Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Deciphering the Therapeutic Applications of Nanomedicine in Ovarian Cancer Therapy: An Overview

Author(s): Pooja Mathur, Shailendra Bhatt, Suresh Kumar, Sweta Kamboj, Rohit Kamboj, Arpana Rana, Harish Kumar and Ravinder Verma*

Volume 21, Issue 9, 2024

Published on: 10 October, 2023

Page: [1180 - 1196] Pages: 17

DOI: 10.2174/0115672018253815230922070558

Price: $65

conference banner
Abstract

The majority of deadly cancers that afflict the female reproductive system occur in the ovary. Around 1,40,000 women worldwide die from ovarian cancer each year, making it the sixth most common cancer-associated deceases among females in the United States. Modern, cutting-edge treatments like chemotherapy and surgery frequently produce full remissions, but the recurrence rate is still very high. When this crippling condition is diagnosed, there are frequently few therapeutic choices available because of how quietly it manifests.

Healthcare practitioners must have a fundamental grasp of the warning signs and symptoms of ovarian cancer, as well as the imaging techniques and treatment choices available, to give the patient the best care possible. The discipline of medical nanotechnology has gained a lot of momentum in recent years in resolving issues and enhancing the detection and treatment of different illnesses, including cancer.

This article gives a brief summary of types, risk factors and approaches to ovarian cancer treatment. We subsequently discussed the pathophysiology of ovarian cancer with the risk factors. This review also emphasizes the various signalling pathways involved in ovarian cancer. Our comprehensive integration of recent findings in fundamental research in the nano arena reveals the strong interest in these nanomedicines in ovarian cancer treatment. However, these nanomedicines still require more research, as indicated by the comparatively small number of clinical trials ongoing. This article will provide a reference for ovarian cancer treatment.

Keywords: Ovarian cancer, signaling pathway, risk factors, pathophysiology, nanomedicines, treatment.

Graphical Abstract
[3]
Pandey, P.; Chopra, H.; Kaushik, D.; Verma, R.; Purohit, D.; Parashar, J.; Mittal, V.; Rahman, M.H.; Bhatia, S.; Kumar, P.; Bhattacharya, T.; Tagde, P.; Al-Harrasi, A. Multifunctional patented nanotherapeutics for cancer intervention: 2010-onwards. Recent Patents Anticancer Drug Discov., 2023, 18(1), 38-52.
[http://dx.doi.org/10.2174/1574892817666220322085942] [PMID: 35319390]
[5]
Yang, Y.; Zhao, T.; Chen, Q.; Li, Y.; Xiao, Z.; Xiang, Y.; Wang, B.; Qiu, Y.; Tu, S.; Jiang, Y.; Nan, Y.; Huang, Q.; Ai, K. Nanomedicine strategies for heating “cold” ovarian cancer (OC): next evolution in immunotherapy of OC. Adv. Sci. (Weinh.), 2022, 9(28), 2202797.
[http://dx.doi.org/10.1002/advs.202202797] [PMID: 35869032]
[6]
Zhang, H.; Yang, Y.; Chen, Y.; Zhang, X.; Chen, X. A convergent fabrication of programmed pH/reduction-responsive nanoparticles for efficient dual anticancer drugs delivery for ovarian cancer treatment. J. Exp. Nanosci., 2023, 18(1), 2193400.
[http://dx.doi.org/10.1080/17458080.2023.2193400]
[7]
Yallapu, M.M.; Gupta, B.K.; Jaggi, M.; Chauhan, S.C. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J. Colloid Interface Sci., 2010, 351(1), 19-29.
[http://dx.doi.org/10.1016/j.jcis.2010.05.022] [PMID: 20627257]
[8]
Acharya, S.; Sahoo, S.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 170-183.
[http://dx.doi.org/10.1016/j.addr.2010.10.008] [PMID: 20965219]
[9]
Coburn, S.B.; Bray, F.; Sherman, M.E.; Trabert, B. International patterns and trends in ovarian cancer incidence, overall and by histologic subtype. Int. J. Cancer, 2017, 140(11), 2451-2460.
[http://dx.doi.org/10.1002/ijc.30676] [PMID: 28257597]
[10]
Momenimovahed, Z.; Tiznobaik, A.; Taheri, S.; Salehiniya, H. Ovarian cancer in the world: epidemiology and risk factors. Int. J. Womens Health, 2019, 11, 287-299.
[http://dx.doi.org/10.2147/IJWH.S197604] [PMID: 31118829]
[11]
Morand, S.; Devanaboyina, M.; Staats, H.; Stanbery, L.; Nemunaitis, J. Ovarian cancer immunotherapy and personalized medicine. Int. J. Mol. Sci., 2021, 22(12), 6532.
[http://dx.doi.org/10.3390/ijms22126532] [PMID: 34207103]
[12]
Bilbao, M.; Aikins, J.K.; Ostrovsky, O. Is routine omentectomy of grossly normal omentum helpful in surgery for ovarian cancer? A look at the tumor microenvironment and its clinical implications. Gynecol. Oncol., 2021, 161(1), 78-82.
[http://dx.doi.org/10.1016/j.ygyno.2020.12.033] [PMID: 33436287]
[13]
O’Shea, A.S. Clinical staging of ovarian cancer. Methods Mol. Biol., 2022, 2424, 3-10.
[http://dx.doi.org/10.1007/978-1-0716-1956-8_1]
[14]
[15]
Dalmartello, M.; La Vecchia, C.; Bertuccio, P.; Boffetta, P.; Levi, F.; Negri, E.; Malvezzi, M. European cancer mortality predictions for the year 2022 with focus on ovarian cancer. Ann. Oncol., 2022, 33(3), 330-339.
[http://dx.doi.org/10.1016/j.annonc.2021.12.007] [PMID: 35090748]
[16]
Rojas, V.; Hirshfield, K.; Ganesan, S.; Rodriguez-Rodriguez, L. Molecular characterization of epithelial ovarian cancer: implications for diagnosis and treatment. Int. J. Mol. Sci., 2016, 17(12), 2113.
[http://dx.doi.org/10.3390/ijms17122113] [PMID: 27983698]
[18]
Köbel, M.; Reuss, A.; Bois, A.; Kommoss, S.; Kommoss, F.; Gao, D.; Kalloger, S.E.; Huntsman, D.G.; Gilks, C.B. The biological and clinical value of p53 expression in pelvic high-grade serous carcinomas. J. Pathol., 2010, 222(2), 191-198.
[http://dx.doi.org/10.1002/path.2744] [PMID: 20629008]
[19]
Ahmed, A.A.; Etemadmoghadam, D.; Temple, J.; Lynch, A.G.; Riad, M.; Sharma, R.; Stewart, C.; Fereday, S.; Caldas, C.; deFazio, A.; Bowtell, D.; Brenton, J.D. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J. Pathol., 2010, 221(1), 49-56.
[http://dx.doi.org/10.1002/path.2696] [PMID: 20229506]
[20]
Integrated genomic analyses of ovarian carcinoma. Nature, 2011, 474(7353), 609-615.
[http://dx.doi.org/10.1038/nature10166] [PMID: 21720365]
[21]
Yang, Y.; Yang, Y.; Yang, J.; Zhao, X.; Wei, X. Tumor microenvironment in ovarian cancer: function and therapeutic strategy. Front. Cell Dev. Biol., 2020, 8, 758.
[http://dx.doi.org/10.3389/fcell.2020.00758] [PMID: 32850861]
[22]
Khashaba, M.; Fawzy, M.; Abdel-Aziz, A.; Eladawei, G.; Nagib, R. Subtyping of high grade serous ovarian carcinoma: histopathological and immunohistochemical approach. J. Egypt. Natl. Canc. Inst., 2022, 34(1), 6.
[http://dx.doi.org/10.1186/s43046-022-00104-9] [PMID: 35138498]
[23]
Farley, J.; Brady, W.E.; Vathipadiekal, V.; Lankes, H.A.; Coleman, R.; Morgan, M.A.; Mannel, R.; Yamada, S.D.; Mutch, D.; Rodgers, W.H.; Birrer, M.; Gershenson, D.M. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: an open-label, single-arm, phase 2 study. Lancet Oncol., 2013, 14(2), 134-140.
[http://dx.doi.org/10.1016/S1470-2045(12)70572-7] [PMID: 23261356]
[24]
Wiegand, K.C.; Shah, S.P.; Al-Agha, O.M.; Zhao, Y.; Tse, K.; Zeng, T.; Senz, J.; McConechy, M.K.; Anglesio, M.S.; Kalloger, S.E.; Yang, W.; Heravi-Moussavi, A.; Giuliany, R.; Chow, C.; Fee, J.; Zayed, A.; Prentice, L.; Melnyk, N.; Turashvili, G.; Delaney, A.D.; Madore, J.; Yip, S.; McPherson, A.W.; Ha, G.; Bell, L.; Fereday, S.; Tam, A.; Galletta, L.; Tonin, P.N.; Provencher, D.; Miller, D.; Jones, S.J.M.; Moore, R.A.; Morin, G.B.; Oloumi, A.; Boyd, N.; Aparicio, S.A.; Shih, I.M.; Mes-Masson, A.M.; Bowtell, D.D.; Hirst, M.; Gilks, B.; Marra, M.A.; Huntsman, D.G. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med., 2010, 363(16), 1532-1543.
[http://dx.doi.org/10.1056/NEJMoa1008433] [PMID: 20942669]
[25]
Anglesio, M.S.; George, J.; Kulbe, H.; Friedlander, M.; Rischin, D.; Lemech, C.; Power, J.; Coward, J.; Cowin, P.A.; House, C.M.; Chakravarty, P.; Gorringe, K.L.; Campbell, I.G.; Okamoto, A.; Birrer, M.J.; Huntsman, D.G.; de Fazio, A.; Kalloger, S.E.; Balkwill, F.; Gilks, C.B.; Bowtell, D.D. IL6-STAT3-HIF signaling and therapeutic response to the angiogenesis inhibitor sunitinib in ovarian clear cell cancer. Clin. Cancer Res., 2011, 17(8), 2538-2548.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-3314] [PMID: 21343371]
[26]
Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian cancer. Lancet, 2014, 384(9951), 1376-1388.
[http://dx.doi.org/10.1016/S0140-6736(13)62146-7] [PMID: 24767708]
[27]
Matulonis, U.A.; Sood, A.K.; Fallowfield, L.; Howitt, B.E.; Sehouli, J.; Karlan, B.Y. Ovarian cancer. Nat. Rev. Dis. Primers, 2016, 2(1), 16061.
[http://dx.doi.org/10.1038/nrdp.2016.61] [PMID: 27558151]
[28]
Murali, R.; Davidson, B.; Fadare, O.; Carlson, J.A.; Crum, C.P.; Gilks, C.B.; Irving, J.A.; Malpica, A.; Matias-Guiu, X.; McCluggage, W.G.; Mittal, K.; Oliva, E.; Parkash, V.; Rutgers, J.K.L.; Staats, P.N.; Stewart, C.J.R.; Tornos, C.; Soslow, R.A. High-grade endometrial carcinomas: morphologic and immunohistochemical features, diagnostic challenges and recommendations. Int. J. Gynecol. Pathol., 2019, 38(1)(Suppl. 1), S40-S63.
[http://dx.doi.org/10.1097/PGP.0000000000000491] [PMID: 30550483]
[29]
Lalwani, N.; Prasad, S.R.; Vikram, R.; Shanbhogue, A.K.; Huettner, P.C.; Fasih, N. Histologic, molecular, and cytogenetic features of ovarian cancers: implications for diagnosis and treatment. Radiographics, 2011, 31(3), 625-646.
[http://dx.doi.org/10.1148/rg.313105066] [PMID: 21571648]
[30]
Mastelic-Gavillet, B.; Sarivalasis, A.; Lozano, L.E.; Lofek, S.; Wyss, T.; Melero, I.; de Vries, I.J.M.; Harari, A.; Romero, P.; Kandalaft, L.E.; Viganó, S. Longitudinal analysis of DC subsets in patients with ovarian cancer: Implications for immunotherapy. Front. Immunol., 2023, 14, 1119371.
[http://dx.doi.org/10.3389/fimmu.2023.1119371] [PMID: 36845155]
[31]
Chan, J.K.; Urban, R.; Cheung, M.K.; Osann, K.; Husain, A.; Teng, N.N.; Kapp, D.S.; Berek, J.S.; Leiserowitz, G.S.; Leiserowitz, G.S. Ovarian cancer in younger vs older women: a population-based analysis. Br. J. Cancer, 2006, 95(10), 1314-1320.
[http://dx.doi.org/10.1038/sj.bjc.6603457] [PMID: 17088903]
[32]
Ahmad, T.; Musa, T.H.; Jin, H. Rabies in Asian Countries: Where we are stand? Biomed. Res. Ther., 2018, 5(10), 2719-2720.
[http://dx.doi.org/10.15419/bmrat.v5i10.485]
[33]
Poole, E.M.; Merritt, M.A.; Jordan, S.J.; Yang, H.P.; Hankinson, S.E.; Park, Y.; Rosner, B.; Webb, P.M.; Cramer, D.W.; Wentzensen, N.; Terry, K.L.; Tworoger, S.S. Hormonal and reproductive risk factors for epithelial ovarian cancer by tumor aggressiveness. Cancer Epidemiol. Biomarkers Prev., 2013, 22(3), 429-437.
[http://dx.doi.org/10.1158/1055-9965.EPI-12-1183-T] [PMID: 23307531]
[34]
Ries, L.A.G. Ovarian cancer: Survival and treatment differences by age. Cancer, 1993, 71(S2)(Suppl.), 524-529.
[http://dx.doi.org/10.1002/cncr.2820710206] [PMID: 8420672]
[35]
Ørskov, M.; Iachina, M.; Guldberg, R.; Mogensen, O.; Mertz Nørgård, B. Predictors of mortality within 1 year after primary ovarian cancer surgery: a nationwide cohort study. BMJ Open, 2016, 6(4), e010123.
[PMID: 27103625]
[36]
Tung, K.H.; Goodman, M.T.; Wu, A.H.; McDuffie, K.; Wilkens, L.R.; Kolonel, L.N.; Nomura, A.M.; Terada, K.Y.; Carney, M.E.; Sobin, L.H. Reproductive factors and epithelial ovarian cancer risk by histologic type: a multiethnic case-control study. Am. J. Epidemiol., 2003, 158(7), 629-638.
[http://dx.doi.org/10.1093/aje/kwg177] [PMID: 14507598]
[37]
Salazar-Martinez, E.; Lazcano-Ponce, E.C.; Gonzalez Lira-Lira, G.; Escudero-De los Rios, P.; Salmeron-Castro, J.; Hernandez-Avila, M. Reproductive factors of ovarian and endometrial cancer risk in a high fertility population in Mexico. Cancer Res., 1999, 59(15), 3658-3662.
[PMID: 10446978]
[38]
Fathalla, M.F. Incessant ovulation--a factor in ovarian neoplasia? Lancet, 1971, 298(7716), 163.
[http://dx.doi.org/10.1016/S0140-6736(71)92335-X] [PMID: 4104488]
[39]
Ness, R.B.; Goodman, M.T.; Shen, C.; Brunham, R.C. Serologic evidence of past infection with Chlamydia trachomatis, in relation to ovarian cancer. J. Infect. Dis., 2003, 187(7), 1147-1152.
[http://dx.doi.org/10.1086/368380] [PMID: 12660930]
[40]
Chiang, A.J.; Chang, C.; Huang, C.H.; Huang, W.C.; Kan, Y.Y.; Chen, J. Risk factors in progression from endometriosis to ovarian cancer: a cohort study based on medical insurance data. J. Gynecol. Oncol., 2018, 29(3), e28.
[http://dx.doi.org/10.3802/jgo.2018.29.e28] [PMID: 29400021]
[41]
Rossing, M.A.; Cushing-Haugen, K.L.; Wicklund, K.G.; Doherty, J.A.; Weiss, N.S. Risk of epithelial ovarian cancer in relation to benign ovarian conditions and ovarian surgery. Cancer Causes Control, 2008, 19(10), 1357-1364.
[http://dx.doi.org/10.1007/s10552-008-9207-9] [PMID: 18704718]
[42]
Caserta, R.; Nesti, E.; Caserta, L.; Guerriero, V.; Di Francesco, D.; Panariello, S. [Small ovarian cysts in postmenopause: assessment of their malignant potential with vaginal ultrasonography and tumor marker Ca125 titration]. Minerva Ginecol., 2001, 53(1)(Suppl. 1), 120-124.
[PMID: 11526706]
[43]
Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(4), 284-296.
[http://dx.doi.org/10.3322/caac.21456] [PMID: 29809280]
[45]
Kazerouni, N.; Greene, M.H.; Lacey, J.V., Jr; Mink, P.J.; Schairer, C. Family history of breast cancer as a risk factor for ovarian cancer in a prospective study. Cancer, 2006, 107(5), 1075-1083.
[http://dx.doi.org/10.1002/cncr.22082] [PMID: 16881078]
[46]
Mori, M.; Harabuchi, I.; Miyake, H.; Casagrande, J.T.; Henderson, B.; Ross, R.K. Reproductive, genetic, and dietary risk factors for ovarian cancer. Am. J. Epidemiol., 1988, 128(4), 771-777.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a115030] [PMID: 3421242]
[47]
Toss, A.; Tomasello, C.; Razzaboni, E.; Contu, G.; Grandi, G. Cagnacci, A Hereditary ovarian cancer: not only BRCA 1 and 2 genes. Biomed Res. Int., 2015, 2015, 341723.
[http://dx.doi.org/10.1155/2015/341723]
[48]
Andrews, L.; Mutch, D.G. Hereditary ovarian cancer and risk reduction. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 31-48.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.10.017] [PMID: 28254144]
[49]
Iordache, P.D.; Mates, D.; Gunnarsson, B.; Eggertsson, H.P.; Sulem, P.; Benonisdottir, S.; Csiki, I.E.; Rascu, S.; Radavoi, D.; Ursu, R.; Staicu, C.; Calota, V.; Voinoiu, A.; Jinga, M.; Rosoga, G.; Danau, R.; Sima, S.C.; Badescu, D.; Suciu, N.; Radoi, V.; Mates, I.N.; Dobra, M.; Nicolae, C.; Kristjansdottir, S.; Jonasson, J.G.; Manolescu, A.; Arnadottir, G.; Jensson, B.; Jonasdottir, A.; Sigurdsson, A.; le Roux, L.; Johannsdottir, H.; Rafnar, T.; Halldorsson, B.V.; Jinga, V.; Stefansson, K. Identification of Lynch syndrome risk variants in the Romanian population. J. Cell. Mol. Med., 2018, 22(12), 6068-6076.
[http://dx.doi.org/10.1111/jcmm.13881] [PMID: 30324682]
[50]
Nakamura, K.; Banno, K.; Yanokura, M.; Iida, M.; Adachi, M.; Masuda, K.; Ueki, A.; Kobayashi, Y.; Nomura, H.; Hirasawa, A.; Tominaga, E.; Aoki, D. Features of ovarian cancer in Lynch syndrome. (Review). Mol. Clin. Oncol., 2014, 2(6), 909-916.
[http://dx.doi.org/10.3892/mco.2014.397] [PMID: 25279173]
[51]
Lu, K.H.; Daniels, M. Endometrial and ovarian cancer in women with Lynch syndrome: update in screening and prevention. Fam. Cancer, 2013, 12(2), 273-277.
[http://dx.doi.org/10.1007/s10689-013-9664-5] [PMID: 23765559]
[52]
McCann, S.E.; Freudenheim, J.L.; Graham, S.; Marshall, J.R. Risk of human ovarian cancer is related to dietary intake of selected nutrients, phytochemicals and food groups. J. Nutr., 2003, 133(6), 1937-1942.
[http://dx.doi.org/10.1093/jn/133.6.1937] [PMID: 12771342]
[53]
McCann, S.E.; Moysich, K.B.; Mettlin, C. Intakes of selected nutrients and food groups and risk of ovarian cancer. Nutr. Cancer, 2001, 39(1), 19-28.
[http://dx.doi.org/10.1207/S15327914nc391_3] [PMID: 11588898]
[54]
Risch, H.A.; Marrett, L.D.; Jain, M.; Howe, G.R. Differences in risk factors for epithelial ovarian cancer by histologic type. Results of a case-control study. Am. J. Epidemiol., 1996, 144(4), 363-372.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a008937] [PMID: 8712193]
[55]
Bandera, E.V.; Lee, V.S.; Qin, B.; Rodriguez-Rodriguez, L.; Powell, C.B.; Kushi, L.H. Impact of body mass index on ovarian cancer survival varies by stage. Br. J. Cancer, 2017, 117(2), 282-289.
[http://dx.doi.org/10.1038/bjc.2017.162] [PMID: 28588323]
[56]
Delort, L.; Kwiatkowski, F.; Chalabi, N.; Satih, S.; Bignon, Y.J.; Bernard-Gallon, D.J. Central adiposity as a major risk factor of ovarian cancer. Anticancer Res., 2009, 29(12), 5229-5234.
[PMID: 20044641]
[57]
Leitzmann, M.F.; Koebnick, C.; Danforth, K.N.; Brinton, L.A.; Moore, S.C.; Hollenbeck, A.R.; Schatzkin, A.; Lacey, J.V., Jr Body mass index and risk of ovarian cancer. Cancer, 2009, 115(4), 812-822.
[http://dx.doi.org/10.1002/cncr.24086] [PMID: 19127552]
[58]
Vergote, I.; De Brabanter, J.; Fyles, A.; Bertelsen, K.; Einhorn, N.; Sevelda, P.; Gore, M.E.; Kærn, J.; Verrelst, H.; Sjövall, K.; Timmerman, D.; Vandewalle, J.; Van Gramberen, M.; Tropé, C.G. Prognostic importance of degree of differentiation and cyst rupture in stage I invasive epithelial ovarian carcinoma. Lancet, 2001, 357(9251), 176-182.
[http://dx.doi.org/10.1016/S0140-6736(00)03590-X] [PMID: 11213094]
[59]
Young, R.C.; Walton, L.A.; Ellenberg, S.S.; Homesley, H.D.; Wilbanks, G.D.; Decker, D.G.; Miller, A.; Park, R.; Major, F. Jr Adjuvant therapy in stage I and stage II epithelial ovarian cancer. Results of two prospective randomized trials. N. Engl. J. Med., 1990, 322(15), 1021-1027.
[http://dx.doi.org/10.1056/NEJM199004123221501] [PMID: 2181310]
[60]
Trimbos, J.B.; Parmar, M.; Vergote, I.; Guthrie, D.; Bolis, G.; Colombo, N.; Vermorken, J.B.; Torri, V.; Mangioni, C.; Pecorelli, S.; Lissoni, A.; Swart, A.M. International Collaborative Ovarian Neoplasm trial 1 and Adjuvant ChemoTherapy In Ovarian Neoplasm trial: two parallel randomized phase III trials of adjuvant chemotherapy in patients with early-stage ovarian carcinoma. J. Natl. Cancer Inst., 2003, 95(2), 105-112.
[http://dx.doi.org/10.1093/jnci/95.2.113] [PMID: 12529343]
[61]
Elit, L.; Chambers, A.; Fyles, A.; Covens, A.; Carey, M.; Kee Fung, M.F. Systematic review of adjuvant care for women with Stage I ovarian carcinoma. Cancer, 2004, 101(9), 1926-1935.
[http://dx.doi.org/10.1002/cncr.20595] [PMID: 15452836]
[62]
Huber, M.A.; Kraut, N.; Beug, H. Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr. Opin. Cell Biol., 2005, 17(5), 548-558.
[http://dx.doi.org/10.1016/j.ceb.2005.08.001] [PMID: 16098727]
[63]
Cavallaro, U.; Christofori, G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer, 2004, 4(2), 118-132.
[http://dx.doi.org/10.1038/nrc1276] [PMID: 14964308]
[64]
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119(6), 1420-1428.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[65]
Veatch, A.L.; Carson, L.F.; Ramakrishnan, S. Differential expression of the cell-cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells. Int. J. Cancer, 1994, 58(3), 393-399.
[http://dx.doi.org/10.1002/ijc.2910580315] [PMID: 7519585]
[66]
Daraï, E.; Scoazec, J.Y.; Walker-Combrouze, F.; Mlika-Cabanne, N.; Feldmann, G.; Madelenat, P.; Potet, F. Expression of cadherins in benign, borderline, and malignant ovarian epithelial tumors: A clinicopathologic study of 60 cases. Hum. Pathol., 1997, 28(8), 922-928.
[http://dx.doi.org/10.1016/S0046-8177(97)90007-1] [PMID: 9269828]
[67]
Elloul, S.; Bukholt Elstrand, M.; Nesland, J.M.; Tropé, C.G.; Kvalheim, G.; Goldberg, I.; Reich, R.; Davidson, B. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer, 2005, 103(8), 1631-1643.
[http://dx.doi.org/10.1002/cncr.20946] [PMID: 15742334]
[68]
Burleson, K.M.; Casey, R.C.; Skubitz, K.M.; Pambuccian, S.E.; Oegema, T.R., Jr; Skubitz, A.P.N. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol. Oncol., 2004, 93(1), 170-181.
[http://dx.doi.org/10.1016/j.ygyno.2003.12.034] [PMID: 15047232]
[69]
Shield, K.; Riley, C.; Quinn, M.A.; Rice, G.E.; Ackland, M.L.; Ahmed, N. α2β1 integrin affects metastatic potential of ovarian carcinoma spheroids by supporting disaggregation and proteolysis. J. Carcinog., 2007, 6(1), 11.
[http://dx.doi.org/10.1186/1477-3163-6-11] [PMID: 17567918]
[70]
Casey, R.C.; Burleson, K.M.; Skubitz, K.M.; Pambuccian, S.E.; Oegema, T.R., Jr; Ruff, L.E.; Skubitz, A.P.N. β 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am. J. Pathol., 2001, 159(6), 2071-2080.
[http://dx.doi.org/10.1016/S0002-9440(10)63058-1] [PMID: 11733357]
[71]
Spannuth, W.A.; Nick, A.M.; Jennings, N.B.; Armaiz-Pena, G.N.; Mangala, L.S.; Danes, C.G.; Lin, Y.G.; Merritt, W.M.; Thaker, P.H.; Kamat, A.A.; Han, L.Y.; Tonra, J.R.; Coleman, R.L.; Ellis, L.M.; Sood, A.K. Functional significance of VEGFR-2 on ovarian cancer cells. Int. J. Cancer, 2009, 124(5), 1045-1053.
[http://dx.doi.org/10.1002/ijc.24028] [PMID: 19058181]
[72]
Sher, I.; Adham, S.A.; Petrik, J.; Coomber, B.L. Autocrine VEGF-A/KDR loop protects epithelial ovarian carcinoma cells from anoikis. Int. J. Cancer, 2009, 124(3), 553-561.
[http://dx.doi.org/10.1002/ijc.23963] [PMID: 19004006]
[74]
Batista, L.; Gruosso, T.; Mechta-Grigoriou, F. Ovarian cancer emerging subtypes: Role of oxidative stress and fibrosis in tumour development and response to treatment. Int. J. Biochem. Cell Biol., 2013, 45(6), 1092-1098.
[http://dx.doi.org/10.1016/j.biocel.2013.03.001] [PMID: 23500525]
[75]
Wu, X.; Han, L.Y.; Zhang, X.X.; Wang, L. The study of Nrf2 signaling pathway in ovarian cancer. Crit. Rev. Eukaryot. Gene Expr., 2018, 28(4), 329-336.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2018020286]
[76]
Niture, S.K.; Kaspar, J.W.; Shen, J.; Jaiswal, A.K. Nrf2 signaling and cell survival. Toxicol. Appl. Pharmacol., 2010, 244(1), 37-42.
[http://dx.doi.org/10.1016/j.taap.2009.06.009] [PMID: 19538984]
[77]
Villeneuve, N.F.; Lau, A.; Zhang, D.D. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid. Redox Signal., 2010, 13(11), 1699-1712.
[http://dx.doi.org/10.1089/ars.2010.3211] [PMID: 20486766]
[78]
Li, D.; Hong, X.; Zhao, F.; Ci, X.; Zhang, S. Targeting Nrf2 may reverse the drug resistance in ovarian cancer. Cancer Cell Int., 2021, 21(1), 116.
[http://dx.doi.org/10.1186/s12935-021-01822-1] [PMID: 33596893]
[79]
Gañán-Gómez, I.; Wei, Y.; Yang, H.; Boyano-Adánez, M.C.; García-Manero, G. Oncogenic functions of the transcription factor Nrf2. Free Radic. Biol. Med., 2013, 65, 750-764.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.06.041] [PMID: 23820265]
[80]
Khalil, H.S.; Goltsov, A.; Langdon, S.P.; Harrison, D.J.; Bown, J.; Deeni, Y. Quantitative analysis of NRF2 pathway reveals key elements of the regulatory circuits underlying antioxidant response and proliferation of ovarian cancer cells. J. Biotechnol., 2015, 202, 12-30.
[http://dx.doi.org/10.1016/j.jbiotec.2014.09.027] [PMID: 25449014]
[81]
Sirota, R.; Gibson, D.; Kohen, R. The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines. Redox Biol., 2015, 4, 48-59.
[http://dx.doi.org/10.1016/j.redox.2014.11.012] [PMID: 25498967]
[82]
Lang, F.; Qu, J.; Yin, H.; Li, L.; Zhi, Y.; Liu, Y.; Fang, Z.; Hao, E. Apoptotic cell death induced by Z-Ligustilidein human ovarian cancer cells and role of NRF2. Food Chem. Toxicol., 2018, 121, 631-638.
[http://dx.doi.org/10.1016/j.fct.2018.09.041] [PMID: 30243965]
[83]
van der Wijst, M.G.P.; Huisman, C.; Mposhi, A.; Roelfes, G.; Rots, M.G. Targeting Nrf2 in healthy and malignant ovarian epithelial cells: Protection versus promotion. Mol. Oncol., 2015, 9(7), 1259-1273.
[http://dx.doi.org/10.1016/j.molonc.2015.03.003] [PMID: 25841766]
[84]
Xia, M.; Yan, X.; Zhou, L.; Xu, L.; Zhang, L.; Yi, H.; Su, J. p62 suppressed VK3-induced oxidative damage through Keap1/Nrf2 pathway in human ovarian cancer cells. J. Cancer, 2020, 11(6), 1299-1307.
[http://dx.doi.org/10.7150/jca.34423] [PMID: 32047536]
[85]
Liu, N.; Lin, X.; Huang, C. Activation of the reverse transsulfuration pathway through NRF2/CBS confers erastin-induced ferroptosis resistance. Br. J. Cancer, 2020, 122(2), 279-292.
[http://dx.doi.org/10.1038/s41416-019-0660-x] [PMID: 31819185]
[86]
Xia, M.; Yu, H.; Gu, S.; Xu, Y.; Su, J.; Li, H.; Kang, J.; Cui, M. p62/SQSTM1 is involved in cisplatin resistance in human ovarian cancer cells via the Keap1-Nrf2-ARE system. Int. J. Oncol., 2014, 45(6), 2341-2348.
[http://dx.doi.org/10.3892/ijo.2014.2669] [PMID: 25269472]
[87]
Aziz, A.; Farid, S.; Qin, K.; Wang, H.; Liu, B. PIM kinases and their relevance to the PI3K/AKT/mTOR pathway in the regulation of ovarian cancer. Biomolecules, 2018, 8(1), 7.
[http://dx.doi.org/10.3390/biom8010007] [PMID: 29401696]
[88]
Dobbin, Z.; Landen, C. The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer. Int. J. Mol. Sci., 2013, 14(4), 8213-8227.
[http://dx.doi.org/10.3390/ijms14048213] [PMID: 23591839]
[89]
Ediriweera, M.K.; Tennekoon, K.H.; Samarakoon, S.R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin. Cancer Biol., 2019, 59, 147-160.
[http://dx.doi.org/10.1016/j.semcancer.2019.05.012] [PMID: 31128298]
[90]
Mabuchi, S.; Kuroda, H.; Takahashi, R.; Sasano, T. The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol. Oncol., 2015, 137(1), 173-179.
[http://dx.doi.org/10.1016/j.ygyno.2015.02.003] [PMID: 25677064]
[91]
Liu, L.Z.; Hu, X.W.; Xia, C.; He, J.; Zhou, Q.; Shi, X.; Fang, J.; Jiang, B.H. Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1α expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic. Biol. Med., 2006, 41(10), 1521-1533.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.08.003] [PMID: 17045920]
[92]
Sakamoto, K.; Iwasaki, K.; Sugiyama, H.; Tsuji, Y. Role of the tumor suppressor PTEN in antioxidant responsive element-mediated transcription and associated histone modifications. Mol. Biol. Cell, 2009, 20(6), 1606-1617.
[http://dx.doi.org/10.1091/mbc.e08-07-0762] [PMID: 19158375]
[93]
van der Reest, J.; Lilla, S.; Zheng, L.; Zanivan, S.; Gottlieb, E. Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress. Nat. Commun., 2018, 9(1), 1581.
[http://dx.doi.org/10.1038/s41467-018-04003-3] [PMID: 29679077]
[94]
Wu, W.S. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev., 2007, 25(4), 695-705.
[http://dx.doi.org/10.1007/s10555-006-9037-8] [PMID: 17160708]
[95]
Liu, C.L.; Yuan, R.H.; Mao, T.L. The molecular landscape influencing prognoses of epithelial ovarian cancer. Biomolecules, 2021, 11(7), 998.
[http://dx.doi.org/10.3390/biom11070998] [PMID: 34356623]
[96]
Yan, X.; Lyu, T.; Jia, N.; Yu, Y.; Hua, K.; Feng, W. Huaier aqueous extract inhibits ovarian cancer cell motility via the AKT/GSK3β/β-catenin pathway. PLoS One, 2013, 8(5), e63731.
[http://dx.doi.org/10.1371/journal.pone.0063731] [PMID: 23667667]
[97]
Vallée, A.; Lecarpentier, Y. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical WNT/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front. Immunol., 2018, 9, 745.
[http://dx.doi.org/10.3389/fimmu.2018.00745] [PMID: 29706964]
[98]
Wen, J.; Zhao, Z.; Huang, L.; Wang, L.; Miao, Y.; Wu, J. IL‐8 promotes cell migration through regulating EMT by activating the Wnt/β‐catenin pathway in ovarian cancer. J. Cell. Mol. Med., 2020, 24(2), 1588-1598.
[http://dx.doi.org/10.1111/jcmm.14848] [PMID: 31793192]
[99]
Raghavan, S.; Mehta, P.; Xie, Y.; Lei, Y.L.; Mehta, G. Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments. J. Immunother. Cancer, 2019, 7(1), 190.
[http://dx.doi.org/10.1186/s40425-019-0666-1] [PMID: 31324218]
[100]
Ruan, X.; Liu, A.; Zhong, M.; Wei, J.; Zhang, W.; Rong, Y.; Liu, W.; Li, M.; Qing, X.; Chen, G.; Li, R.; Liao, Y.; Liu, Q.; Zhang, X.; Ren, D.; Wang, Y. Silencing LGR6 attenuates stemness and chemoresistance via inhibiting Wnt/β-Catenin signaling in ovarian cancer. Mol. Ther. Oncolytics, 2019, 14, 94-106.
[http://dx.doi.org/10.1016/j.omto.2019.04.002] [PMID: 31193124]
[101]
Groeneweg, J.W.; Foster, R.; Growdon, W.B.; Verheijen, R.H.M.; Rueda, B.R. Notch signaling in serous ovarian cancer. J. Ovarian Res., 2014, 7(1), 95.
[http://dx.doi.org/10.1186/s13048-014-0095-1] [PMID: 25366565]
[102]
Akbarzadeh, M.; Akbarzadeh, S.; Majidinia, M. Targeting Notch signaling pathway as an effective strategy in overcoming drug resistance in ovarian cancer. Pathol. Res. Pract., 2020, 216(11), 153158.
[http://dx.doi.org/10.1016/j.prp.2020.153158] [PMID: 32829107]
[103]
Silva, F.; Félix, A.; Serpa, J. Functional redundancy of the Notch pathway in ovarian cancer cell lines. Oncol. Lett., 2016, 12(4), 2686-2691.
[http://dx.doi.org/10.3892/ol.2016.4959] [PMID: 27698843]
[104]
Xie, Q.; Cheng, Z.; Chen, X.; Lobe, C.G.; Liu, J. The role of Notch signalling in ovarian angiogenesis. J. Ovarian Res., 2017, 10(1), 13.
[http://dx.doi.org/10.1186/s13048-017-0308-5] [PMID: 28284219]
[105]
Tzeng, T.J.; Fu, Y. Cheng, WH Methylseleninic acid sensitizes Notch3 activated ovarian cancer cells to carboplatin. PLoS One, 2014, 9(7), e101664.
[http://dx.doi.org/10.1371/journal.pone.0101664]
[106]
Zeligs, K.P.; Neuman, M.K.; Annunziata, C.M. Molecular pathways: the balance between cancer and the immune system challenges the therapeutic specificity of targeting nuclear factor-κb signaling for cancer treatmentnf-κb in cancer therapeutics. Clin. Cancer Res., 2016, 22(17), 4302-4308.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1374] [PMID: 27422962]
[107]
White, K.L.; Rider, D.N.; Kalli, K.R.; Knutson, K.L.; Jarvik, G.P.; Goode, E.L. Genomics of the NF-κB signaling pathway: hypothesized role in ovarian cancer. Cancer Causes Control, 2011, 22(5), 785-801.
[http://dx.doi.org/10.1007/s10552-011-9745-4] [PMID: 21359843]
[108]
Semenza, G.L. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med., 2002, 8(4)(Suppl.), S62-S67.
[http://dx.doi.org/10.1016/S1471-4914(02)02317-1] [PMID: 11927290]
[109]
Galanis, A.; Pappa, A.; Giannakakis, A.; Lanitis, E.; Dangaj, D.; Sandaltzopoulos, R. Reactive oxygen species and HIF-1 signalling in cancer. Cancer Lett., 2008, 266(1), 12-20.
[http://dx.doi.org/10.1016/j.canlet.2008.02.028] [PMID: 18378391]
[110]
Lu, T.; Tang, J.; Shrestha, B.; Heath, B.R.; Hong, L.; Lei, Y.L.; Ljungman, M.; Neamati, N. Up-regulation of hypoxia-inducible factor antisense as a novel approach to treat ovarian cancer. Theranostics, 2020, 10(15), 6959-6976.
[http://dx.doi.org/10.7150/thno.41792] [PMID: 32550915]
[111]
Nair, D.; Rådestad, E.; Khalkar, P.; Diaz-Argelich, N.; Schröder, A.; Klynning, C.; Ungerstedt, J.; Uhlin, M.; Fernandes, A.P. Methylseleninic acid sensitizes ovarian cancer cells to T-cell mediated killing by decreasing PDL1 and VEGF levels. Front. Oncol., 2018, 8, 407.
[http://dx.doi.org/10.3389/fonc.2018.00407] [PMID: 30324091]
[112]
Worzfeld, T.; Pogge von Strandmann, E.; Huber, M.; Adhikary, T.; Wagner, U.; Reinartz, S.; Müller, R. The unique molecular and cellular microenvironment of ovarian cancer. Front. Oncol., 2017, 7, 24.
[http://dx.doi.org/10.3389/fonc.2017.00024] [PMID: 28275576]
[113]
Nakao, N.; Kurokawa, T.; Nonami, T.; Tumurkhuu, G.; Koide, N.; Yokochi, T. Hydrogen peroxide induces the production of tumor necrosis factor-α in RAW 264.7 macrophage cells via activation of p38 and stress-activated protein kinase. Innate Immun., 2008, 14(3), 190-196.
[http://dx.doi.org/10.1177/1753425908093932] [PMID: 18562577]
[114]
Klink, M.; Jastrzembska, K.; Nowak, M.; Bednarska, K.; Szpakowski, M.; Szyllo, K.; Sulowska, Z. Ovarian cancer cells modulate human blood neutrophils response to activation in vitro. Scand. J. Immunol., 2008, 68(3), 328-336.
[http://dx.doi.org/10.1111/j.1365-3083.2008.02139.x] [PMID: 18565119]
[115]
Okła, K.; Czerwonka, A.; Wawruszak, A.; Bobiński, M.; Bilska, M.; Tarkowski, R.; Bednarek, W.; Wertel, I.; Kotarski, J. Clinical relevance and immunosuppressive pattern of circulating and infiltrating subsets of myeloid-derived suppressor cells (MDSCs) in epithelial ovarian cancer. Front. Immunol., 2019, 10, 691.
[http://dx.doi.org/10.3389/fimmu.2019.00691] [PMID: 31001284]
[116]
Li, X.; Wang, J.; Wu, W.; Gao, H.; Liu, N.; Zhan, G.; Li, L.; Han, L.; Guo, X. Myeloid‐derived suppressor cells promote epithelial ovarian cancer cell stemness by inducing the CSF2/p‐STAT3 signalling pathway. FEBS J., 2020, 287(23), 5218-5235.
[http://dx.doi.org/10.1111/febs.15311] [PMID: 32239647]
[117]
Maj, T.; Wang, W.; Crespo, J.; Zhang, H.; Wang, W.; Wei, S.; Zhao, L.; Vatan, L.; Shao, I.; Szeliga, W.; Lyssiotis, C.; Liu, J.R.; Kryczek, I.; Zou, W. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol., 2017, 18(12), 1332-1341.
[http://dx.doi.org/10.1038/ni.3868] [PMID: 29083399]
[118]
Gonzalez-Valdivieso, J.; Girotti, A.; Schneider, J.; Arias, F.J. Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. Int. J. Pharm., 2021, 599, 120438.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120438] [PMID: 33662472]
[119]
Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R.A.; Alves, F.; Andrews, A.M.; Ashraf, S.; Balogh, L.P.; Ballerini, L.; Bestetti, A.; Brendel, C.; Bosi, S.; Carril, M.; Chan, W.C.W.; Chen, C.; Chen, X.; Chen, X.; Cheng, Z.; Cui, D.; Du, J.; Dullin, C.; Escudero, A.; Feliu, N.; Gao, M.; George, M.; Gogotsi, Y.; Grünweller, A.; Gu, Z.; Halas, N.J.; Hampp, N.; Hartmann, R.K.; Hersam, M.C.; Hunziker, P.; Jian, J.; Jiang, X.; Jungebluth, P.; Kadhiresan, P.; Kataoka, K.; Khademhosseini, A.; Kopeček, J.; Kotov, N.A.; Krug, H.F.; Lee, D.S.; Lehr, C.M.; Leong, K.W.; Liang, X.J.; Ling Lim, M.; Liz-Marzán, L.M.; Ma, X.; Macchiarini, P.; Meng, H.; Möhwald, H.; Mulvaney, P. Nel, A.E.; Nie, S.; Nordlander, P.; Okano, T.; Oliveira, J.; Park, T.H.; Penner, R.M.; Prato, M.; Puntes, V.; Rotello, V.M.; Samarakoon, A.; Schaak, R.E.; Shen, Y.; Sjöqvist, S.; Skirtach, A.G.; Soliman, M.G.; Stevens, M.M.; Sung, H.W.; Tang, B.Z.; Tietze, R.; Udugama, B.N.; VanEpps, J.S.; Weil, T.; Weiss, P.S.; Willner, I.; Wu, Y.; Yang, L.; Yue, Z.; Zhang, Q.; Zhang, Q.; Zhang, X.E.; Zhao, Y.; Zhou, X.; Parak, W.J. Diverse applications of nanomedicine. ACS Nano, 2017, 11(3), 2313-2381.
[http://dx.doi.org/10.1021/acsnano.6b06040] [PMID: 28290206]
[120]
Arranja, A.G.; Pathak, V.; Lammers, T.; Shi, Y. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol. Res., 2017, 115, 87-95.
[http://dx.doi.org/10.1016/j.phrs.2016.11.014] [PMID: 27865762]
[121]
Corradetti, B.; Pisano, S.; Conlan, R.S.; Ferrari, M. Nanotechnology and immunotherapy in ovarian cancer: tracing new landscapes. J. Pharmacol. Exp. Ther., 2019, 370(3), 636-646.
[http://dx.doi.org/10.1124/jpet.118.254979] [PMID: 30737357]
[122]
Verma, R.; Kaushik, A.; Almeer, R.; Rahman, M.H.; Abdel-Daim, M.M.; Kaushik, D. Improved pharmacodynamic potential of rosuvastatin by self-nanoemulsifying drug delivery system: an in vitro and in vivo evaluation. Int. J. Nanomedicine, 2021, 16, 905-924.
[http://dx.doi.org/10.2147/IJN.S287665] [PMID: 33603359]
[123]
Bortot, B.; Mongiat, M.; Valencic, E.; Dal Monego, S.; Licastro, D.; Crosera, M. Nanotechnology-based cisplatin intracellular delivery to enhance chemo-sensitivity of ovarian cancer. Int. J. Nanomedicine, 2020, 15, 4793-4810.
[http://dx.doi.org/10.2147/IJN.S247114]
[124]
Deshmukh, R.; Singh, R. DNA nanobots - emerging customized nanomedicine in oncology. Curr. Drug Deliv., 2023, 20(2), 111-126.
[http://dx.doi.org/10.2174/1567201819666220331094812] [PMID: 35362383]
[125]
Zhang, M.; Qin, X.; Zhao, Z.; Du, Q.; Li, Q.; Jiang, Y.; Luan, Y. A self-amplifying nanodrug to manipulate the Janus-faced nature of ferroptosis for tumor therapy. Nanoscale Horiz., 2022, 7(2), 198-210.
[http://dx.doi.org/10.1039/D1NH00506E] [PMID: 35023537]
[126]
Lin, Y.; Chen, X.; Yu, C.; Xu, G.; Nie, X.; Cheng, Y.; Luan, Y.; Song, Q. Radiotherapy-mediated redox homeostasis-controllable nanomedicine for enhanced ferroptosis sensitivity in tumor therapy. Acta Biomater., 2023, 159, 300-311.
[http://dx.doi.org/10.1016/j.actbio.2023.01.022] [PMID: 36642338]
[127]
Zhou, Y.; Ren, X.; Hou, Z.; Wang, N.; Jiang, Y.; Luan, Y. Engineering a photosensitizer nanoplatform for amplified photodynamic immunotherapy via tumor microenvironment modulation. Nanoscale Horiz., 2021, 6(2), 120-131.
[http://dx.doi.org/10.1039/D0NH00480D] [PMID: 33206735]
[128]
Gadducci, A.; Cosio, S. Therapeutic approach to low-grade serous ovarian carcinoma: state of art and perspectives of clinical research. Cancers (Basel), 2020, 12(5), 1336.
[http://dx.doi.org/10.3390/cancers12051336] [PMID: 32456205]
[129]
Hong, S.S.; Zhang, M.X.; Zhang, M.; Yu, Y.; Chen, J.; Zhang, X.Y.; Xu, C.J. Follicle-stimulating hormone peptide-conjugated nanoparticles for targeted shRNA delivery lead to effective gro-α silencing and antitumor activity against ovarian cancer. Drug Deliv., 2018, 25(1), 576-584.
[http://dx.doi.org/10.1080/10717544.2018.1440667] [PMID: 29461120]
[130]
Pi, F.; Zhang, H.; Li, H.; Thiviyanathan, V.; Gorenstein, D.G.; Sood, A.K.; Guo, P. RNA nanoparticles harboring annexin A2 aptamer can target ovarian cancer for tumor-specific doxorubicin delivery. Nanomedicine, 2017, 13(3), 1183-1193.
[http://dx.doi.org/10.1016/j.nano.2016.11.015] [PMID: 27890659]
[131]
Matthaiou, E.I.; Guo, Y.; Barar, J.; Sandaltzopoulos, R.; Kandalaft, L.E.; Li, C.; Coukos, G.; Omidi, Y. TEM1-targeting PEGylated PLGA shikonin nanoformulation for immunomodulation and eradication of ovarian cancer. Bioimpacts, 2022, 12(1), 65-86.
[PMID: 35087718]
[132]
Ganta, S.; Singh, A.; Patel, N.R.; Cacaccio, J.; Rawal, Y.H.; Davis, B.J.; Amiji, M.M.; Coleman, T.P. Development of EGFR-targeted nanoemulsion for imaging and novel platinum therapy of ovarian cancer. Pharm. Res., 2014, 31(9), 2490-2502.
[http://dx.doi.org/10.1007/s11095-014-1345-z] [PMID: 24643932]
[133]
Piktel, E.; Oscilowska, I.; Suprewicz, Ł.; Depciuch, J.; Marcińczyk, N.; Chabielska, E.; Wolak, P.; Głuszek, K.; Klimek, J.; Zieliński, P.M.; Marzec, M.T.; Savage, P.B.; Parlińska-Wojtan, M.; Bucki, R. Peanut-shaped gold nanoparticles with shells of ceragenin CSA-131 display the ability to inhibit ovarian cancer growth in vitro and in a tumor xenograft model. Cancers (Basel), 2021, 13(21), 5424.
[http://dx.doi.org/10.3390/cancers13215424] [PMID: 34771587]
[134]
Huang, X.; Qiu, M.; Wang, T.; Li, B.; Zhang, S.; Zhang, T.; Liu, P.; Wang, Q.; Qian, Z.R.; Zhu, C.; Wu, M.; Zhao, J. Carrier-free multifunctional nanomedicine for intraperitoneal disseminated ovarian cancer therapy. J. Nanobiotechnology, 2022, 20(1), 93.
[http://dx.doi.org/10.1186/s12951-022-01300-4] [PMID: 35193583]
[135]
Xu, J.; Liao, M.; Chen, Y.; Chen, L. Novel fabrication of marizomib-loaded chitosan-coated hydroxyapatite nanocarriers as a promising system for effective treatment of ovarian cancer. Mater. Res. Express, 2022, 9(3), 035403.
[http://dx.doi.org/10.1088/2053-1591/ac5077]
[136]
Yanazume, S.; Fang, J.; Islam, R.; Gao, S.; Kobayashi, H. Effect of tumor targeted-anthracycline nanomedicine, HPMA copolymer-conjugated pirarubicin (P-THP) against gynecological malignancies. J. Pers. Med., 2022, 12(5), 814.
[http://dx.doi.org/10.3390/jpm12050814] [PMID: 35629236]
[137]
Huang, P.; Wang, G.; Wang, Z.; Zhang, C.; Wang, F.; Cui, X.; Guo, S.; Huang, W.; Zhang, R.; Yan, D. Floxuridine-chlorambucil conjugate nanodrugs for ovarian cancer combination chemotherapy. Colloids Surf. B Biointerfaces, 2020, 194, 111164.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111164] [PMID: 32526636]
[138]
Ebrahimifar, M.; Nili-Ahmadabadi, A.; Akbarzadeh, A.; Shahemabadi, H.E.; Hasanzadegan, M.; Moradi-Sardareh, H.; Madadizadeh, H.; Rezaee-diyan, J. Preparation, characterization and cytotoxic effects of PEGylated nanoliposomal containing carboplatin on ovarian cancer cell lines. Indian J. Clin. Biochem., 2017, 32(2), 230-234.
[http://dx.doi.org/10.1007/s12291-016-0596-3] [PMID: 28428700]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy