Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Current Landscape of Various Techniques and Methods of Gene Therapy through CRISPR Cas9 along with its Pharmacological and Interventional Therapies in the Treatment of Type 2 Diabetes Mellitus

Author(s): Pranay Wal, Namra Aziz*, Harshit Prajapati, Shashank Soni and Ankita Wal

Volume 20, Issue 6, 2024

Published on: 20 October, 2023

Article ID: e201023222414 Pages: 18

DOI: 10.2174/0115733998263079231011073803

Price: $65

conference banner
Abstract

Background: Type 2 diabetes mellitus (T2DM) is frequently referred to as a "lifestyle illness". In 2000, India (31.7 million) had the greatest global prevalence of diabetes mellitus, followed by China (20.8 million), the United States (17.7 million), and other countries. In recent years, the treatment of gene therapy (T2DM) has attracted intensive interest.

Objective: We aimed to critically review the literature on the various techniques and methods, which may be a possible novel approach through the gene therapy CRISPR Cas9 and some other gene editing techniques for T2DM. Interventional and pharmacological approaches for the treatment of T2DM were also included to identify novel therapies for its treatment.

Method: An extensive literature survey was done on databases like PubMed, Elsevier, Science Direct and Springer.

Conclusion: It can be concluded from the study that recent advancements in gene-editing technologies, such as CRISPR Cas9, have opened new avenues for the development of novel therapeutic approaches for T2DM. CRISPR Cas9 is a powerful tool that enables precise and targeted modifications of the genome.

Keywords: Hyperglycemia, diabetes mellitus, gene therapy, CRISPR Cas9, systematic gene expression, hepatocytes.

[1]
Tan SY, Mei Wong JL, Sim YJ, et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr 2019; 13(1): 364-72.
[http://dx.doi.org/10.1016/j.dsx.2018.10.008] [PMID: 30641727]
[2]
Senapati S, Bharti N, Bhattacharya A. Modern lifestyle diseases: Chronic diseases, awareness and prevention. Int J Curr Res Acad Rev 2015; 3: 215-23.
[3]
Yue Z, Zhang L, Li C, et al. Advances and potential of gene therapy for type 2 diabetes mellitus. Biotechnol Biotechnol Equip 2019; 33(1): 1150-7.
[http://dx.doi.org/10.1080/13102818.2019.1643783]
[4]
Bagchi D, Sreejayan N, Eds. Nutritional and therapeutic interventions for diabetes and metabolic syndrome. Academic Press 2018.
[5]
Kähm K, Laxy M, Schneider U, Rogowski WH, Lhachimi SK, Holle R. Health care costs associated with incident complications in patients with type 2 diabetes in Germany. Diabetes Care 2018; 41(5): 971-8.
[http://dx.doi.org/10.2337/dc17-1763] [PMID: 29348194]
[6]
De S, Banerjee S, Kumar SKA, Paira P. Critical role of dipeptidyl peptidase IV: A therapeutic target for diabetes and cancer. Mini Rev Med Chem 2018; 19(2): 88-97.
[http://dx.doi.org/10.2174/1389557518666180423112154] [PMID: 29692250]
[7]
Khan SH. The promise of CRISPR gene therapy in type2 diabetes mellitus. Glob J Obes Diabetes Metab Syndr 2019; 6: 022-4.
[http://dx.doi.org/10.14302/issn.2574-450X.jom-19-3001]
[8]
Hu FB. Globalization of diabetes. Diabetes Care 2011; 34(6): 1249-57.
[http://dx.doi.org/10.2337/dc11-0442] [PMID: 21617109]
[9]
Wong-Xia W. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chem Rev 2017; 117(15): 9874-906.
[10]
Glass Z, Lee M, Li Y, Xu Q. Engineering the delivery system for CRISPR-based genome editing. Trends Biotechnol 2018; 36(2): 173-85.
[http://dx.doi.org/10.1016/j.tibtech.2017.11.006] [PMID: 29305085]
[11]
Tamura R, Toda M. Historic overview of genetic engineering technologies for human gene therapy. Neurol Med Chir 2020; 60(10): 483-91.
[http://dx.doi.org/10.2176/nmc.ra.2020-0049] [PMID: 32908085]
[12]
Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials 2018; 171: 207-18.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.031] [PMID: 29704747]
[13]
DeWitt MA, Corn JE, Carroll D. Genome editing via delivery of Cas9 ribonucleoprotein. Methods 2017; 121-122: 9-15.
[http://dx.doi.org/10.1016/j.ymeth.2017.04.003] [PMID: 28410976]
[14]
Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol 2018; 200(7): e00580-17.
[http://dx.doi.org/10.1128/JB.00580-17] [PMID: 29358495]
[15]
Tillmann H, Bernhard D, Eschrich K. Fructose-1,6-bisphosphatase genes in animals. Gene 2002; 291(2002): 57-66.
[16]
Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 2017; 46(1): 505-29.
[http://dx.doi.org/10.1146/annurev-biophys-062215-010822] [PMID: 28375731]
[17]
Liu M, Rehman S, Tang X, et al. Methodologies for improving HDR efficiency. Front Genet 2019; 9: 691.
[http://dx.doi.org/10.3389/fgene.2018.00691] [PMID: 30687381]
[18]
Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 2019; 20(11): 698-714.
[http://dx.doi.org/10.1038/s41580-019-0152-0] [PMID: 31263220]
[19]
Xue C, Greene EC. DNA repair pathway choices in crispr-cas9-mediated genome editing. Trends Genet 2021; 37(7): 639-56.
[http://dx.doi.org/10.1016/j.tig.2021.02.008] [PMID: 33896583]
[20]
Heler R, Marraffini LA, Bikard D. Adapting to new threats: The generation of memory by CRISPR-Cas immune systems. Mol Microbiol 2014; 93(1): 1-9.
[http://dx.doi.org/10.1111/mmi.12640] [PMID: 24806524]
[21]
Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature 2015; 526(7571): 55-61.
[http://dx.doi.org/10.1038/nature15386] [PMID: 26432244]
[22]
Mojica FJM, Rodriguez-Valera F. The discovery of CRISPR in archaea and bacteria. FEBS J 2016; 283(17): 3162-9.
[http://dx.doi.org/10.1111/febs.13766] [PMID: 27234458]
[23]
Amitai G, Sorek R. CRISPR–Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol 2016; 14(2): 67-76.
[http://dx.doi.org/10.1038/nrmicro.2015.14] [PMID: 26751509]
[24]
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315(5819): 1709-12.
[http://dx.doi.org/10.1126/science.1138140] [PMID: 17379808]
[25]
Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008; 321(5891): 960-4.
[http://dx.doi.org/10.1126/science.1159689] [PMID: 18703739]
[26]
Garneau JE, Dupuis MÈ, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010; 468(7320): 67-71.
[http://dx.doi.org/10.1038/nature09523] [PMID: 21048762]
[27]
Jiang F, Doudna JA. The structural biology of CRISPR-Cas systems. Curr Opin Struct Biol 2015; 30: 100-11.
[http://dx.doi.org/10.1016/j.sbi.2015.02.002] [PMID: 25723899]
[28]
van der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat Rev Microbiol 2014; 12(7): 479-92.
[http://dx.doi.org/10.1038/nrmicro3279] [PMID: 24909109]
[29]
Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012; 482(7385): 331-8.
[http://dx.doi.org/10.1038/nature10886] [PMID: 22337052]
[30]
Wagh SG, Pohare MO. Current and future prospects of plant breeding with CRISPR/Cas. Curr Appl Sci Technol 2019; 38(3): 1-17.
[31]
Horvath P, Romero DA, Coûté-Monvoisin AC, et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 2008; 190(4): 1401-12.
[http://dx.doi.org/10.1128/JB.01415-07] [PMID: 18065539]
[32]
Cheng Y, Wang H, Li M. The promise of CRISPR/Cas9 technology in diabetes mellitus therapy: How gene editing is revolutionizing diabetes research and treatment. J Diabetes Complications 2023; 37(8): 108524.
[http://dx.doi.org/10.1016/j.jdiacomp.2023.108524] [PMID: 37295292]
[33]
Charpentier E, Marraffini LA. Harnessing CRISPR-Cas9 immunity for genetic engineering. Curr Opin Microbiol 2014; 19: 114-9.
[http://dx.doi.org/10.1016/j.mib.2014.07.001] [PMID: 25048165]
[34]
Liu J, Chang J, Jiang Y, et al. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv Mater 2019; 31(33): e1902575.
[35]
Jacinto FV, Link W, Ferreira BI. CRISPR/Cas9‐mediated genome editing: From basic research to translational medicine. J Cell Mol Med 2020; 24(7): 3766-78.
[http://dx.doi.org/10.1111/jcmm.14916]
[36]
Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013; 31(9): 822-6.
[http://dx.doi.org/10.1038/nbt.2623] [PMID: 23792628]
[37]
Nishiyama J, Mikuni T, Yasuda R. Virus-mediated genome editing via homology-directed repair in mitotic and postmitotic cells in mammalian brain. Neuron 2017; 96(4): 755-768.e5.
[http://dx.doi.org/10.1016/j.neuron.2017.10.004] [PMID: 29056297]
[38]
Cho EY, Ryu JY, Lee HAR, et al. Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type 2 diabetes. J Nanobiotechnology 2019; 17(1): 19.
[http://dx.doi.org/10.1186/s12951-019-0452-8] [PMID: 30696428]
[39]
Luo YL, Xu CF, Li HJ, et al. Macrophage-specific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles. ACS Nano 2018; 12(2): 994-1005.
[http://dx.doi.org/10.1021/acsnano.7b07874] [PMID: 29314827]
[40]
Chung JY, Ain QU, Song Y, Yong SB, Kim YH. Targeted delivery of CRISPR interference system against Fabp4 to white adipocytes ameliorates obesity, inflammation, hepatic steatosis, and insulin resistance. Genome Res 2019; 29(9): 1442-52.
[http://dx.doi.org/10.1101/gr.246900.118] [PMID: 31467027]
[41]
Luo YL, Liang LF, Gan YJ, et al. An all-in-one nanomedicine consisting of CRISPR-Cas9 and an autoantigen peptide for restoring specific immune tolerance. ACS Appl Mater Interfaces 2020; 12(43): 48259-71.
[http://dx.doi.org/10.1021/acsami.0c10885] [PMID: 33070614]
[42]
Xu C, Lu Z, Luo Y, et al. Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nat Commun 2018; 9(1): 4092.
[http://dx.doi.org/10.1038/s41467-018-06522-5] [PMID: 30291237]
[43]
Liu Y, Cao ZT, Xu CF, Lu ZD, Luo YL, Wang J. Optimization of lipid-assisted nanoparticle for disturbing neutrophils-related inflammation. Biomaterials 2018; 172: 92-104.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.052] [PMID: 29723758]
[44]
Frese L, Dijkman PE, Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother 2016; 2016: 43268-74.
[http://dx.doi.org/10.1159/000448180]
[45]
Hu J, Fu Z, Chen Y, et al. Effects of autologous adipose-derived stem cell infusion on type 2 diabetic rats. Endocr J 2015; 62(4): 339-52.
[http://dx.doi.org/10.1507/endocrj.EJ14-0584] [PMID: 25739585]
[46]
Tudurí E, Bruin JE, Kieffer TJ. Restoring insulin production for type 1 diabetes. J Diabetes 2012; 4(4): 319-31.
[http://dx.doi.org/10.1111/j.1753-0407.2012.00196.x] [PMID: 22429761]
[47]
Nam JS, Kang HM, Kim J, et al. Transplantation of insulin-secreting cells differentiated from human adipose tissue-derived stem cells into type 2 diabetes mice. Biochem Biophys Res Commun 2014; 443(2): 775-81.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.059] [PMID: 24148246]
[48]
Matheeussen V, Jungraithmayr W, De Meester I. Dipeptidyl peptidase 4 as a therapeutic target in ischemia/reperfusion injury. Pharmacol Ther 2012; 136(3): 267-82.
[http://dx.doi.org/10.1016/j.pharmthera.2012.07.012] [PMID: 22850530]
[49]
Kapturczak M, Flotte T, Atkinson M. Adeno-associated virus (AAV) as a vehicle for therapeutic gene delivery: Improvements in vector design and viral production enhance potential to prolong graft survival in pancreatic islet cell transplantation for the reversal of type 1 diabetes. Curr Mol Med 2001; 1(2): 245-58.
[http://dx.doi.org/10.2174/1566524013363979] [PMID: 11899074]
[50]
Wang S, Curtiss R III. Development of Streptococcus pneumoniae vaccines using live vectors. Vaccines 2014; 2(1): 49-88.
[http://dx.doi.org/10.3390/vaccines2010049] [PMID: 25309747]
[51]
Lin Y, Krogh-Andersen K, Pelletier J, Marcotte H, Östenson CG, Hammarström L. Oral delivery of pentameric glucagon-like peptide-1by recombinant Lactobacillus in diabetic rats. PLoS One 2016; 11(9): e0162733.
[http://dx.doi.org/10.1371/journal.pone.0162733] [PMID: 27610615]
[52]
Chen J, Chen S, Huang P, et al. In vivo targeted delivery of ANGPTL8 gene for beta cell regeneration in rats. Diabetologia 2015; 58(5): 1036-44.
[http://dx.doi.org/10.1007/s00125-015-3521-z] [PMID: 25720603]
[53]
Luo B, Li B, Wang W, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One 2014; 9(8): e104771.
[http://dx.doi.org/10.1371/journal.pone.0104771] [PMID: 25136835]
[54]
Lu G, Teng X, Zheng Z, et al. Overexpression of a glucokinase point mutant in the treatment of diabetes mellitus. Gene Ther 2016; 23(4): 323-9.
[http://dx.doi.org/10.1038/gt.2016.1] [PMID: 26752353]
[55]
Jimenez V, Jambrina C, Casana E, et al. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med 2018; 10(8): e8791.
[http://dx.doi.org/10.15252/emmm.201708791] [PMID: 29987000]
[56]
Halban PA, Kahn SE, Lernmark Å, Rhodes CJ. Gene and cell-replacement therapy in the treatment of type 1 diabetes: how high must the standards be set? Diabetes 2001; 50(10): 2181-91.
[http://dx.doi.org/10.2337/diabetes.50.10.2181] [PMID: 11574396]
[57]
Fan Z, Yan J. Endogenous pancreatic β cell regeneration: A potential strategy for the recovery of β cell deficiency in diabetes. Front Endocrinol 2019; 10: 101.
[58]
Efrat S. Prospects for gene therapy of insulin-dependent diabetes mellitus. Diabetologia 1998; 41(12): 1401-9.
[http://dx.doi.org/10.1007/s001250051085] [PMID: 9867206]
[59]
Olson DE, Campbell AG, Porter MH, et al. Hepatic insulin gene therapy normalizes diurnal fluctuation of oxidative metabolism in diabetic BB/Wor rats. Mol Ther 2008; 16(7): 1235-42.
[http://dx.doi.org/10.1038/mt.2008.97] [PMID: 18500248]
[60]
Shternhall-Ron K, Quintana FJ, Perl S, et al. Ectopic PDX-1 expression in liver ameliorates type 1 diabetes. J Autoimmun 2007; 28(2-3): 134-42.
[http://dx.doi.org/10.1016/j.jaut.2007.02.010] [PMID: 17383157]
[61]
Wang P, Moore A. In vivo magnetic resonance imaging of small interfering RNA nanodelivery to pancreatic islets. Methods Mol Biol 2016; 1372: 25-36.
[62]
Giannoukakis N, Rudert WA, Robbins PD, Trucco M. Targeting autoimmune diabetes with gene therapy. Diabetes 1999; 48(11): 2107-21.
[http://dx.doi.org/10.2337/diabetes.48.11.2107] [PMID: 10535443]
[63]
Chen G, Abdeen AA, Wang Y, et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat Nanotechnol 2019; 14(10): 974-80.
[http://dx.doi.org/10.1038/s41565-019-0539-2] [PMID: 31501532]
[64]
Payal R, Suman S, Jui C. Looking into the possibilities of cure of the type 2 diabetes mellitus by nanoparticle based RNAi and CRISPR-Cas9 system: A review. J Drug Deliv Sci Technol 2021; 66: 102830.
[65]
Holm P, Rydlander B, Luthman H, Kockum I. Interaction and association analysis of a type 1 diabetes susceptibility locus on chromosome 5q11-q13 and the 7q32 chromosomal region in Scandinavian families. Diabetes 2004; 53(6): 1584-91.
[http://dx.doi.org/10.2337/diabetes.53.6.1584] [PMID: 15161765]
[66]
Golden B, Levin L, Ban Y, Concepcion E, Greenberg DA, Tomer Y. Genetic analysis of families with autoimmune diabetes and thyroiditis: Evidence for common and unique genes. J Clin Endocrinol Metab 2005; 90(8): 4904-11.
[http://dx.doi.org/10.1210/jc.2004-2236] [PMID: 15928253]
[67]
Levine F. Gene therapy for diabetes: Strategies for β-cell modification and replacement. Diabetes Metab Rev 1997; 13(4): 209-46.
[http://dx.doi.org/10.1002/(SICI)1099-0895(199712)13:4<209:AID-DMR198>3.0.CO;2-N] [PMID: 9509277]
[68]
Panakanti R, Mahato RI. Bipartite adenoviral vector encoding hHGF and hIL-1Ra for improved human islet transplantation. Pharm Res 2009; 26(3): 587-96.
[http://dx.doi.org/10.1007/s11095-008-9777-y] [PMID: 19002565]
[69]
Creusot RJ, Yaghoubi SS, Kodama K, et al. Tissue-targeted therapy of autoimmune diabetes using dendritic cells transduced to express IL-4 in NOD mice. Clin Immunol 2008; 127(2): 176-87.
[http://dx.doi.org/10.1016/j.clim.2007.12.009] [PMID: 18337172]
[70]
Kodama K, Butte AJ, Creusot RJ, et al. Tissue- and age-specific changes in gene expression during disease induction and progression in NOD mice. Clin Immunol 2008; 129(2): 195-201.
[http://dx.doi.org/10.1016/j.clim.2008.07.028] [PMID: 18801706]
[71]
Masayuki S. Future therapies for diabetes. Springer Science and Business Media LLC 2021.
[72]
Yoon J, Jun H-S. Recent advances in insulin gene therapy for type 1 diabetes. Trends Mol Med 2002; 8(2): 62-8.
[http://dx.doi.org/10.1016/S1471-4914(02)02279-7] [PMID: 11815271]
[73]
Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 2006; 8(1): 343-75.
[http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095735] [PMID: 16834560]
[74]
Lu Y. Recombinant adeno-associated virus as delivery vector for gene therapy--A review. Stem Cells Dev 2004; 13(1): 133-45.
[http://dx.doi.org/10.1089/154732804773099335] [PMID: 15068701]
[75]
Leibowitz G, Beattie GM, Kafri T, et al. Gene transfer to human pancreatic endocrine cells using viral vectors. Diabetes 1999; 48(4): 745-53.
[http://dx.doi.org/10.2337/diabetes.48.4.745] [PMID: 10102690]
[76]
Bobisse S, Zanovello P, Rosato A. T-cell receptor gene transfer by lentiviral vectors in adoptive cell therapy. Expert Opin Biol Ther 2007; 7(6): 893-906.
[http://dx.doi.org/10.1517/14712598.7.6.893] [PMID: 17555374]
[77]
Migliorini A, Bader E, Lickert H. Islet cell plasticity and regeneration. Mol Metab 2014; 3(3): 268-74.
[http://dx.doi.org/10.1016/j.molmet.2014.01.010] [PMID: 24749056]
[78]
Kulkarni RN, Mizrachi EB, Ocana AG, Stewart AF. Human β-cell proliferation and intracellular signaling: driving in the dark without a road map. Diabetes 2012; 61(9): 2205-13.
[http://dx.doi.org/10.2337/db12-0018] [PMID: 22751699]
[79]
Lee J, Han DJ, Kim SC. In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract. Biochem Biophys Res Commun 2008; 375(4): 547-51.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.064] [PMID: 18725201]
[80]
Wong MS, Hawthorne WJ, Manolios N. Gene therapy in diabetes. Self Nonself 2010; 1(3): 165-75.
[http://dx.doi.org/10.4161/self.1.3.12643] [PMID: 21487475]
[81]
Xu J, Lu Y, Ding F, Zhan X, Zhu M, Wang Z. Reversal of diabetes in mice by intrahepatic injection of bone-derived GFP-murine mesenchymal stem cells infected with the recombinant retrovirus-carrying human insulin gene. World J Surg 2007; 31(9): 1872-82.
[http://dx.doi.org/10.1007/s00268-007-9168-2] [PMID: 17653584]
[82]
Jayasinghe M, Prathiraja O, Perera PB, et al. The role of mesenchymal stem cells in the treatment of type 1 diabetes. Cureus 2022; 14(7): e27337.
[http://dx.doi.org/10.7759/cureus.27337] [PMID: 36042996]
[83]
Amer MG, Embaby AS, Karam RA, Amer MG. Role of adipose tissue derived stem cells differentiated into insulin producing cells in the treatment of type I diabetes mellitus. Gene 2018; 654: 87-94.
[http://dx.doi.org/10.1016/j.gene.2018.02.008] [PMID: 29452233]
[84]
Xie QP, Huang H, Xu B, et al. Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differentiation 2009; 77(5): 483-91.
[http://dx.doi.org/10.1016/j.diff.2009.01.001] [PMID: 19505629]
[85]
Romer AI, Singer RA, Sui L, Egli D, Sussel L. Murine perinatal β-cell proliferation and the differentiation of human stem cell–derived insulin-expressing cells require NEUROD1. Diabetes 2019; 68(12): 2259-71.
[http://dx.doi.org/10.2337/db19-0117] [PMID: 31519700]
[86]
Wu LF, Wang NN, Liu YS, Wei X. Differentiation of Wharton’s jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Eng Part A 2009; 15(10): 2865-73.
[http://dx.doi.org/10.1089/ten.tea.2008.0579] [PMID: 19257811]
[87]
Zang L, Hao H, Liu J, Li Y, Han W, Mu Y. Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetol Metab Syndr 2017; 9(1): 36.
[http://dx.doi.org/10.1186/s13098-017-0233-1] [PMID: 28515792]
[88]
Molinuevo MS, Schurman L, McCarthy AD, et al. Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res 2010; 25(2): 211-21.
[http://dx.doi.org/10.1359/jbmr.090732] [PMID: 19594306]
[89]
Proks P, Reimann F, Green N, Gribble F, Ashcroft F. Sulfonylurea stimulation of insulin secretion. Diabetes 2002; 51(S3): S368-76.
[http://dx.doi.org/10.2337/diabetes.51.2007.S368]
[90]
Sola D, Rossi L, Schianca GPC, et al. State of the art paper Sulfonylureas and their use in clinical practice. Arch Med Sci 2015; 4(4): 840-8.
[http://dx.doi.org/10.5114/aoms.2015.53304] [PMID: 26322096]
[91]
Eldor R, DeFronzo RA, Abdul-Ghani M. In vivo actions of peroxisome proliferator-activated receptors: Glycemic control, insulin sensitivity, and insulin secretion. Diabetes Care 2013; 36(S2): S162-74.
[http://dx.doi.org/10.2337/dcS13-2003] [PMID: 23882042]
[92]
Singh A. Dipeptidyl peptidase-4 inhibitors: Novel mechanism of actions. Indian J Endocrinol Metab 2014; 18(6): 753-9.
[http://dx.doi.org/10.4103/2230-8210.141319] [PMID: 25364668]
[93]
Mathijs C. Effects of exenatide on measures of β-cell function after 30 years in metformin-treated patients with type 2 diabetes. Diabetes Care 2011; 34(9): 2041-7.
[http://dx.doi.org/10.2337/dc11-0291] [PMID: 21868779]
[94]
Kalra S. Sodium glucose co-transporter-2 (SGLT2) inhibitors: A review of their basic and clinical pharmacology. Diabetes Ther 2014; 5(2): 355-66.
[http://dx.doi.org/10.1007/s13300-014-0089-4] [PMID: 25424969]
[95]
Johnson KH, O’Brien TD, Hayden DW, et al. Immunolocalization of islet amyloid polypeptide (IAPP) in pancreatic beta cells by means of peroxidase-antiperoxidase (PAP) and protein A-gold techniques. Am J Pathol 1988; 130(1): 1-8.
[PMID: 3276206]
[96]
Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 2011; 91(3): 795-826.
[http://dx.doi.org/10.1152/physrev.00042.2009] [PMID: 21742788]
[97]
Chellappan DK, Yap WS, Bt Ahmad Suhaimi NA, Gupta G, Dua K. Current therapies and targets for type 2 diabetes mellitus. Panminerva Med 2018; 60(3): 117-31.
[http://dx.doi.org/10.23736/S0031-0808.18.03455-9] [PMID: 29696964]
[98]
Long-term safety study of inhaled insulin (CP-464,005, Inhaler) In Japanese patients with type1 or type 2 diabetes. NC Patent T00527397, 2007.
[99]
Samba-02: An investigation of the dose-response and subject variability of inhaled insulin in subjects with type 2 diabetes. Patent NCT02716610, 2013.
[100]
Effect of inhaled insulin (AERx® iDMS) plus pioglitazone versus pioglitazone alone on hba1c in subjects with type 2 diabetes. Patent NCT00411892; Patent NCT00331604; Patent NCT00469586; Patent NCT00427154; Patent NCT00348712; Patent NCT00343980; Patent NCT00472953, 2006.
[101]
Evaluate the efficacy and safety of insulin compared to glargine in patients with type 2 diabetes. Patent NCT00437112, 2005.
[102]
Mannkind corporation a prospective, multi-center, open-label, randomized, controlled clinical trial comparing the efficacy and safety in subjects with type 2 diabetes receiving subcutaneous basal insulin and prandial inhalation of technosphere /insulin versus subcutaneous premixed insulin therapy over a 52-week treatment period and a 4-week follow-up Patent NCT00309244, 2006.
[103]
An open-label treatment investigational new drug (ind) for the use of generex oral-lyn™ in patients with type 1 or type 2 diabetes mellitus. Patent NCT00948493, 2009.
[104]
Schwartz Sherwyn. Randomized, crossover study to evaluate the effect of intranasal insulin and novolog on postprandial glycemic control in type 2 diabetic patients. Patent NCT006247672008, 2008.
[105]
A prospective, randomized, double-blind comparison of LY900014 to humalog with an open-label postprandial LY900014 treatment group in children and adolescents with type 1 diabetes. Patent NCT03740919, 2019.
[106]
A double-blind randomized study to determine the effect of empagliflozin versus placebo on brain insulin sensitivity in patients with prediabetes. Patent NCT03227484, 2017.
[107]
Gomori G. Hexosediphosphatase J Biol Chem 1943; 148(1): 139-49.
[http://dx.doi.org/10.1016/S0021-9258(18)72326-0]
[108]
Ramandeep K, Lalita D, Manoj K. Fructose-1,6-bisphosphatase inhibitors: A new valid approach for management of type 2 diabetes mellitus. Eur J Med Chem 2017; 141: 473-505.
[109]
Hardie DG. AMPK: A key regulator of energy balance in the single cell and the whole organism. Int J Obes 2008; 32(S4): S7-S12.
[http://dx.doi.org/10.1038/ijo.2008.116] [PMID: 18719601]
[110]
Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 1995; 229(2): 558-65.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20498.x] [PMID: 7744080]
[111]
Perry RJ, Cardone RL, Petersen MC, et al. Imeglimin lowers glucose primarily by amplifying glucose-stimulated insulin secretion in high-fat-fed rodents. Am J Physiol Endocrinol Metab 2016; 311(2): E461-70.
[http://dx.doi.org/10.1152/ajpendo.00009.2016] [PMID: 27406738]
[112]
Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109(9): 1125-31.
[http://dx.doi.org/10.1172/JCI0215593] [PMID: 11994399]
[113]
Rafaela R, Victoria J, Miwon A. Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver. J Biol Chem 289(9): 5510-7.
[http://dx.doi.org/10.1074/jbc.M113.541110]
[114]
Sridharan K, Mohan R, Ramaratnam S, Panneerselvam D. Ayurvedic treatments for diabetes mellitus. Cochrane Database Syst Rev 2011; (12): CD008288.
[http://dx.doi.org/10.1002/14651858.CD008288] [PMID: 22161426]
[115]
Shane-McWhorter L. Biological complementary therapies: A focus on botanical products in diabetes. Diabetes Spectr 2001; 14(4): 199-208.
[http://dx.doi.org/10.2337/diaspect.14.4.199]
[116]
Manyam BV. Diabetes mellitus, Ayurveda, and yoga. J Altern Complement Med 2004; 10(2): 223-5.
[http://dx.doi.org/10.1089/107555304323062185] [PMID: 15165400]
[117]
Hari S. Ayurvedic concept of obesity, metabolic syndrome, and diabetes mellitus. J Altern Complement Med 2011; 17(6): 549-52.
[118]
Acharya VJT, Ed. Agnivesha, Charaka Samhita. Varanasi, India: Chaukhambha Sanskrit Sansthan 2004.
[119]
Sharma H, Chandola HM, Singh G, Basisht G. Utilization of Ayurveda in health care: An approach for prevention, health promotion, and treatment of disease. Part 2--Ayurveda in primary health care. J Altern Complement Med 2007; 13(10): 1135-50.
[http://dx.doi.org/10.1089/acm.2007.7017-B] [PMID: 18166127]
[120]
Hari S. Prameha in Ayurveda: Correlation with obesity, metabolic syndrome, and diabetes mellitus. Part 1-etiology, classification, and pathogenesis. J Altern Complement Med 2011; 17(6): 491-6.
[121]
Mooventhan A, Nivethitha L. JJob; therapies m. Evidence based effects of yoga practice on various health related problems of elderly people. RE:view 2017; 21(4): 1028-32.
[PMID: 29037619]
[122]
Singh S, Malhotra V, Singh KP, Madhu SV, Tandon OP. Role of yoga in modifying certain cardiovascular functions in type 2 diabetic patients. J Assoc Physicians India 2004; 52: 203-6.
[PMID: 15636309]
[123]
Bernadi L, Consetti S, Fattorini L, et al. Effect of rosary prayer and yoga mantras on autonomic cardiovascular rhythms;comparative study. Psychol Rep 2002; 90: 487-94.
[124]
Liu X-C, Pan L. Effects of yoga training in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. J Thorac Dis 2014; 6(6): 795.
[125]
McDermott KA, Rao MR, Nagarathna R, et al. A yoga intervention for type 2 diabetes risk reduction: A pilot randomized controlled trial. BMC Complement Altern Med 2014; 14(1): 212.
[http://dx.doi.org/10.1186/1472-6882-14-212]
[126]
Gordon L, Morrison EY, McGrowder DA, Young R, Garwood D, Zamora E, et al. Changes in clinical and metabolic parameters after exercise therapy in patients with type 2 diabetes. Arch Med Sci 2008; 4(4): 427-37.
[127]
Jie C, Jun-Hong H, Li-Ming Y, et al. Effects of yoga in adults with type 2 diabetes mellitus: A meta-analysis. J Diabetes Investig 2017; 8(2): 201-9.
[128]
Fatimata Sanogo. Mind- and body-based interventions improve glycemic control in patients with type 2 diabetes: A systematic review and meta-analysis. J Integr Complement Med 2023; 29(2): 69-79.
[129]
Innes KE. Yoga for adults with type 2 diabetes: A systematic review of controlled trials. J Diabetes Res 2016; 2016: 6979370.
[130]
Qu S, Olafsrud SM, Meza-Zepeda LA, Saatcioglu F. Rapid gene expression changes in peripheral blood lymphocytes upon practice of a comprehensive yoga program. PLoS One 2013; 8(4): e61910.
[http://dx.doi.org/10.1371/journal.pone.0061910] [PMID: 23613970]
[131]
Jyotsna V. Prediabetes and type 2 diabetes mellitus: Evidence for effect of yoga. Indian J Endocrinol Metab 2014; 18(6): 745-9.
[http://dx.doi.org/10.4103/2230-8210.141318] [PMID: 25364666]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy