Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

Artificial Intelligence in The Management of Neurodegenerative Disorders

Author(s): Sanchit Dhankhar, Somdutt Mujwar, Nitika Garg, Samrat Chauhan, Monika Saini, Prerna Sharma*, Suresh Kumar, Satish Kumar Sharma, Mohammad Amjad Kamal and Nidhi Rani*

Volume 23, Issue 8, 2024

Published on: 11 October, 2023

Page: [931 - 940] Pages: 10

DOI: 10.2174/0118715273266095231009092603

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Neurodegenerative disorders are characterized by a gradual but irreversible loss of neurological function. The ability to detect and treat these conditions successfully is crucial for ensuring the best possible quality of life for people who suffer from them. The development of effective new methods for managing and treating neurodegenerative illnesses has been made possible by recent developments in computer technology. In this overview, we take a look at the prospects for applying computational approaches, such as drug design, AI, ML, and DL, to the treatment of neurodegenerative diseases. To review the current state of the field, this article discusses the potential of computational methods for early disease detection, quantifying disease progression, and understanding the underlying biological mechanisms of neurodegenerative diseases, as well as the challenges associated with these approaches and potential future directions. Moreover, it delves into the creation of computational models for the individualization of care for neurodegenerative diseases. The article concludes with suggestions for future studies and clinical applications, highlighting the advantages and disadvantages of using computational techniques in the treatment of neurodegenerative diseases.

Keywords: Computational approaches, neurodegenerative diseases, drug-design, AI, Alzheimer's, Huntington's, Parkinson's, frontotemporal dementia.

Graphical Abstract
[1]
Behl T, Kaur G, Sehgal A, et al. Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: Pathophysiological and therapeutic perspectives. Int J Mol Sci 2021; 22(3): 1413.
[http://dx.doi.org/10.3390/ijms22031413] [PMID: 33573368]
[2]
Behl T, Kaur G, Sehgal A, et al. Elucidating the multi-targeted role of nutraceuticals: A complementary therapy to starve neurodegenerative diseases. Int J Mol Sci 2021; 22(8): 4045.
[http://dx.doi.org/10.3390/ijms22084045] [PMID: 33919895]
[3]
Thapa K, Khan H, Sharma U, Grewal AK, Singh TG. Poly (ADP-ribose) polymerase-1 as a promising drug target for neurodegenerative diseases. Life Sci 2021; 267: 118975.
[http://dx.doi.org/10.1016/j.lfs.2020.118975] [PMID: 33387580]
[4]
Thapa K, Khan H, Singh TG, Kaur A. Traumatic brain injury: Mechanistic insight on pathophysiology and potential therapeutic targets. J Mol Neurosci 2021; 71(9): 1725-42.
[http://dx.doi.org/10.1007/s12031-021-01841-7] [PMID: 33956297]
[5]
Scheltens P, Blennow K, Breteler MMB, et al. Alzheimer’s disease. Lancet 2016; 388(10043): 505-17.
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[6]
Banerjee P. Nutritional interventions for the prevention of neurodegenerative disorders. Antioxidants and Functional Foods for Neurodegenerative Disorders. CRC Press 2021; pp. 425-35.
[7]
Lamptey RNL, Chaulagain B, Trivedi R, Gothwal A, Layek B, Singh J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int J Mol Sci 2022; 23(3): 1851.
[http://dx.doi.org/10.3390/ijms23031851] [PMID: 35163773]
[8]
Enciu AM, Nicolescu MI, Manole CG, Mureşanu DF, Popescu LM, Popescu BO. Neuroregeneration in neurodegenerative disorders. BMC Neurol 2011; 11(1): 75.
[http://dx.doi.org/10.1186/1471-2377-11-75] [PMID: 21699711]
[9]
Martin JB. Molecular basis of the neurodegenerative disorders. N Engl J Med 1999; 340(25): 1970-80.
[http://dx.doi.org/10.1056/NEJM199906243402507] [PMID: 10379022]
[10]
Huuha AM, Norevik CS, Moreira JBN, et al. Can exercise training teach us how to treat Alzheimer’s disease? Ageing Res Rev 2022; 75: 101559.
[http://dx.doi.org/10.1016/j.arr.2022.101559] [PMID: 34999248]
[11]
Goyal V, Radhakrishnan DM. Parkinson’s disease: A review. Neurol India 2018; 66(7): 26.
[http://dx.doi.org/10.4103/0028-3886.226451] [PMID: 29503325]
[12]
Latif S, Jahangeer M, Maknoon Razia D, et al. Dopamine in Parkinson’s disease. Clin Chim Acta 2021; 522: 114-26.
[http://dx.doi.org/10.1016/j.cca.2021.08.009] [PMID: 34389279]
[13]
Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev 2020; 57: 100994.
[http://dx.doi.org/10.1016/j.arr.2019.100994] [PMID: 31765822]
[14]
Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. J Neurochem 2016; 139(S1): 318-24.
[http://dx.doi.org/10.1111/jnc.13691] [PMID: 27401947]
[15]
Ambar Akkaoui M, Geoffroy PA, Roze E, Degos B, Garcin B. Functional motor symptoms in Parkinson’s disease and functional parkinsonism: A systematic review. J Neuropsychiatry Clin Neurosci 2020; 32(1): 4-13.
[http://dx.doi.org/10.1176/appi.neuropsych.19030058] [PMID: 31466517]
[16]
Gupta S, Shukla S. Non-motor symptoms in Parkinson’s disease: Opening new avenues in treatment. Curr Res Behavioral Sci 2021; 2: 100049.
[http://dx.doi.org/10.1016/j.crbeha.2021.100049]
[17]
Emamzadeh FN, Surguchov A. Parkinson’s disease: Biomarkers, treatment, and risk factors. Front Neurosci 2018; 12: 612.
[http://dx.doi.org/10.3389/fnins.2018.00612] [PMID: 30214392]
[18]
Ahadiat SA, Hosseinian Z. The role of biomaterials in treating lou gehrig’s disease. Arch Neurosci 2022; 9(4)
[http://dx.doi.org/10.5812/ans-131625]
[19]
Gaff AD. Lou Gehrig: The Lost Memoir. Simon & Schuster 2020.
[20]
Petrucelli L, Gitler AD. New drugs for lou gehrig’s disease head for clinical trials. Sci Am Mind 2017; 28(5): 34-42.
[http://dx.doi.org/10.1038/scientificamericanmind0917-34]
[21]
Gordon PH, Salachas F, Lacomblez L, et al. Predicting survival of patients with amyotrophic lateral sclerosis at presentation: A 15-year experience. Neurodegener Dis 2013; 12(2): 81-90.
[http://dx.doi.org/10.1159/000341316] [PMID: 22922503]
[22]
Mattis VB, Svendsen CN. Modeling Huntington׳s disease with patient-derived neurons. Brain Res 2017; 1656: 76-87.
[http://dx.doi.org/10.1016/j.brainres.2015.10.001] [PMID: 26459990]
[23]
Pircs K, Barker RA, Jakobsson J. Hunting out the autophagic problem in huntington disease. Autophagy 2022; 18(12): 3031-2.
[http://dx.doi.org/10.1080/15548627.2022.2069438] [PMID: 35468035]
[24]
Stahl CM, Feigin A. Medical, surgical, and genetic treatment of Huntington disease. Neurol Clin 2020; 38(2): 367-78.
[http://dx.doi.org/10.1016/j.ncl.2020.01.010] [PMID: 32279715]
[25]
Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet 2021; 397(10291): 2284-303.
[http://dx.doi.org/10.1016/S0140-6736(21)00218-X] [PMID: 33848468]
[26]
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet 2021; 397(10284): 1577-90.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[27]
Olney NT, Spina S, Miller BL. Frontotemporal dementia. Neurol Clin 2017; 35(2): 339-74.
[http://dx.doi.org/10.1016/j.ncl.2017.01.008] [PMID: 28410663]
[28]
Scarioni M, Gami-Patel P, Timar Y, et al. Frontotemporal dementia: Correlations between psychiatric symptoms and pathology. Ann Neurol 2020; 87(6): 950-61.
[http://dx.doi.org/10.1002/ana.25739] [PMID: 32281118]
[29]
Ironside JW, Ritchie DL, Head MW. Prion diseases. Handb Clin Neurol 2018; 145: 393-403.
[http://dx.doi.org/10.1016/B978-0-12-802395-2.00028-6] [PMID: 28987186]
[30]
Li S, Wu Z, Le W. Traditional Chinese medicine for dementia. Alzheimers Dement 2021; 17(6): 1066-71.
[http://dx.doi.org/10.1002/alz.12258] [PMID: 33682261]
[31]
Arlt S. Non-Alzheimer’s disease-related memory impairment and dementia. Dialogues Clin Neurosci 2022; 15(4): 645-73.
[PMID: 24459413]
[32]
Chen C, Dong XP. Epidemiological characteristics of human prion diseases. Infect Dis Poverty 2016; 5(1): 47.
[http://dx.doi.org/10.1186/s40249-016-0143-8] [PMID: 27251305]
[33]
Sharma R. Indian medicinal plants as drug leads in neurodegenerative disorders. Nutraceuticals in brain health and beyond. Elsevier 2021; pp. 31-45.
[http://dx.doi.org/10.1016/B978-0-12-820593-8.00004-5]
[34]
Heifetz A. Computational methods used in hit-to-lead and lead optimization stages of structure-based drug discovery. Methods Mol Biol 2018; 1705: 375-94.
[http://dx.doi.org/10.1007/978-1-4939-7465-8_19]
[35]
Scotti L, Scotti MT. Medicinal chemistry studies against neurodegenerative diseases. Curr Neuropharmacol 2022; 20(5): 822-3.
[http://dx.doi.org/10.2174/1570159X2005220329113736] [PMID: 35545969]
[36]
Lin X, Li X, Lin X. A review on applications of computational methods in drug screening and design. Molecules 2020; 25(6): 1375.
[http://dx.doi.org/10.3390/molecules25061375] [PMID: 32197324]
[37]
Brogi S. In silico methods for drug design and discovery. Frontiers Media 2020; p. 612.
[http://dx.doi.org/10.3389/978-2-88966-057-5]
[38]
Eidelberg D. Metabolic brain networks in neurodegenerative disorders: A functional imaging approach. Trends Neurosci 2009; 32(10): 548-57.
[http://dx.doi.org/10.1016/j.tins.2009.06.003] [PMID: 19765835]
[39]
Sirci F, Napolitano F, di Bernardo D. Computational Drug Networks: A computational approach to elucidate drug mode of action and to facilitate drug repositioning for neurodegenerative diseases. Drug Discov Today Dis Models 2016; 19: 11-7.
[http://dx.doi.org/10.1016/j.ddmod.2017.04.004]
[40]
Krokidis MG, Exarchos TP, Vlamos P. Data-driven biomarker analysis using computational omics approaches to assess neurodegenerative disease progression. Math Biosci Eng 2021; 18(2): 1813-32.
[http://dx.doi.org/10.3934/mbe.2021094] [PMID: 33757212]
[41]
Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science 2016; 353(6301): 777-83.
[http://dx.doi.org/10.1126/science.aag2590] [PMID: 27540165]
[42]
Chitnis T, Weiner HL. CNS inflammation and neurodegeneration. J Clin Invest 2017; 127(10): 3577-87.
[http://dx.doi.org/10.1172/JCI90609] [PMID: 28872464]
[43]
Thangudu S, Cheng FY, Su CH. Advancements in the blood–brain barrier penetrating nanoplatforms for brain related disease diagnostics and therapeutic applications. Polymers 2020; 12(12): 3055.
[http://dx.doi.org/10.3390/polym12123055] [PMID: 33419339]
[44]
Grimm A, Eckert A. Brain aging and neurodegeneration: From a mitochondrial point of view. J Neurochem 2017; 143(4): 418-31.
[http://dx.doi.org/10.1111/jnc.14037] [PMID: 28397282]
[45]
Petrovic D, Kouroussis E, Vignane T, Filipovic MR. The role of protein persulfidation in brain aging and neurodegeneration. Front Aging Neurosci 2021; 13: 674135.
[http://dx.doi.org/10.3389/fnagi.2021.674135] [PMID: 34248604]
[46]
Morales-Navarro S, Prent-Peñaloza L, Rodríguez Núñez YA, et al. Theoretical and experimental approaches aimed at drug design targeting neurodegenerative diseases. Processes 2019; 7(12): 940.
[http://dx.doi.org/10.3390/pr7120940]
[47]
Pihlstrøm L, Wiethoff S, Houlden H. Genetics of neurodegenerative diseases: An overview. Handb Clin Neurol 2018; 145: 309-23.
[http://dx.doi.org/10.1016/B978-0-12-802395-2.00022-5] [PMID: 28987179]
[48]
Brás J, Gibbons E, Guerreiro R. Genetics of synucleins in neurodegenerative diseases. Acta Neuropathol 2021; 141(4): 471-90.
[http://dx.doi.org/10.1007/s00401-020-02202-1] [PMID: 32740728]
[49]
Gentile F, Doneddu PE, Riva N, Nobile-Orazio E, Quattrini A. Diet, microbiota and brain health: Unraveling the network intersecting metabolism and neurodegeneration. Int J Mol Sci 2020; 21(20): 7471.
[http://dx.doi.org/10.3390/ijms21207471] [PMID: 33050475]
[50]
Winiarska-Mieczan A, Baranowska-Wójcik E, Kwiecień M, et al. The role of dietary antioxidants in the pathogenesis of neurodegenerative diseases and their impact on cerebral oxidoreductive balance. Nutrients 2020; 12(2): 435.
[http://dx.doi.org/10.3390/nu12020435] [PMID: 32046360]
[51]
Gisevius B, Haghikia A, Hirschberg S. Impact of diet and the gut microbiome on neurodegeneration and regeneration in neurological disorders. Neuroforum 2019; 25(1): 39-47.
[http://dx.doi.org/10.1515/nf-2018-0013]
[52]
Angelova PR. Sources and triggers of oxidative damage in neurodegeneration. Free Radic Biol Med 2021; 173: 52-63.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.07.003] [PMID: 34224816]
[53]
Kaur I, Behl T, Aleya L, et al. Role of metallic pollutants in neurodegeneration: Effects of aluminum, lead, mercury, and arsenic in mediating brain impairment events and autism spectrum disorder. Environ Sci Pollut Res Int 2021; 28(8): 8989-9001.
[http://dx.doi.org/10.1007/s11356-020-12255-0] [PMID: 33447979]
[54]
Nazar ABA. Prophylaxis through marine-derived bioactive compounds toward neurodegenerative disorders. Functional Foods and Therapeutic Strategies for Neurodegenerative Disorders. Springer 2022; pp. 101-20.
[http://dx.doi.org/10.1007/978-981-16-6703-9_7]
[55]
Chen P, Miah MR, Aschner M. Metals and neurodegeneration. F1000 Res 2016; 5: 366.
[http://dx.doi.org/10.12688/f1000research.7431.1] [PMID: 27006759]
[56]
Mittal P, Dhankhar S, Chauhan S, et al. A review on natural antioxidants for their role in the treatment of parkinson’s disease. Pharmaceuticals 2023; 16(7): 908.
[http://dx.doi.org/10.3390/ph16070908] [PMID: 37513820]
[57]
Fidan O, Mujwar S, Kciuk M. Discovery of adapalene and dihydrotachysterol as antiviral agents for the Omicron variant of SARS-CoV-2 through computational drug repurposing. Mol Divers 2023; 27(1): 463-75.
[http://dx.doi.org/10.1007/s11030-022-10440-6] [PMID: 35507211]
[58]
Caller T, Henegan P, Stommel E. The potential role of BMAA in neurodegeneration. Neurotox Res 2018; 33(1): 222-6.
[http://dx.doi.org/10.1007/s12640-017-9752-7] [PMID: 28612294]
[59]
Rebolledo-Solleiro D, Castillo Flores LY, Solleiro-Villavicencio H. Impact of BPA on behavior, neurodevelopment and neurodegeneration Daniela. Front Biosci 2021; 26(2): 363-400.
[http://dx.doi.org/10.2741/4898] [PMID: 33049674]
[60]
Jablonka S, Hennlein L, Sendtner M. Therapy development for spinal muscular atrophy: Perspectives for muscular dystrophies and neurodegenerative disorders. Neurol Res Prac 2022; 4(1): 1-32.
[http://dx.doi.org/10.1186/s42466-021-00162-9]
[61]
Solayman M, Islam M, Alam F, Khalil M, Kamal M, Gan S. Natural products combating neurodegeneration: Parkinson’s disease. Curr Drug Metab 2017; 18(1): 50-61.
[http://dx.doi.org/10.2174/1389200217666160709204826] [PMID: 27396919]
[62]
Li C, Götz J. Tau-based therapies in neurodegeneration: Opportunities and challenges. Nat Rev Drug Discov 2017; 16(12): 863-83.
[http://dx.doi.org/10.1038/nrd.2017.155] [PMID: 28983098]
[63]
Halli-Tierney AD, Luker J, Carroll DG. Parkinson disease. Am Fam Physician 2020; 102(11): 679-91.
[PMID: 33252908]
[64]
Cass SP. Alzheimer’s disease and exercise: A literature review. Curr Sports Med Rep 2017; 16(1): 19-22.
[http://dx.doi.org/10.1249/JSR.0000000000000332] [PMID: 28067736]
[65]
Gao Z. Virtual reality exercise as a coping strategy for health and wellness promotion in older adults during the COVID-19 pandemic. MDPI 2020.
[66]
Feeney MP, Xu Y, Surface M, et al. The impact of COVID-19 and social distancing on people with Parkinson’s disease: A survey study. NPJ Parkinsons Dis 2021; 7(1): 10.
[http://dx.doi.org/10.1038/s41531-020-00153-8] [PMID: 33479241]
[67]
Jopowicz A, Wiśniowska J, Tarnacka B. Cognitive and physical intervention in metals’ dysfunction and neurodegeneration. Brain Sci 2022; 12(3): 345.
[http://dx.doi.org/10.3390/brainsci12030345] [PMID: 35326301]
[68]
Verbrugge J, Cook L, Miller M, et al. Outcomes of genetic test disclosure and genetic counseling in a large Parkinson’s disease research study. J Genet Couns 2021; 30(3): 755-65.
[http://dx.doi.org/10.1002/jgc4.1366] [PMID: 33319432]
[69]
Oliver DJ, Borasio GD, Caraceni A, et al. A consensus review on the development of palliative care for patients with chronic and progressive neurological disease. Eur J Neurol 2016; 23(1): 30-8.
[http://dx.doi.org/10.1111/ene.12889] [PMID: 26423203]
[70]
Maia TV, Frank MJ. From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci 2011; 14(2): 154-62.
[http://dx.doi.org/10.1038/nn.2723] [PMID: 21270784]
[71]
Bhattacharya T, Soares GAB, Chopra H, et al. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials 2022; 15(3): 804.
[http://dx.doi.org/10.3390/ma15030804] [PMID: 35160749]
[72]
Hoq M, Uddin M, Park S. Vocal Feature Extraction-Based Artificial Intelligent Model for Parkinson’s Disease Detection. Diagnostics 2021; 11: 1076.
[73]
Sharma V, Mujwar S, Sharma D, Das R, Kumar Mehta D, Shah K. Computational design of plant‐based antistress agents targeting nociceptin receptor. Chem Biodivers 2023; 20(2): e202201038.
[http://dx.doi.org/10.1002/cbdv.202201038] [PMID: 36644820]
[74]
Er-rajy M, Fadili ME, Mujwar S, Lenda FZ, Zarougui S, Elhallaoui M. QSAR, molecular docking, and molecular dynamics simulation–based design of novel anti-cancer drugs targeting thioredoxin reductase enzyme. Struct Chem 2023; 34(4): 1527-43.
[http://dx.doi.org/10.1007/s11224-022-02111-x]
[75]
Mujwar S, Shah K, Gupta JK, Gour A. Docking based screening of curcumin derivatives: A novel approach in the inhibition of tubercular DHFR. Int J Comput Biol Drug Des 2021; 14(4): 297-314.
[http://dx.doi.org/10.1504/IJCBDD.2021.118830]
[76]
Shinu P, Sharma M, Gupta GL, et al. Computational design, synthesis, and pharmacological evaluation of naproxen-guaiacol chimera for gastro-sparing anti-inflammatory response by selective COX2 inhibition. Molecules 2022; 27(20): 6905.
[http://dx.doi.org/10.3390/molecules27206905] [PMID: 36296501]
[77]
Tăuţan AM, Ionescu B, Santarnecchi E. Artificial intelligence in neurodegenerative diseases: A review of available tools with a focus on machine learning techniques. Artif Intell Med 2021; 117: 102081.
[http://dx.doi.org/10.1016/j.artmed.2021.102081] [PMID: 34127244]
[78]
Savva K. Computational drug repurposing for neurodegenerative diseases. In silico Drug Design. Academic Press 2019; pp. 85-118.
[79]
Varshney KK, Gupta JK, Mujwar S. Homocysteine induced neurological dysfunctions: A link to neurodegenerative disorders. Int J Med Res Health Sci 2019; 8(4): 135-46.
[80]
Gupta SM, Behera A, Jain NK, et al. Indene-derived hydrazides targeting acetylcholinesterase enzyme in alzheimer’s: Design, synthesis, and biological evaluation. Pharmaceutics 2022; 15(1): 94.
[http://dx.doi.org/10.3390/pharmaceutics15010094] [PMID: 36678724]
[81]
Brogi S. Computational approaches for drug discovery. MDPI 2019; p. 3061.
[82]
Delport A, Hewer R. The amyloid precursor protein: A converging point in Alzheimer’s disease. Mol Neurobiol 2022; 59(7): 4501-16.
[http://dx.doi.org/10.1007/s12035-022-02863-x] [PMID: 35579846]
[83]
Atiya A, Das Gupta D, Alsayari A, et al. Linagliptin and empagliflozin inhibit microtubule affinity regulatory kinase 4: Repurposing anti-diabetic drugs in neurodegenerative disorders using in silico and in vitro approaches. ACS Omega 2023; 8(7): 6423-30.
[http://dx.doi.org/10.1021/acsomega.2c06634] [PMID: 36844587]
[84]
Carli G, Tondo G, Boccalini C, Perani D. Brain molecular connectivity in neurodegenerative conditions. Brain Sci 2021; 11(4): 433.
[http://dx.doi.org/10.3390/brainsci11040433] [PMID: 33800680]
[85]
Grassmann G. A computational approach to Investigate TDP-43 RNA-recognition motif 2 c-terminal fragments aggregation in amyotrophic lateral sclerosis. Biomolecules 2021; 11: 1905.
[86]
Shukla R, Singh TR. High-throughput screening of natural compounds and inhibition of a major therapeutic target HsGSK-3β for Alzheimer’s disease using computational approaches. J Genet Eng Biotechnol 2021; 19(1): 1-17.
[PMID: 33400043]
[87]
Kamkar H. Application of artificial intelligence in image processing of neurodegenerative disorders: A review study. Interven Pain Med Neuromodul 2022; 2(1): 134223.
[88]
Tiwari A, Singh S. Computational approaches in drug designing. Bioinformatics. Elsevier 2022; pp. 207-17.
[http://dx.doi.org/10.1016/B978-0-323-89775-4.00010-9]
[89]
Yu X, Lai S, Chen H, Chen M. Protein-protein interaction network with machine learning models and multiomics data reveal potential neurodegenerative disease-related proteins. Hum Mol Genet 2020; 29(8): 1378-87.
[http://dx.doi.org/10.1093/hmg/ddaa065] [PMID: 32277755]
[90]
Haider M, Chauhan A, Tariq S, et al. Application of in silico methods in the design of drugs for neurodegenerative diseases. Curr Top Med Chem 2021; 21(11): 995-1011.
[http://dx.doi.org/10.2174/1568026621666210521164545] [PMID: 34061002]
[91]
Myszczynska MA, Ojamies PN, Lacoste AMB, et al. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol 2020; 16(8): 440-56.
[http://dx.doi.org/10.1038/s41582-020-0377-8] [PMID: 32669685]
[92]
Salman MM, Al-Obaidi Z, Kitchen P, Loreto A, Bill RM, Wade-Martins R. Advances in applying computer-aided drug design for neurodegenerative diseases. Int J Mol Sci 2021; 22(9): 4688.
[http://dx.doi.org/10.3390/ijms22094688] [PMID: 33925236]
[93]
Shusharina N, Yukhnenko D, Botman S, et al. Modern methods of diagnostics and treatment of neurodegenerative diseases and depression. Diagnostics 2023; 13(3): 573.
[http://dx.doi.org/10.3390/diagnostics13030573] [PMID: 36766678]
[94]
Olaniyan OT. Prevention and diagnosis of neurodegenerative diseases using machine learning models. Artificial Intelligence for Neurological Disorders. Elsevier 2023; pp. 289-304.
[http://dx.doi.org/10.1016/B978-0-323-90277-9.00009-2]
[95]
Rai SN, Mishra D, Singh P, Vamanu E, Singh MP. Therapeutic applications of mushrooms and their biomolecules along with a glimpse of in silico approach in neurodegenerative diseases. Biomed Pharmacother 2021; 137: 111377.
[http://dx.doi.org/10.1016/j.biopha.2021.111377] [PMID: 33601145]
[96]
Nahiduzzaman M. Machine learning based early fall detection for elderly people with neurological disorder using multimodal data fusion. 13th International Conference, BI 2020. Padua, Italy. 2020.
[http://dx.doi.org/10.1007/978-3-030-59277-6_19]
[97]
Chandra J. Applications of artificial intelligence to neurological disorders: Current technologies and open problems. Augmenting Neurological Disorder Prediction and Rehabilitation Using Artificial Intelligence. Elsevier 2022; pp. 243-72.
[http://dx.doi.org/10.1016/B978-0-323-90037-9.00005-9]
[98]
Subasi A. Use of artificial intelligence in Alzheimer’s disease detection. Artificial Intelligence in Precision Health. Academic Press 2020; pp. 257-78.
[99]
Scotti L, Lustoza Rodrigues TCM, de Sousa NF, dos Santos AMF, Aires Guimarães RD, Scotti MT. Challenges and discoveries in polypharmacology of neurodegenerative diseases. Curr Top Med Chem 2023; 23(5): 349-70.
[http://dx.doi.org/10.2174/1568026623666230126112628] [PMID: 36703583]
[100]
Viana MB, Aquino PEA, Estadella D, Ribeiro DA, Viana GSB. Cannabis sativa and cannabidiol: A therapeutic strategy for the treatment of neurodegenerative diseases? Med Cannabis Cannabinoids 2022; 5(1): 207-19.
[http://dx.doi.org/10.1159/000527335] [PMID: 36467781]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy