. Nutr. Biochem., 2022, 104, 108967.
[http://dx.doi.org/10.1016/j.jnutbio.2022.108967] [PMID: 35189328]
[133]
Rauf, A.; Shariati, M.A.; Imran, M.; Bashir, K.; Khan, S.A.; Mitra, S.; Emran, T.B.; Badalova, K.; Uddin, M.S.; Mubarak, M.S.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Derkho, M.; Korpayev, S.; Zengin, G. Comprehensive review on naringenin and naringin polyphenols as a potent anticancer agent. Environ. Sci. Pollut. Res. Int., 2022, 29(21), 31025-31041.
[http://dx.doi.org/10.1007/s11356-022-18754-6] [PMID: 35119637]
[134]
Miles, E.A.; Calder, P.C. Effects of citrus fruit juices and their bioactive components on inflammation and immunity: A narrative review. Front. Immunol., 2021, 12, 712608.
[http://dx.doi.org/10.3389/fimmu.2021.712608] [PMID: 34249019]
[135]
Memariani, Z.; Abbas, S.Q. ul Hassan, S.S.; Ahmadi, A.; Chabra, A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol. Res., 2021, 171, 105264.
[http://dx.doi.org/10.1016/j.phrs.2020.105264] [PMID: 33166734]
[136]
Koolaji, N.; Shammugasamy, B.; Schindeler, A.; Dong, Q.; Dehghani, F.; Valtchev, P. Citrus peel flavonoids as potential cancer prevention agents. Curr. Dev. Nutr., 2020, 4(5), nzaa025.
[http://dx.doi.org/10.1093/cdn/nzaa025] [PMID: 32391511]
[137]
Tang, G.; Pi, L.; Guo, H.; Hu, Z.; Zhou, C.; Hu, Q.; Peng, H.; Xiao, Z.; Zhang, Z.; Wang, M.; Peng, T.; Huang, J.; Liang, S.; Li, G. Naringin relieves diabetic cardiac autonomic neuropathy mediated by P2Y14 receptor in superior cervical ganglion. Front. Pharmacol., 2022, 13, 873090.
[http://dx.doi.org/10.3389/fphar.2022.873090] [PMID: 35529431]
[138]
Ahmad, M.F.; Naseem, N.; Rahman, I.; Imam, N.; Younus, H.; Pandey, S.K.; Siddiqui, W.A. Naringin attenuates the diabetic neuropathy in STZ-induced type 2 diabetic wistar rats. Life, 2022, 12(12), 2111.
[http://dx.doi.org/10.3390/life12122111] [PMID: 36556476]
[139]
Kandhare, A.D.; Raygude, K.S.; Ghosh, P.; Ghule, A.E.; Bodhankar, S.L. Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy. Fitoterapia, 2012, 83(4), 650-659.
[http://dx.doi.org/10.1016/j.fitote.2012.01.010] [PMID: 22343014]
[140]
Khan, N.; Syed, D.N.; Ahmad, N.; Mukhtar, H. Fisetin: A dietary antioxidant for health promotion. Antioxid. Redox Signal., 2013, 19(2), 151-162.
[http://dx.doi.org/10.1089/ars.2012.4901] [PMID: 23121441]
[141]
Sandireddy, R.; Yerra, V.G.; Komirishetti, P.; Areti, A.; Kumar, A. Fisetin imparts neuroprotection in experimental diabetic neuropathy by modulating Nrf2 and NF-κB pathways. Cell. Mol. Neurobiol., 2016, 36(6), 883-892.
[http://dx.doi.org/10.1007/s10571-015-0272-9] [PMID: 26399251]
[142]
Zhao, X.; Li, X.L.; Liu, X.; Wang, C.; Zhou, D.S.; Ma, Q.; Zhou, W.H.; Hu, Z.Y. Antinociceptive effects of fisetin against diabetic neuropathic pain in mice: Engagement of antioxidant mechanisms and spinal GABAA receptors. Pharmacol. Res., 2015, 102, 286-297.
[http://dx.doi.org/10.1016/j.phrs.2015.10.007] [PMID: 26520392]
[143]
Mahdian Dehkordi, F.; Kaboutari, J.; Zendehdel, M.; Javdani, M. The antinociceptive effect of artemisinin on the inflammatory pain and role of GABAergic and opioidergic systems. Korean J. Pain, 2019, 32(3), 160-167.
[http://dx.doi.org/10.3344/kjp.2019.32.3.160] [PMID: 31257824]
[144]
Patel, D.K. Health benefits, therapeutic applications, and recent advances of cirsilineol in the medicine: Potential bioactive natural flavonoids of genus artemisia. Endocr. Metab. Immune. Disord. Drug, 2023, 23(7), 894-907.
[145]
Jain, D.; Bansal, M.K.; Dalvi, R.; Upganlawar, A.; Somani, R. Protective effect of diosmin against diabetic neuropathy in experimental rats. J. Integr. Med., 2014, 12(1), 35-41.
[http://dx.doi.org/10.1016/S2095-4964(14)60001-7] [PMID: 24461593]
[146]
Salehi, B.; Fokou, P.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals, 2019, 12(1), 11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[147]
Hasanein, P.; Fazeli, F. Role of naringenin in protection against diabetic hyperalgesia and tactile allodynia in male Wistar rats. J. Physiol. Biochem., 2014, 70(4), 997-1006.
[http://dx.doi.org/10.1007/s13105-014-0369-5] [PMID: 25407136]
[148]
Al-Rejaie, S.S.; Aleisa, A.M.; Abuohashish, H.M.; Parmar, M.Y.; Ola, M.S.; Al-Hosaini, A.A.; Ahmed, M.M. Naringenin neutralises oxidative stress and nerve growth factor discrepancy in experimental diabetic neuropathy. Neurol. Res., 2015, 37(10), 924-933.
[http://dx.doi.org/10.1179/1743132815Y.0000000079] [PMID: 26187552]
[149]
Singh, P.; Bansal, S.; Kuhad, A.; Kumar, A.; Chopra, K. Naringenin ameliorates diabetic neuropathic pain by modulation of oxidative-nitrosative stress, cytokines and MMP-9 levels. Food Funct., 2020, 11(5), 4548-4560.
[http://dx.doi.org/10.1039/C9FO00881K] [PMID: 32400767]
[150]
Croteau, R.; Kutchan, T.M.; Lewis, N.G. Natural products (secondary metabolites). Biol Mol. Bio. Plants., 2000, 24, 1250-1319.
[151]
Ziegler, J.; Facchini, P.J. Alkaloid biosynthesis: Metabolism and trafficking. Annu. Rev. Plant Biol., 2008, 59(1), 735-769.
[http://dx.doi.org/10.1146/annurev.arplant.59.032607.092730] [PMID: 18251710]
[152]
Velu, G.; Palanichamy, V.; Rajan, A.P. Phytochemical and Pharmacological Importance of Plant Secondary Metabolites in Modern Medicine. In: Bioorganic Phase in Natural Food: An Overview; Roopan, S.; Madhumitha, G., Eds.; Springer: Cham, 2018.
[http://dx.doi.org/10.1007/978-3-319-74210-6_8]
[153]
Bribi, N. Pharmacological activity of alkaloids: A review. Asian J Bot., 2018, 1(1), 1-6.
[154]
Kaur, R.A.; Arora, S.A. Alkaloids-important therapeutic secondary metabolites of plant origin. J Crit Rev., 2015, 2(3), 1-8.
[155]
Ramawat, K.G.; Dass, S.; Mathur, M. The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants.Herbal Drugs; Ethnomedicine to Modern Medicine, 2009, pp. 7-32.
[http://dx.doi.org/10.1007/978-3-540-79116-4_2]
[156]
Shang, X.F.; Yang, C.J.; Morris-Natschke, S.L.; Li, J.C.; Yin, X.D.; Liu, Y.Q.; Guo, X.; Peng, J.W.; Goto, M.; Zhang, J.Y.; Lee, K.H. Biologically active isoquinoline alkaloids covering 2014–2018. Med. Res. Rev., 2020, 40(6), 2212-2289.
[http://dx.doi.org/10.1002/med.21703] [PMID: 32729169]
[157]
Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I. Crişan, G.; Buzoianu, A.D. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol., 2018, 9, 557.
[http://dx.doi.org/10.3389/fphar.2018.00557] [PMID: 30186157]
[158]
Zhou, J.; Du, X.; Long, M.; Zhang, Z.; Zhou, S.; Zhou, J.; Qian, G. Neuroprotective effect of berberine is mediated by MAPK signaling pathway in experimental diabetic neuropathy in rats. Eur. J. Pharmacol., 2016, 774, 87-94.
[http://dx.doi.org/10.1016/j.ejphar.2016.02.007] [PMID: 26849937]
[159]
Zan, Y.; Kuai, C.X.; Qiu, Z.X.; Huang, F. Berberine ameliorates diabetic neuropathy: TRPV1 modulation by PKC pathway. Am. J. Chin. Med., 2017, 45(8), 1709-1723.
[http://dx.doi.org/10.1142/S0192415X17500926] [PMID: 29121795]
[160]
Kim, S.O.; Kim, H.J. Berberine ameliorates cold and mechanical allodynia in a rat model of diabetic neuropathy. J. Med. Food, 2013, 16(6), 511-517.
[http://dx.doi.org/10.1089/jmf.2012.2648] [PMID: 23734996]
[161]
Yerra, V.G.; Kalvala, A.K.; Sherkhane, B.; Areti, A.; Kumar, A. Adenosine monophosphate-activated protein kinase modulation by berberine attenuates mitochondrial deficits and redox imbalance in experimental diabetic neuropathy. Neuropharmacology, 2018, 131, 256-270.
[http://dx.doi.org/10.1016/j.neuropharm.2017.12.029] [PMID: 29273519]
[162]
Liu, M.; Gao, L.; Zhang, N. Berberine reduces neuroglia activation and inflammation in streptozotocin-induced diabetic mice. Int. J. Immunopathol. Pharmacol., 2019, 33.
[http://dx.doi.org/10.1177/2058738419866379] [PMID: 31337260]
[163]
Zhou, J.Y.; Zhou, S.W. Protection of trigonelline on experimental diabetic peripheral neuropathy. Evid. Based Complement. Alternat. Med., 2012, 2012, 164219.
[http://dx.doi.org/10.1155/2012/164219]
[164]
Rawat, S.; Kumar, N. Pharmacological agents involved in the treatment of diabetic neuropathy. J. Pharm. Res., 2017, 11(5), 373-381.
[165]
Nanjundan, P.K.; Arunachalam, A.; Thakur, R.S. Antinociceptive property of Trigonella foenum graecum (Fenugreek seeds) in high fat diet-fed/low dose streptozotocin-induced diabetic neuropathy in rats. Pharmacologyonline, 2009, 2(2), 24-36.
[166]
Liu, L.; Du, X.; Zhang, Z.; Zhou, J. Trigonelline inhibits caspase 3 to protect β cells apoptosis in streptozotocin-induced type 1 diabetic mice. Eur. J. Pharmacol., 2018, 836, 115-121.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.025] [PMID: 30130525]
[167]
Zhou, J.; Chan, L.; Zhou, S. Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr. Med. Chem., 2012, 19(21), 3523-3531.
[http://dx.doi.org/10.2174/092986712801323171] [PMID: 22680628]
[168]
Hong, B.N.; Yi, T.H.; Kim, S.Y.; Kang, T.H. High-dosage pyridoxine-induced auditory neuropathy and protection with coffee in mice. Biol. Pharm. Bull., 2009, 32(4), 597-603.
[http://dx.doi.org/10.1248/bpb.32.597] [PMID: 19336890]
[169]
The Capsaicin Study Group. Treatment of painful diabetic neuropathy with topical capsaicin. A multicenter, double-blind, vehicle-controlled study. Arch. Intern. Med., 1991, 151(11), 2225-2229.
[http://dx.doi.org/10.1001/archinte.1991.00400110079017] [PMID: 1953227]
[170]
Leavell, Y.; Simpson, D.M. The role of the capsaicin 8% patch in the treatment of painful diabetic peripheral neuropathy. Pain Manag., 2022, 12(5), 595-609.
[http://dx.doi.org/10.2217/pmt-2021-0025] [PMID: 35152709]
[171]
Zhang, X.Y.; Guo, Z.; Li, T.P.; Sun, T. Dietary capsaicin normalizes CGRP peptidergic DRG neurons in experimental diabetic peripheral neuropathy. Sci. Rep., 2021, 11(1), 1704.
[http://dx.doi.org/10.1038/s41598-021-81427-w] [PMID: 33462325]
[172]
Anand, P.; Bley, K. Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br. J. Anaesth., 2011, 107(4), 490-502.
[http://dx.doi.org/10.1093/bja/aer260] [PMID: 21852280]
[173]
Ai, G.; Huang, Z.; Cheng, J.; Xie, J.; Zeng, H.; Liu, Y.; Li, Y.; Huang, X.; Chen, J.; Su, Z. Gut microbiota-mediated transformation of coptisine into a novel metabolite 8-oxocoptisine: insight into its superior anti-colitis effect. Front. Pharmacol., 2021, 12, 639020.
[http://dx.doi.org/10.3389/fphar.2021.639020] [PMID: 33859564]
[174]
Friedemann, T.; Schumacher, U.; Tao, Y.; Leung, A.K.M.; Schröder, S. Neuroprotective activity of coptisine from Coptis chinensis (Franch). Evid. Based Complement. Alternat. Med., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/827308] [PMID: 26229546]
[175]
Su, X.; Zhou, D.; Li, N. Bioactive stilbenes from plants. Studies in Natural Products Chemistry, 2022, 73, 265-403.
[http://dx.doi.org/10.1016/B978-0-323-91097-2.00006-6]
[176]
Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; Borras, C. Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev., 2015, 2015, 837042.
[177]
Teka, T.; Zhang, L.; Ge, X.; Li, Y.; Han, L.; Yan, X. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. Phytochemistry, 2022, 197, 113128.
[http://dx.doi.org/10.1016/j.phytochem.2022.113128] [PMID: 35183567]
[178]
Pintea, A.M. Rugină, D.O. Resveratrol and the Human Retina. In: Handbook of nutrition, diet, and the eye; Preedy, V.R., Ed.; Academic Press, 2014; pp. 481-491.
[http://dx.doi.org/10.1016/B978-0-12-401717-7.00049-6]
[179]
Kumar, A.; Negi, G.; Sharma, S.S. Neuroprotection by resveratrol in diabetic neuropathy: concepts & mechanisms. Curr. Med. Chem., 2013, 20(36), 4640-4645.
[http://dx.doi.org/10.2174/09298673113209990151] [PMID: 24206125]
[180]
Ahmad, I.; Hoda, M. Attenuation of diabetic retinopathy and neuropathy by resveratrol: Review on its molecular mechanisms of action. Life Sci., 2020, 245, 117350.
[http://dx.doi.org/10.1016/j.lfs.2020.117350] [PMID: 31982401]
[181]
Ates, O.; Cayli, S.R.; Yucel, N.; Altinoz, E.; Kocak, A.; Durak, M.A.; Turkoz, Y.; Yologlu, S. Central nervous system protection by resveratrol in streptozotocin-induced diabetic rats. J. Clin. Neurosci., 2007, 14(3), 256-260.
[http://dx.doi.org/10.1016/j.jocn.2005.12.010] [PMID: 17258134]
[182]
Leonard, S.S.; Xia, C.; Jiang, B.H.; Stinefelt, B.; Klandorf, H.; Harris, G.K.; Shi, X. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem. Biophys. Res. Commun., 2003, 309(4), 1017-1026.
[http://dx.doi.org/10.1016/j.bbrc.2003.08.105] [PMID: 13679076]
[183]
Kumar, A. Sharma, S.S. NF-κB inhibitory action of resveratrol: A probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochem. Biophys. Res. Commun., 2010, 394(2), 360-365.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.014] [PMID: 20211601]
[184]
Roy Chowdhury, S.K.; Smith, D.R.; Saleh, A.; Schapansky, J.; Marquez, A.; Gomes, S.; Akude, E.; Morrow, D.; Calcutt, N.A.; Fernyhough, P. Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. Brain, 2012, 135(6), 1751-1766.
[http://dx.doi.org/10.1093/brain/aws097] [PMID: 22561641]
[185]
Sharma, S.; Kulkarni, S.K.; Chopra, K. Effect of resveratrol, a polyphenolic phytoalexin, on thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Fundam. Clin. Pharmacol., 2007, 21(1), 89-94.
[http://dx.doi.org/10.1111/j.1472-8206.2006.00455.x] [PMID: 17227449]
[186]
Kumar, A.; Kaundal, R.K.; Iyer, S.; Sharma, S.S. Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sci., 2007, 80(13), 1236-1244.
[http://dx.doi.org/10.1016/j.lfs.2006.12.036] [PMID: 17289084]
[187]
Huang, D.D.; Shi, G.; Jiang, Y.; Yao, C.; Zhu, C. A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed. Pharmacother., 2020, 125, 109767.
[http://dx.doi.org/10.1016/j.biopha.2019.109767] [PMID: 32058210]
[188]
Zhang, W.; Yu, H.; Lin, Q.; Liu, X.; Cheng, Y.; Deng, B. Anti-inflammatory effect of resveratrol attenuates the severity of diabetic neuropathy by activating the Nrf2 pathway. Aging, 2021, 13(7), 10659-10671.
[http://dx.doi.org/10.18632/aging.202830] [PMID: 33770763]
[189]
Sharma, S.; Chopra, K.; Kulkarni, S.K. Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: participation of nitric oxide and TNF-alpha. Phytother. Res., 2007, 21(3), 278-283.
[http://dx.doi.org/10.1002/ptr.2070] [PMID: 17199240]
[190]
Seigler, D.S.; Seigler, D.S. Introduction to terpenes; Plant Secondary Metabolism, 1998, pp. 312-323.
[191]
Guimarães, A.G.; Serafini, M.R.; Quintans-Júnior, L.J. Terpenes and derivatives as a new perspective for pain treatment: a patent review. Expert Opin. Ther. Pat., 2014, 24(3), 243-265.
[http://dx.doi.org/10.1517/13543776.2014.870154] [PMID: 24387185]
[192]
Aguilar-Ávila, D.S. Flores-Soto, M.E.; Tapia-Vázquez, C.; Pastor-Zarandona, O.A.; López-Roa, R.I.; Viveros-Paredes, J.M. β-Caryophyllene, a natural sesquiterpene, attenuates neuropathic pain and depressive-like behavior in experimental diabetic mice. J. Med. Food, 2019, 22(5), 460-468.
[http://dx.doi.org/10.1089/jmf.2018.0157] [PMID: 30864870]
[193]
Aly, E. Khajah, M.A.; Masocha, W. β-Caryophyllene, a CB2-receptor-selective phytocannabinoid, suppresses mechanical allodynia in a mouse model of antiretroviral-induced neuropathic pain. Molecules, 2019, 25(1), 106.
[http://dx.doi.org/10.3390/molecules25010106] [PMID: 31892132]
[194]
Kuwahata, H.; Katsuyama, S.; Komatsu, T.; Nakamura, H.; Corasaniti, M.T.; Bagetta, G.; Sakurada, S.; Sakurada, T.; Takahama, K. Local peripheral effects of β-Caryophyllene through CB 2 receptors in neuropathic pain in mice. Pharmacol. Pharm., 2012, 3(4), 397-403.
[http://dx.doi.org/10.4236/pp.2012.34053]
[195]
Pizzi, A. Tannins: Major sources, properties and applications. In: Monomers, Polymers and Composites from Renewable Resources; Elsevier, 2008; pp. 179-199.
[http://dx.doi.org/10.1016/B978-0-08-045316-3.00008-9]
[196]
Ramakrishnan, K.; Krishnan, M.R. Tannin - classification, analysis and applications. Anc. Sci. Life, 1994, 13(3-4), 232-238.
[PMID: 22556651]
[197]
Hagerman, A.E. The Tannin Handbook, Biological Activity of Tannins; Miami University, 2002.
[198]
Sharma, K.P. Tannin degradation by phytopathogen’s tannase: A Plant’s defense perspective. Biocatal. Agric. Biotechnol., 2019, 21, 101342.
[http://dx.doi.org/10.1016/j.bcab.2019.101342]
[199]
Khanbabaee, K.; van Ree, T. Tannins: classification and definition. Nat. Prod. Rep., 2001, 18(6), 641-649.
[http://dx.doi.org/10.1039/b101061l] [PMID: 11820762]
[200]
Lewis, N.G.; Yamamoto, E. Tannins — Their Place in Plant Metabolism. In: Chemistry and Significance of Condensed Tannins; Springer, 1989; pp. 23-46.
[201]
Melo, L.F.M.; Aquino-Martins, V.G.Q.; Silva, A.P.; Oliveira Rocha, H.A.; Scortecci, K.C. Biological and pharmacological aspects of tannins and potential biotechnological applications. Food Chem., 2023, 414, 135645.
[http://dx.doi.org/10.1016/j.foodchem.2023.135645] [PMID: 36821920]
[202]
Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. Br. J. Pharmacol., 2017, 174(11), 1244-1262.
[http://dx.doi.org/10.1111/bph.13630] [PMID: 27646690]
[203]
Raposo, D.; Morgado, C.; Pereira-Terra, P.; Tavares, I. Nociceptive spinal cord neurons of laminae I–III exhibit oxidative stress damage during diabetic neuropathy which is prevented by early antioxidant treatment with epigallocatechin-gallate (EGCG). Brain Res. Bull., 2015, 110, 68-75.
[http://dx.doi.org/10.1016/j.brainresbull.2014.12.004] [PMID: 25522867]
[204]
Baluchnejadmojarad, T.; Roghani, M. Chronic oral epigallocatechin-gallate alleviates streptozotocin-induced diabetic neuropathic hyperalgesia in rat: involvement of oxidative stress. Iranian journal of pharmaceutical research. Iran. J. Pharm. Res., 2012, 11(4), 1243-1253.
[PMID: 24250559]
[205]
Kuang, X.; Huang, Y.; Gu, H.; Zu, X.; Zou, W.; Song, Z.; Guo, Q. Effects of intrathecal epigallocatechin gallate, an inhibitor of Toll-like receptor 4, on chronic neuropathic pain in rats. Eur. J. Pharmacol., 2012, 676(1-3), 51-56.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.037] [PMID: 22173123]
[206]
Abo-Salem, O.M.; Ali, T.M.; Harisa, G.I.; Mehanna, O.M.; Younos, I.H.; Almalki, W.H. Beneficial effects of (−)‐ epigallocatechin‐3‐ O ‐gallate on diabetic peripheral neuropathy in the rat model. J. Biochem. Mol. Toxicol., 2020, 34(8), e22508.
[http://dx.doi.org/10.1002/jbt.22508] [PMID: 32275810]
[207]
Choi, J.I.; Kim, W.M.; Lee, H.G.; Kim, Y.O.; Yoon, M.H. Role of neuronal nitric oxide synthase in the antiallodynic effects of intrathecal EGCG in a neuropathic pain rat model. Neurosci. Lett., 2012, 510(1), 53-57.
[http://dx.doi.org/10.1016/j.neulet.2011.12.070] [PMID: 22249118]
[208]
Chen, X.; Le, Y.; Tang, S.Q.; He, W.Y.; He, J.; Wang, Y.H.; Wang, H.B. Painful diabetic neuropathy is associated with compromised microglial IGF-1 signaling which can be rescued by green tea polyphenol EGCG in mice. Oxidative Medicine and Cellular Longevity. 2022 Feb 22;2022. Fonseca VA. Clinical Diabetes: Translating Research into Practice. Ann. Intern. Med., 2007, 146, 152.
[209]
Jain, E.; Goldstein, L.; Jain, E. Pain management of diabetic neuropathy. Pract. Pain Manag., 2012, 12.
[210]
Siddiqui, A.; Suresh, S. Pregabalin for acute pain management: a shift in paradigm. Br. J. Anaesth., 2009, 102(1), 144.
[http://dx.doi.org/10.1093/bja/aen339] [PMID: 19059929]
[211]
Azmi, S.; ElHadd, K.T.; Nelson, A.; Chapman, A.; Bowling, F.L.; Perumbalath, A.; Lim, J.; Marshall, A.; Malik, R.A.; Alam, U. Pregabalin in the management of painful diabetic neuropathy: A narrative review. Diabetes Ther., 2019, 10(1), 35-56.
[http://dx.doi.org/10.1007/s13300-018-0550-x] [PMID: 30565054]
[212]
Smith, S.; Normahani, P.; Lane, T.; Hohenschurz-Schmidt, D.; Oliver, N.; Davies, A.H. Prevention and management strategies for diabetic neuropathy. Life, 2022, 12(8), 1185.
[http://dx.doi.org/10.3390/life12081185] [PMID: 36013364]
[213]
Fink, K.; Dooley, D.J.; Meder, W.P.; Suman-Chauhan, N.; Duffy, S.; Clusmann, H.; Göthert, M. Inhibition of neuronal Ca2+ influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology, 2002, 42(2), 229-236.
[http://dx.doi.org/10.1016/S0028-3908(01)00172-1] [PMID: 11804619]
[214]
Iacobucci, G. UK government to reclassify pregabalin and gabapentin after rise in deaths. BMJ, 2017, 358, j4441.
[http://dx.doi.org/10.1136/bmj.j4441] [PMID: 28947423]
[215]
Attal, N.; Cruccu, G.; Baron, R.; Haanpää, M.; Hansson, P.; Jensen, T.S.; Nurmikko, T. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur. J. Neurol., 2010, 17(9), 1113-e88.
[http://dx.doi.org/10.1111/j.1468-1331.2010.02999.x] [PMID: 20402746]
[216]
Bril, V. Evidence-based guideline: Treatment of painful diabetic neuropathy: Report of the american academy of neurology, the american association of neuromuscular and electrodiagnostic medicine, and the american academy of physical medicine and rehabilitation. Neurology, 2011, 76(20), 1758-1765.
[217]
Ambreen Shoaib, H.H. Current pharmacotherapeutic approaches to treat diabetic neuropathy. J. Chem. Pharm. Res., 2016, 8(3), 449-458.
[218]
Max, M.B.; Culnane, M.; Schafer, S.C.; Gracely, R.H.; Walther, D.J.; Smoller, B.; Dubner, R. Amitriptyline relieves diabetic neuropathy pain in patients with normal or depressed mood. Neurology, 1987, 37(4), 589-596.
[http://dx.doi.org/10.1212/WNL.37.4.589] [PMID: 2436092]
[219]
Kaur, H.; Hota, D.; Bhansali, A.; Dutta, P.; Bansal, D.; Chakrabarti, A. A comparative evaluation of amitriptyline and duloxetine in painful diabetic neuropathy: a randomized, double-blind, cross-over clinical trial. Diabetes Care, 2011, 34(4), 818-822.
[http://dx.doi.org/10.2337/dc10-1793] [PMID: 21355098]
[220]
Su, M.; Liang, L.; Yu, S. Amitriptyline therapy in chronic pain. IACP, 2015, 1(1), 1-15.
[http://dx.doi.org/10.23937/2572-3987.1510001]
[221]
Max, M.B.; Kishore-Kumar, R.; Schafer, S.C.; Meister, B.; Gracely, R.H.; Smoller, B.; Dubner, R. Efficacy of desipramine in painful diabetic neuropathy: a placebo-controlled trial. Pain, 1991, 45(1), 3-9.
[http://dx.doi.org/10.1016/0304-3959(91)90157-S] [PMID: 1861872]
[222]
Max, M.B.; Lynch, S.A.; Muir, J.; Shoaf, S.E.; Smoller, B.; Dubner, R. Effects of desipramine, amitriptyline, and fluoxetine on pain in diabetic neuropathy. N. Engl. J. Med., 1992, 326(19), 1250-1256.
[http://dx.doi.org/10.1056/NEJM199205073261904] [PMID: 1560801]
[223]
Tesfaye, S.; Vileikyte, L.; Rayman, G.; Sindrup, S.H.; Perkins, B.A.; Baconja, M.; Vinik, A.I.; Boulton, A.J.M. Painful diabetic peripheral neuropathy: consensus recommendations on diagnosis, assessment and management. Diabetes Metab. Res. Rev., 2011, 27(7), 629-638.
[http://dx.doi.org/10.1002/dmrr.1225] [PMID: 21695762]
[224]
Grond, S.; Sablotzki, A. Clinical pharmacology of tramadol. Clin. Pharmacokinet., 2004, 43(13), 879-923.
[http://dx.doi.org/10.2165/00003088-200443130-00004] [PMID: 15509185]
[225]
Duehmke, R.M.; Derry, S.; Wiffen, P.J.; Bell, R.F.; Aldington, D.; Moore, R.A. Tramadol for neuropathic pain in adults. Cochrane Database Syst. Rev., 2017, 6(6), CD003726.
[PMID: 28616956]
[226]
Rains, C.; Bryson, H.M. Topical Capsaicin. Drugs Aging, 1995, 7(4), 317-328.
[http://dx.doi.org/10.2165/00002512-199507040-00007] [PMID: 8535059]
[227]
Dludla, P.V.; Nkambule, B.B.; Cirilli, I.; Marcheggiani, F.; Mabhida, S.E.; Ziqubu, K.; Ntamo, Y.; Jack, B.; Nyambuya, T.M.; Hanser, S.; Mazibuko-Mbeje, S.E. Capsaicin, its clinical significance in patients with painful diabetic neuropathy. Biomed. Pharmacother., 2022, 153, 113439.
[http://dx.doi.org/10.1016/j.biopha.2022.113439] [PMID: 36076554]
[228]
van Nooten, F.; Treur, M.; Pantiri, K.; Stoker, M.; Charokopou, M. Capsaicin 8% patch versus oral neuropathic pain medications for the treatment of painful diabetic peripheral neuropathy: A systematic literature review and network meta-analysis. Clin. Ther., 2017, 39(4), 787-803.e18.
[http://dx.doi.org/10.1016/j.clinthera.2017.02.010] [PMID: 28365034]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy