Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

GDF15 Interference Regulates Proliferation, Inflammation, and Autophagy of Lipopolysaccharide-induced Mesangial Cells by Inhibiting PI3K/ AKT/mTOR Signaling

Author(s): Zhen Chen, Liping Gao, Cailing Li and Wenzhu Sun*

Volume 24, Issue 9, 2024

Published on: 19 October, 2023

Page: [1069 - 1080] Pages: 12

DOI: 10.2174/0118715303252127230926002355

Price: $65

conference banner
Abstract

Background: Chronic glomerulonephritis (CGN) is a primary glomerular disease. As a circulating protein, growth and differentiation factor 15 (GDF15) participates in a variety of biological processes.

Objective: We aimed to investigate the role of GDF15 in CGN.

Methods: HBZY-1 cells were induced by lipopolysaccharide (LPS). Cell viability was detected using a cell counting kit-8 (CCK-8) assay, and a western blot was applied for the detection of GDF15 protein expression. After GDF15 silencing, cell proliferation was evaluated by CCK-8 assay and 5-ethynyl-2'-deoxyuridine (EDU) staining. Enzyme-linked immunosorbent assay (ELISA) kits were used to detect the levels of inflammatory cytokines. Autophagy was assessed by GFP-LC3B assay. Besides, the expression of NF-κB signaling-, autophagy- (LC3II/I, Beclin l and p62) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling-related proteins were measured by western blot. Afterwards, PI3K agonist 740Y-P was used to clarify whether GDF15 affected LPS-induced HBZY-1 cells via PI3K/AKT/mTOR signaling.

Results: LPS induction increased cell viability and elevated GDF15 expression in HBZY-1 cells. After GDF15 expression depletion, the increased proliferation of LPS-induced HBZY-1 cells was decreased. Additionally, GDF15 knockdown suppressed the release of inflammatory factors in LPS-induced HBZY-1 cells and activated autophagy. Moreover, the PI3K/AKT/ mTOR signal was evidenced to be activated by GDF15 deficiency. The further addition of 740Y-P reversed the impacts of GDF15 deficiency on the proliferation, inflammation, and autophagy of LPS-induced HBZY-1.

Conclusion: Collectively, GDF15 downregulation could protect against CGN via blocking PI3K/AKT/mTOR signaling.

Keywords: Chronic glomerulonephritis, GDF15, PI3K/AKT/mTOR signaling, autophagy, proliferation, ELISA, inflammation.

Graphical Abstract
[1]
Provenzano, M.; Coppolino, G.; Faga, T.; Garofalo, C.; Serra, R.; Andreucci, M. Epidemiology of cardiovascular risk in chronic kidney disease patients: The real silent killer. Rev. Cardiovasc. Med., 2019, 20(4), 209-220.
[http://dx.doi.org/10.31083/j.rcm.2019.04.548] [PMID: 31912712]
[2]
Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D.R. Global prevalence of chronic kidney disease – a systematic review and meta-analysis. PLoS One, 2016, 11(7), e0158765.
[http://dx.doi.org/10.1371/journal.pone.0158765] [PMID: 27383068]
[3]
Zhang, L.; Long, J.; Jiang, W.; Shi, Y.; He, X.; Zhou, Z.; Li, Y.; Yeung, R.O.; Wang, J.; Matsushita, K.; Coresh, J.; Zhao, M.H.; Wang, H. Trends in chronic kidney disease in China. N. Engl. J. Med., 2016, 375(9), 905-906.
[http://dx.doi.org/10.1056/NEJMc1602469] [PMID: 27579659]
[4]
Chen, W.; Chen, H.Y.; Yang, Y.H.; Yang, S.H.; Yang, C.W.; Wu, Y.H.; Chen, J.L. An investigation of the prescription patterns of chinese herbal products for chronic glomerulonephritis patients: A hospital-based cross-sectional study. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/5080764] [PMID: 30581484]
[5]
Luan, H.H.; Wang, A.; Hilliard, B.K.; Carvalho, F.; Rosen, C.E.; Ahasic, A.M.; Herzog, E.L.; Kang, I.; Pisani, M.A.; Yu, S.; Zhang, C.; Ring, A.M.; Young, L.H.; Medzhitov, R. GDF15 is an inflammation-induced central mediator of tissue tolerance. Cell, 2019, 178(5), 1231-1244.e11.
[http://dx.doi.org/10.1016/j.cell.2019.07.033] [PMID: 31402172]
[6]
Conte, M.; Martucci, M.; Mosconi, G.; Chiariello, A.; Cappuccilli, M.; Totti, V.; Santoro, A.; Franceschi, C.; Salvioli, S. GDF15 plasma level is inversely associated with level of physical activity and correlates with markers of inflammation and muscle weakness. Front. Immunol., 2020, 11, 915.
[http://dx.doi.org/10.3389/fimmu.2020.00915] [PMID: 32477368]
[7]
Wang, D.; Day, E.A.; Townsend, L.K.; Djordjevic, D.; Jørgensen, S.B.; Steinberg, G.R. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat. Rev. Endocrinol., 2021, 17(10), 592-607.
[http://dx.doi.org/10.1038/s41574-021-00529-7] [PMID: 34381196]
[8]
Thorsteinsdottir, H.; Salvador, C.L.; Mjøen, G.; Lie, A.; Sugulle, M.; Tøndel, C.; Brun, A.; Almaas, R.; Bjerre, A. Growth differentiation factor 15 in children with chronic kidney disease and after renal transplantation. Dis. Markers, 2020, 2020, 1-8.
[http://dx.doi.org/10.1155/2020/6162892] [PMID: 32089755]
[9]
Ham, Y.R.; Song, C.H.; Bae, H.J.; Jeong, J.Y.; Yeo, M.K.; Choi, D.E.; Na, K.R.; Lee, K.W. Growth differentiation factor-15 as a predictor of idiopathic membranous nephropathy progression: A retrospective study. Dis. Markers, 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/1463940] [PMID: 29682097]
[10]
Fattahi, S.; Amjadi-Moheb, F.; Tabaripour, R.; Ashrafi, G.H.; Akhavan-Niaki, H. PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life Sci., 2020, 262, 118513.
[http://dx.doi.org/10.1016/j.lfs.2020.118513] [PMID: 33011222]
[11]
Liu, B.; Lin, J.; Bai, L.; Zhou, Y.; Lu, R.; Zhang, P.; Chen, D.; Li, H.; Song, J.; Liu, X.; Wu, Y.; Wu, J.; Liang, C.; Zhou, J. Paeoniflorin inhibits mesangial cell proliferation and inflammatory response in rats with mesangial proliferative glomerulonephritis through PI3K/AKT/GSK-3β pathway. Front. Pharmacol., 2019, 10, 978.
[http://dx.doi.org/10.3389/fphar.2019.00978] [PMID: 31551783]
[12]
Di Tu, Q.; Jin, J.; Hu, X.; Ren, Y.; Zhao, L.; He, Q. Curcumin improves the renal autophagy in rat experimental membranous nephropathy via regulating the PI3K/AKT/mTOR and Nrf2/HO-1 signaling pathways. BioMed Res. Int., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/7069052] [PMID: 33204708]
[13]
Wang, C.Y.; Huang, A.Q.; Zhou, M.H.; Mei, Y.A. GDF15 regulates Kv2.1-mediated outward K+ current through the Akt/mTOR signalling pathway in rat cerebellar granule cells. Biochem. J., 2014, 460(1), 35-47.
[http://dx.doi.org/10.1042/BJ20140155] [PMID: 24597762]
[14]
Yuan, J.; Hou, K.; Yao, Y.; Du, Z.; Lu, C.; Yuan, Q.; Gao, X. Gold clusters attenuate inflammation in rat mesangial cells via inhibiting the activation of nf-κb pathway. Nanomaterials, 2020, 10(4), 712.
[http://dx.doi.org/10.3390/nano10040712] [PMID: 32290032]
[15]
Bao, J.; Chen, Z.; Xu, L.; Wu, L.; Xiong, Y. Rapamycin protects chondrocytes against IL-18-induced apoptosis and ameliorates rat osteoarthritis. Aging, 2020, 12(6), 5152-5167.
[http://dx.doi.org/10.18632/aging.102937] [PMID: 32182210]
[16]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[17]
Meng, D.; Li, Z.; Wang, G.; Ling, L.; Wu, Y.; Zhang, C. Carvedilol attenuates liver fibrosis by suppressing autophagy and promoting apoptosis in hepatic stellate cells. Biomed. Pharmacother., 2018, 108, 1617-1627.
[http://dx.doi.org/10.1016/j.biopha.2018.10.005] [PMID: 30372864]
[18]
Gao, J.; Zhu, X.; Chen, H.; Jiang, H.; Shi, M.; Wei, L.; Qin, X. Long non-coding NONRATG001910.2 Promotes the proliferation of rat mesangial cell line HBZY-1 through the miR-339-3p/CTNNB1 axis. Front. Genet., 2022, 13, 834144.
[http://dx.doi.org/10.3389/fgene.2022.834144] [PMID: 35571052]
[19]
Gao, J.R.; Shi, M.M.; Jiang, H.; Zhu, X.L.; Wei, L.B.; Qin, X.J. MicroRNA-339-5p inhibits lipopolysaccharide-induced rat mesangial cells by regulating the Syk/Ras/c-Fos pathway. Naunyn Schmiedebergs Arch. Pharmacol., 2022, 395(9), 1075-1085.
[http://dx.doi.org/10.1007/s00210-022-02261-z] [PMID: 35687145]
[20]
Maity, S.; Bera, A.; Ghosh-Choudhury, N.; Das, F.; Kasinath, B.S.; Choudhury, G.G. microRNA-181a downregulates deptor for TGFβ-induced glomerular mesangial cell hypertrophy and matrix protein expression. Exp. Cell Res., 2018, 364(1), 5-15.
[http://dx.doi.org/10.1016/j.yexcr.2018.01.021] [PMID: 29397070]
[21]
Zhu, D.; Wu, X.; Xue, Q. Long non-coding RNA CASC2 restrains high glucose-induced proliferation, inflammation and fibrosis in human glomerular mesangial cells through mediating miR-135a-5p/TIMP3 axis and JNK signaling. Diabetol. Metab. Syndr., 2021, 13(1), 89.
[http://dx.doi.org/10.1186/s13098-021-00709-5] [PMID: 34446088]
[22]
Gohda, T.; Makita, Y.; Shike, T.; Funabiki, K.; Shirato, I.; Tomino, Y. Dilazep hydrochloride, an antiplatelet drug, inhibits lipopolysaccharide-induced mouse mesangial cell IL-6 secretion and proliferation. Kidney Blood Press. Res., 2001, 24(1), 33-38.
[http://dx.doi.org/10.1159/000054203] [PMID: 11174004]
[23]
Li, Z.; Zhang, M.; Li, X.; Lu, J.; Xu, L. [Wnt/β-catenin pathway involved in the regulation of rat mesangial cell proliferation by adipose-derived mesenchymal stem cells]. Xibao Yu Fenzi Mianyixue Zazhi, 2016, 32(11), 1486-1490.
[PMID: 27774940]
[24]
López-Hernández, F.J.; López-Novoa, J.M. Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res., 2012, 347(1), 141-154.
[http://dx.doi.org/10.1007/s00441-011-1275-6] [PMID: 22105921]
[25]
Gekle, M.; Mildenberger, S. Glomerular mesangial cell ph homeostasis mediates mineralocorticoid receptor-induced cell proliferation. Biomedicines, 2021, 9(9), 1117.
[http://dx.doi.org/10.3390/biomedicines9091117] [PMID: 34572303]
[26]
Xia, M.; Zhang, Q.; Zhang, Y.; Li, R.; Zhao, T.; Chen, L.; Liu, Q.; Zheng, S.; Li, H.; Qian, Z.; Yang, L. Growth differentiation factor 15 regulates oxidative stress-dependent ferroptosis post spinal cord injury by stabilizing the p62-Keap1-Nrf2 signaling pathway. Front. Aging Neurosci., 2022, 14, 905115.
[http://dx.doi.org/10.3389/fnagi.2022.905115] [PMID: 35860670]
[27]
Perez-Gomez, M.V.; Pizarro-Sanchez, S.; Gracia-Iguacel, C.; Cano, S.; Cannata-Ortiz, P.; Sanchez-Rodriguez, J.; Sanz, A.B.; Sanchez-Niño, M.D.; Ortiz, A. Urinary growth differentiation factor-15 (GDF15) levels as a biomarker of adverse outcomes and biopsy findings in chronic kidney disease. J. Nephrol., 2021, 34(6), 1819-1832.
[http://dx.doi.org/10.1007/s40620-021-01020-2] [PMID: 33847920]
[28]
Wang, Y.; Chen, J.; Chen, C.; Peng, H.; Lin, X.; Zhao, Q.; Chen, S.; Wang, X. Growth differentiation factor-15 overexpression promotes cell proliferation and predicts poor prognosis in cerebral lower-grade gliomas correlated with hypoxia and glycolysis signature. Life Sci., 2022, 302, 120645.
[http://dx.doi.org/10.1016/j.lfs.2022.120645] [PMID: 35588865]
[29]
Guo, H.; Zhao, X.; Li, H.; Liu, K.; Jiang, H.; Zeng, X.; Chang, J.; Ma, C.; Fu, Z.; Lv, X.; Wang, T.; Guo, H.; Liu, K.; Su, H.; Li, Y. GDF15 promotes cardiac fibrosis and proliferation of cardiac fibroblasts via the MAPK/ERK1/2 pathway after irradiation in rats. Radiat. Res., 2021, 196(2), 183-191.
[http://dx.doi.org/10.1667/RADE-20-00206.1] [PMID: 34019665]
[30]
Wang, D.; Wei, X.; Geng, X.; Li, P.; Li, L. GDF15 enhances proliferation of aged chondrocytes by phosphorylating SMAD2. J. Orthop. Sci., 2022, 27(1), 249-256.
[http://dx.doi.org/10.1016/j.jos.2020.12.004] [PMID: 33419625]
[31]
Carrillo-García, C.; Prochnow, S.; Simeonova, I.K.; Strelau, J.; Hölzl-Wenig, G.; Mandl, C.; Unsicker, K. von Bohlen und Halbach, O.; Ciccolini, F. Growth/differentiation factor 15 promotes EGFR signalling, and regulates proliferation and migration in the hippocampus of neonatal and young adult mice. Development, 2014, 141(4), 773-783.
[http://dx.doi.org/10.1242/dev.096131] [PMID: 24496615]
[32]
Liu, Y. Knockdown of growth differentiation factor-15 inhibited nonsmall cell lung cancer through inactivating PTEN/PI3K/] AKT signaling pathway. Genes Genomics, 2022, 45(4), 507-517.
[PMID: 36306063]
[33]
Joo, M.; Kim, D.; Lee, M.W.; Lee, H.J.; Kim, J.M. GDF15 promotes cell growth, migration, and invasion in gastric cancer by inducing STAT3 activation. Int. J. Mol. Sci., 2023, 24(3), 2925.
[http://dx.doi.org/10.3390/ijms24032925] [PMID: 36769245]
[34]
Li, S.; Ma, Y.M.; Zheng, P.S.; Zhang, P. GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2. J. Exp. Clin. Cancer Res., 2018, 37(1), 80.
[http://dx.doi.org/10.1186/s13046-018-0744-0] [PMID: 29636108]
[35]
Nalewajska, M.; Gurazda, K.; Styczyńska-Kowalska, E.; Marchelek-Myśliwiec, M.; Pawlik, A.; Dziedziejko, V. The role of MicroRNAs in selected forms of glomerulonephritis. Int. J. Mol. Sci., 2019, 20(20), 5050.
[http://dx.doi.org/10.3390/ijms20205050] [PMID: 31614644]
[36]
Chebotareva, N.V.; Vinogradov, A.A.; Gindis, A.A.; Bobkova, I.N.; Cao, W.; Lysenko, L.V. The balance of proinflammatory cytokines and Treg cells in chronic glomerulonephritis. Ter. Arkh., 2020, 92(6), 46-52.
[http://dx.doi.org/10.26442/00403660.2020.06.000671] [PMID: 33346492]
[37]
Aguilar-Recarte, D.; Barroso, E.; Palomer, X.; Wahli, W.; Vázquez-Carrera, M. Knocking on GDF15’s door for the treatment of type 2 diabetes mellitus. Trends Endocrinol. Metab., 2022, 33(11), 741-754.
[http://dx.doi.org/10.1016/j.tem.2022.08.004] [PMID: 36151002]
[38]
Li, A.; Zhao, F.; Zhao, Y.; Liu, H.; Wang, Z. ATF4-mediated GDF15 suppresses LPS-induced inflammation and MUC5AC in human nasal epithelial cells through the PI3K/Akt pathway. Life Sci., 2021, 275, 119356.
[http://dx.doi.org/10.1016/j.lfs.2021.119356] [PMID: 33737080]
[39]
Wu, Q.; Jiang, D.; Schaefer, N.R.; Harmacek, L.; O’Connor, B.P.; Eling, T.E.; Eickelberg, O.; Chu, H.W. Overproduction of growth differentiation factor 15 promotes human rhinovirus infection and virus-induced inflammation in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol., 2018, 314(3), L514-L527.
[http://dx.doi.org/10.1152/ajplung.00324.2017] [PMID: 29192094]
[40]
Stemmler, A.; Symmank, J.; Steinmetz, J.; von Brandenstein, K.; Hennig, C.L.; Jacobs, C. GDF15 supports the inflammatory response of pdl fibroblasts stimulated by P. gingivalis LPS and concurrent compression. Int. J. Mol. Sci., 2021, 22(24), 13608.
[http://dx.doi.org/10.3390/ijms222413608] [PMID: 34948405]
[41]
Hurcombe, J.A.; Lay, A.C.; Ni, L.; Barrington, A.F.; Woodgett, J.R.; Quaggin, S.E.; Welsh, G.I.; Coward, R.J. Podocyte GSK3α is important for autophagy and its loss detrimental for glomerular function. FASEB Bioadv., 2019, 1(8), 498-510.
[http://dx.doi.org/10.1096/fba.2019-00011] [PMID: 31825015]
[42]
Zhang, L.X.; Zhao, H.J.; Sun, D.L.; Gao, S.L.; Zhang, H.M.; Ding, X.G. Niclosamide attenuates inflammatory cytokines via the autophagy pathway leading to improved outcomes in renal ischemia/reperfusion injury. Mol. Med. Rep., 2017, 16(2), 1810-1816.
[http://dx.doi.org/10.3892/mmr.2017.6768] [PMID: 28627643]
[43]
Yan, Q.; Song, Y.; Zhang, L.; Chen, Z.; Yang, C.; Liu, S.; Yuan, X.; Gao, H.; Ding, G.; Wang, H. Autophagy activation contributes to lipid accumulation in tubular epithelial cells during kidney fibrosis. Cell Death Discov., 2018, 4(1), 39.
[http://dx.doi.org/10.1038/s41420-018-0065-2] [PMID: 30062051]
[44]
Zhang, M.; Zhang, Y.; Xiao, D.; Zhang, J.; Wang, X.; Guan, F.; Zhang, M.; Chen, L. Highly bioavailable berberine formulation ameliorates diabetic nephropathy through the inhibition of glomerular mesangial matrix expansion and the activation of autophagy. Eur. J. Pharmacol., 2020, 873, 172955.
[http://dx.doi.org/10.1016/j.ejphar.2020.172955] [PMID: 32001218]
[45]
Heduschke, A.; Ackermann, K.; Wilhelm, B.; Mey, L.; Bonaterra, G.A.; Kinscherf, R.; Schwarz, A. GDF-15 deficiency reduces autophagic activity in human macrophages In Vitro and decreases p62-accumulation in atherosclerotic lesions in mice. Cells, 2021, 10(9), 2346.
[http://dx.doi.org/10.3390/cells10092346] [PMID: 34571994]
[46]
Yu, H.; Wang, Y.; He, Z.; Chen, R.; Dai, Y.; Tang, Y.; Chen, Y. Albiflorin ameliorates mesangial proliferative glomerulonephritis by PI3K/AKT/NF-κB pathway. Hum. Exp. Toxicol., 2023, 42.
[http://dx.doi.org/10.1177/09603271221145386] [PMID: 36780316]
[47]
Liu, B.; Cao, Y.; Wang, D.; Zhou, Y.; Zhang, P.; Wu, J.; Chen, J.; Qiu, J.; Zhou, J. Zhen-wu-tang induced mitophagy to protect mitochondrial function in chronic glomerulonephritis via PI3K/AKT/mTOR and AMPK pathways. Front. Pharmacol., 2021, 12, 777670.
[http://dx.doi.org/10.3389/fphar.2021.777670] [PMID: 35757387]
[48]
Li, P.; Lv, H.; Zhang, B.; Duan, R.; Zhang, X.; Lin, P.; Song, C.; Liu, Y. Growth differentiation factor 15 protects SH-SY5Y cells from rotenone-induced toxicity by suppressing mitochondrial apoptosis. Front. Aging Neurosci., 2022, 14, 869558.
[http://dx.doi.org/10.3389/fnagi.2022.869558] [PMID: 35721026]
[49]
Lu, R.; Chen, J.; Liu, B.; Lin, H.; Bai, L.; Zhang, P.; Chen, D.; Li, H.; Li, J.; Pang, Y.; Zhou, Y.; Zhou, J.; Wu, J. Protective role of astragaloside IV in chronic glomerulonephritis by activating autophagy through PI3K/AKT/AS160 pathway. Phytother. Res., 2020, 34(12), 3236-3248.
[http://dx.doi.org/10.1002/ptr.6772] [PMID: 32726508]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy