Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

The Biological Significance of AFF4: Promoting Transcription Elongation, Osteogenic Differentiation and Tumor Progression

Author(s): Qian Long, Mingli Xiang, Linlin Xiao, Jiajia Wang, Xiaoyan Guan*, Jianguo Liu* and Chengcheng Liao*

Volume 27, Issue 10, 2024

Published on: 05 October, 2023

Page: [1403 - 1412] Pages: 10

DOI: 10.2174/0113862073241079230920082056

Price: $65

conference banner
Abstract

As a member of the AF4/FMR2 (AFF) family, AFF4 is a scaffold protein in the superelongation complex (SEC). In this mini-view, we discuss the role of AFF4 as a transcription elongation factor that mediates HIV activation and replication and stem cell osteogenic differentiation. AFF4 also promotes the progression of head and neck squamous cell carcinoma, leukemia, breast cancer, bladder cancer and other malignant tumors. The biological function of AFF4 is largely achieved through SEC assembly, regulates SRY-box transcription factor 2 (SOX2), MYC, estrogen receptor alpha (ESR1), inhibitor of differentiation 1 (ID1), c-Jun and noncanonical nuclear factor-κB (NF-κB) transcription and combines with fusion in sarcoma (FUS), unique regulatory cyclins (CycT1), or mixed lineage leukemia (MLL). We explore the prospects of using AFF4 as a therapeutic in Acquired immunodeficiency syndrome (AIDS) and malignant tumors and its potential as a stemness regulator.

Keywords: AFF4, SEC, transcription elongation, osteogenic differentiation, tumor, tumor progression.

Next »
Graphical Abstract
[1]
Luo, Z.; Lin, C.; Guest, E.; Garrett, A.S.; Mohaghegh, N.; Swanson, S.; Marshall, S.; Florens, L.; Washburn, M.P.; Shilatifard, A. The super elongation complex family of RNA polymerase II elongation factors: Gene target specificity and transcriptional output. Mol. Cell. Biol., 2012, 32(13), 2608-2617.
[http://dx.doi.org/10.1128/MCB.00182-12] [PMID: 22547686]
[2]
Lu, H.; Li, Z.; Zhang, W.; Schulze-Gahmen, U.; Xue, Y.; Zhou, Q. Gene target specificity of the Super Elongation Complex (SEC) family: How HIV-1 Tat employs selected SEC members to activate viral transcription. Nucleic Acids Res., 2015, 43(12), 5868-5879.
[http://dx.doi.org/10.1093/nar/gkv541] [PMID: 26007649]
[3]
Bitoun, E.; Davies, K.E. The robotic mouse: Unravelling the function of AF4 in the cerebellum. Cerebellum, 2005, 4(4), 250-260.
[http://dx.doi.org/10.1080/14734220500325897] [PMID: 16321881]
[4]
Taki, T.; Kano, H.; Taniwaki, M.; Sako, M.; Yanagisawa, M.; Hayashi, Y. AF5q31, a newly identified AF4 -related gene, is fused to MLL in infant acute lymphoblastic leukemia with ins(5;11)(q31;q13q23). Proc. Natl. Acad. Sci. USA, 1999, 96(25), 14535-14540.
[http://dx.doi.org/10.1073/pnas.96.25.14535] [PMID: 10588740]
[5]
Estable, M.C.; Naghavi, M.H.; Kato, H.; Xiao, H.; Qin, J.; Vahlne, A.; Roeder, R.G. MCEF, the newest member of the AF4 family of transcription factors involved in leukemia, is a positive transcription elongation factor-b-associated protein. J. Biomed. Sci., 2002, 9(3), 234-245.
[http://dx.doi.org/10.1007/BF02256070] [PMID: 12065898]
[6]
Deveney, R.; Chervinsky, D.S.; Jani-Sait, S.N.; Grossi, M. Insertion of MLL sequences into chromosome band 5q31 results in an MLL-AF5Q31 fusion and is a rare but recurrent abnormality associated with infant leukemia. Genes Chromosomes Cancer, 2003, 3, 326-331.
[http://dx.doi.org/10.1002/gcc.10224]
[7]
Mueller, D.; Bach, C.; Zeisig, D.; Garcia-Cuellar, M.P.; Monroe, S.; Sreekumar, A.; Zhou, R.; Nesvizhskii, A.; Chinnaiyan, A.; Hess, J.L.; Slany, R.K. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood, 2007, 110(13), 4445-4454.
[http://dx.doi.org/10.1182/blood-2007-05-090514] [PMID: 17855633]
[8]
Bitoun, E.; Oliver, P.L.; Davies, K.E. The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum. Mol. Genet., 2007, 16(1), 92-106.
[http://dx.doi.org/10.1093/hmg/ddl444] [PMID: 17135274]
[9]
Benedikt, A.; Baltruschat, S.; Scholz, B.; Bursen, A.; Arrey, T.N.; Meyer, B.; Varagnolo, L.; Müller, A.M.; Karas, M.; Dingermann, T.; Marschalek, R. The leukemogenic AF4–MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures. Leukemia, 2011, 25(1), 135-144.
[http://dx.doi.org/10.1038/leu.2010.249] [PMID: 21030982]
[10]
Schulze-Gahmen, U.; Upton, H.; Birnberg, A.; Bao, K.; Chou, S.; Krogan, N.J.; Zhou, Q.; Alber, T. The AFF4 scaffold binds human P-TEFb adjacent to HIV Tat. eLife, 2013, 2, e00327.
[http://dx.doi.org/10.7554/eLife.00327] [PMID: 23471103]
[11]
Schulze-Gahmen, U.; Lu, H.; Zhou, Q.; Alber, T. AFF4 binding to Tat-P-TEFb indirectly stimulates TAR recognition of super elongation complexes at the HIV promoter. eLife, 2014, 3, e02375.
[http://dx.doi.org/10.7554/eLife.02375] [PMID: 24843025]
[12]
Schulze-Gahmen, U.; Echeverria, I.; Stjepanovic, G.; Bai, Y.; Lu, H.; Schneidman-Duhovny, D.; Doudna, J.A.; Zhou, Q.; Sali, A.; Hurley, J.H. Insights into HIV-1 proviral transcription from integrative structure and dynamics of the Tat:AFF4:P-TEFb:TAR complex. eLife, 2016, 5, e15910.
[http://dx.doi.org/10.7554/eLife.15910] [PMID: 27731797]
[13]
Schulze-Gahmen, U.; Hurley, J.H. Structural mechanism for HIV-1 TAR loop recognition by Tat and the super elongation complex. Proc. Natl. Acad. Sci. USA, 2018, 115(51), 12973-12978.
[http://dx.doi.org/10.1073/pnas.1806438115] [PMID: 30514815]
[14]
Qi, S.; Li, Z.; Schulze-Gahmen, U.; Stjepanovic, G.; Zhou, Q.; Hurley, J.H. Structural basis for ELL2 and AFF4 activation of HIV-1 proviral transcription. Nat. Commun., 2017, 8(1), 14076.
[http://dx.doi.org/10.1038/ncomms14076] [PMID: 28134250]
[15]
Leach, B.I.; Kuntimaddi, A.; Schmidt, C.R.; Cierpicki, T.; Johnson, S.A.; Bushweller, J.H. Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding. Structure, 2013, 21(1), 176-183.
[http://dx.doi.org/10.1016/j.str.2012.11.011] [PMID: 23260655]
[16]
Yokoyama, A.; Lin, M.; Naresh, A.; Kitabayashi, I.; Cleary, M.L. A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell, 2010, 17(2), 198-212.
[http://dx.doi.org/10.1016/j.ccr.2009.12.040] [PMID: 20153263]
[17]
Kuzmina, A.; Krasnopolsky, S.; Taube, R. Super elongation complex promotes early HIV transcription and its function is modulated by P-TEFb. Transcription, 2017, 8(3), 133-149.
[http://dx.doi.org/10.1080/21541264.2017.1295831] [PMID: 28340332]
[18]
Chen, Y.; Cramer, P. Structure of the super-elongation complex subunit AFF4 C-terminal homology domain reveals requirements for AFF homo- and heterodimerization. J. Biol. Chem., 2019, 294(27), 10663-10673.
[http://dx.doi.org/10.1074/jbc.RA119.008577] [PMID: 31147444]
[19]
Urano, A.; Endoh, M.; Wada, T.; Morikawa, Y.; Itoh, M.; Kataoka, Y.; Taki, T.; Akazawa, H.; Nakajima, H.; Komuro, I.; Yoshida, N.; Hayashi, Y.; Handa, H.; Kitamura, T.; Nosaka, T. Infertility with defective spermiogenesis in mice lacking AF5q31, the target of chromosomal translocation in human infant leukemia. Mol. Cell. Biol., 2005, 25(15), 6834-6845.
[http://dx.doi.org/10.1128/MCB.25.15.6834-6845.2005] [PMID: 16024815]
[20]
Raible, S.E.; Mehta, D.; Bettale, C.; Fiordaliso, S.; Kaur, M.; Medne, L.; Rio, M.; Haan, E.; White, S.M.; Cusmano-Ozog, K.; Nishi, E.; Guo, Y.; Wu, H.; Shi, X.; Zhao, Q.; Zhang, X.; Lei, Q.; Lu, A.; He, X.; Okamoto, N.; Miyake, N.; Piccione, J.; Allen, J.; Matsumoto, N.; Pipan, M.; Krantz, I.D.; Izumi, K. Clinical and molecular spectrum of CHOPS syndrome. Am. J. Med. Genet. A., 2019, 179(7), ajmg.a.61174.
[http://dx.doi.org/10.1002/ajmg.a.61174] [PMID: 31058441]
[21]
Kim, S.Y.; Kim, M.J.; Kim, S.J.; Lee, J.E.; Chae, J.H.; Ko, J.M. A case of CHOPS syndrome accompanied with moyamoya disease and systemic vasculopathy. Brain Dev., 2021, 43(3), 454-458.
[http://dx.doi.org/10.1016/j.braindev.2020.11.004] [PMID: 33248856]
[22]
Li, J.; Lee, Y.K.; Fu, W.; Whalen, A.M.; Estable, M.C.; Raftery, L.A.; White, K.; Weiner, L.; Brissette, J.L. Modeling by disruption and a selected‐for partner for the nude locus. EMBO Rep., 2021, 22(3), e49804.
[http://dx.doi.org/10.15252/embr.201949804] [PMID: 33369874]
[23]
Mu, J.; Xu, Y.; Zhu, H. [AF4/FMR2 and IL-10 gene single nucleotide polymorphisms are correlated with disease susceptibility and immune infiltration in ankylosing spondylitis]. Nan Fang Yi Ke Da Xue Xue Bao, 2023, 43(5), 741-748.
[http://dx.doi.org/10.12122/j.issn.1673-4254.2023.05.09] [PMID: 37313815]
[24]
Archin, N.M.; Sung, J.M.; Garrido, C.; Soriano-Sarabia, N.; Margolis, D.M. Eradicating HIV-1 infection: Seeking to clear a persistent pathogen. Nat. Rev. Microbiol., 2014, 12(11), 750-764.
[http://dx.doi.org/10.1038/nrmicro3352] [PMID: 25402363]
[25]
Margolis, D.M.; Garcia, J.V.; Hazuda, D.J.; Haynes, B.F. Latency reversal and viral clearance to cure HIV-1. Science, 2016, 353(6297), aaf6517.
[http://dx.doi.org/10.1126/science.aaf6517] [PMID: 27463679]
[26]
Abner, E.; Jordan, A. HIV “shock and kill” therapy: In need of revision. Antiviral Res., 2019, 166, 19-34.
[http://dx.doi.org/10.1016/j.antiviral.2019.03.008] [PMID: 30914265]
[27]
Vansant, G.; Bruggemans, A.; Janssens, J.; Debyser, Z. Block-and-lock strategies to cure HIV infection. Viruses, 2020, 12(1), 84.
[http://dx.doi.org/10.3390/v12010084] [PMID: 31936859]
[28]
Jonkers, I.; Lis, J.T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol., 2015, 16(3), 167-177.
[http://dx.doi.org/10.1038/nrm3953] [PMID: 25693130]
[29]
Zhou, Q.; Li, T.; Price, D.H. RNA polymerase II elongation control. Annu. Rev. Biochem., 2012, 81(1), 119-143.
[http://dx.doi.org/10.1146/annurev-biochem-052610-095910] [PMID: 22404626]
[30]
Etchegaray, J.P.; Zhong, L.; Li, C.; Henriques, T.; Ablondi, E.; Nakadai, T.; Van Rechem, C.; Ferrer, C.; Ross, K.N.; Choi, J.E.; Samarakkody, A.; Ji, F.; Chang, A.; Sadreyev, R.I.; Ramaswamy, S.; Nechaev, S.; Whetstine, J.R.; Roeder, R.G.; Adelman, K.; Goren, A.; Mostoslavsky, R. The histone deacetylase SIRT6 restrains transcription elongation via promoter-proximal pausing. Mol. Cell, 2019, 75(4), 683-699.e7.
[http://dx.doi.org/10.1016/j.molcel.2019.06.034] [PMID: 31399344]
[31]
He, N.; Liu, M.; Hsu, J.; Xue, Y.; Chou, S.; Burlingame, A.; Krogan, N.J.; Alber, T.; Zhou, Q. HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol. Cell, 2010, 38(3), 428-438.
[http://dx.doi.org/10.1016/j.molcel.2010.04.013] [PMID: 20471948]
[32]
Peterlin, B.M.; Price, D.H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell, 2006, 23(3), 297-305.
[http://dx.doi.org/10.1016/j.molcel.2006.06.014] [PMID: 16885020]
[33]
Gu, J.; Babayeva, N.D.; Suwa, Y.; Baranovskiy, A.G.; Price, D.H.; Tahirov, T.H. Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4. Cell Cycle, 2014, 13(11), 1788-1797.
[http://dx.doi.org/10.4161/cc.28756] [PMID: 24727379]
[34]
Chou, S.; Upton, H.; Bao, K.; Schulze-Gahmen, U.; Samelson, A.J.; He, N.; Nowak, A.; Lu, H.; Krogan, N.J.; Zhou, Q.; Alber, T. HIV-1 Tat recruits transcription elongation factors dispersed along a flexible AFF4 scaffold. Proc. Natl. Acad. Sci. USA, 2013, 110(2), E123-E131.
[http://dx.doi.org/10.1073/pnas.1216971110] [PMID: 23251033]
[35]
Li, Z.; Lu, H.; Zhou, Q. A minor subset of super elongation complexes plays a predominant role in reversing HIV-1 Latency. Mol. Cell. Biol., 2016, 36(7), 1194-1205.
[http://dx.doi.org/10.1128/MCB.00994-15] [PMID: 26830226]
[36]
Tang, D.; Chen, C.; Liao, G.; Liu, J.; Liao, B.; Huang, Q.; Chen, Q.; Zhao, J.; Jiang, H.; Duan, J.; Huang, J.; Wang, K.; Wang, J.; Zhou, C.; Chu, W.; Li, W.; Sun, B.; Li, Z.; Dai, L.; Fu, X.; Cheng, W.; Xue, Y.; Qi, S. Structural and functional insight into the effect of AFF4 dimerization on activation of HIV-1 proviral transcription. Cell Discov., 2020, 6(1), 7.
[http://dx.doi.org/10.1038/s41421-020-0142-6] [PMID: 32128251]
[37]
Sévigny, M.; Bourdeau Julien, I.; Venkatasubramani, J.P.; Hui, J.B.; Dutchak, P.A.; Sephton, C.F. FUS contributes to mTOR-dependent inhibition of translation. J. Biol. Chem., 2020, 295(52), 18459-18473.
[http://dx.doi.org/10.1074/jbc.RA120.013801] [PMID: 33082139]
[38]
Tan, A.Y.; Manley, J.L. TLS inhibits RNA polymerase III transcription. Mol. Cell. Biol., 2010, 30(1), 186-196.
[http://dx.doi.org/10.1128/MCB.00884-09] [PMID: 19841068]
[39]
Yu, Y.; Reed, R. FUS functions in coupling transcription to splicing by mediating an interaction between RNAP II and U1 snRNP. Proc. Natl. Acad. Sci. USA, 2015, 112(28), 8608-8613.
[http://dx.doi.org/10.1073/pnas.1506282112] [PMID: 26124092]
[40]
Krasnopolsky, S.; Marom, L.; Victor, R.A.; Kuzmina, A.; Schwartz, J.C.; Fujinaga, K.; Taube, R. Fused in sarcoma silences HIV gene transcription and maintains viral latency through suppressing AFF4 gene activation. Retrovirology, 2019, 16(1), 16.
[http://dx.doi.org/10.1186/s12977-019-0478-x] [PMID: 31238957]
[41]
Loughlin, F.E.; Lukavsky, P.J.; Kazeeva, T.; Reber, S.; Hock, E.M.; Colombo, M.; Von Schroetter, C.; Pauli, P.; Cléry, A.; Mühlemann, O.; Polymenidou, M.; Ruepp, M.D.; Allain, F.H.T. The solution structure of FUS Bound to RNA reveals a bipartite mode of RNA recognition with both sequence and shape specificity. Mol. Cell, 2019, 73(3), 490-504.e6.
[http://dx.doi.org/10.1016/j.molcel.2018.11.012] [PMID: 30581145]
[42]
Uccelli, A.; Moretta, L.; Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol., 2008, 8(9), 726-736.
[http://dx.doi.org/10.1038/nri2395] [PMID: 19172693]
[43]
Raggatt, L.J.; Partridge, N.C. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem., 2010, 285(33), 25103-25108.
[http://dx.doi.org/10.1074/jbc.R109.041087] [PMID: 20501658]
[44]
Frith, J.; Genever, P. Transcriptional control of mesenchymal stem cell differentiation. Transfus. Med. Hemother., 2008, 35(3), 216-227.
[http://dx.doi.org/10.1159/000127448] [PMID: 21547119]
[45]
Yuan, Q.; Jiang, Y.; Zhao, X.; Sato, T.; Densmore, M.; Schüler, C.; Erben, R.G.; McKee, M.D.; Lanske, B. Increased osteopontin contributes to inhibition of bone mineralization in FGF23-deficient mice. J. Bone Miner. Res., 2014, 29(3), 693-704.
[http://dx.doi.org/10.1002/jbmr.2079] [PMID: 24038141]
[46]
Yuan, Q.; Sato, T.; Densmore, M.; Saito, H.; Schüler, C.; Erben, R.G.; Lanske, B. Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/- mice. PLoS Genet., 2012, 8(5), e1002726.
[http://dx.doi.org/10.1371/journal.pgen.1002726] [PMID: 22615584]
[47]
Rahman, M.S.; Akhtar, N.; Jamil, H.M.; Banik, R.S.; Asaduzzaman, S.M. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res., 2015, 3(1), 15005.
[http://dx.doi.org/10.1038/boneres.2015.5] [PMID: 26273537]
[48]
Wu, M.; Chen, G.; Li, Y.P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res., 2016, 4(1), 16009.
[http://dx.doi.org/10.1038/boneres.2016.9] [PMID: 27563484]
[49]
Guo, J.; Liu, M.; Yang, D.; Bouxsein, M.L.; Saito, H.; Galvin, R.J.S.; Kuhstoss, S.A.; Thomas, C.C.; Schipani, E.; Baron, R.; Bringhurst, F.R.; Kronenberg, H.M. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab., 2010, 11(2), 161-171.
[http://dx.doi.org/10.1016/j.cmet.2009.12.007] [PMID: 20142103]
[50]
Zhou, C.; Xiong, Q.; Zhu, X.; Du, W.; Deng, P.; Li, X.; Jiang, Y.; Zou, S.; Wang, C.; Yuan, Q. AFF1 and AFF4 differentially regulate the osteogenic differentiation of human MSCs. Bone Res., 2017, 5(1), 17044.
[http://dx.doi.org/10.1038/boneres.2017.44] [PMID: 28955517]
[51]
Lambrichts, I.; Driesen, R.B.; Dillen, Y.; Gervois, P.; Ratajczak, J.; Vangansewinkel, T.; Wolfs, E.; Bronckaers, A.; Hilkens, P. Dental pulp stem cells: Their potential in reinnervation and angiogenesis by using scaffolds. J. Endod., 2017, 43(9), S12-S16.
[http://dx.doi.org/10.1016/j.joen.2017.06.001] [PMID: 28781091]
[52]
Nuti, N.; Corallo, C.; Chan, B.M.F.; Ferrari, M.; Gerami-Naini, B. Multipotent differentiation of human dental pulp stem cells: A literature review. Stem Cell Rev., 2016, 12(5), 511-523.
[http://dx.doi.org/10.1007/s12015-016-9661-9] [PMID: 27240827]
[53]
Zhang, Y.; Xiao, Q.; Wu, Z.; Xu, R.; Zou, S.; Zhou, C. AFF4 enhances odontogenic differentiation of human dental pulp cells. Biochem. Biophys. Res. Commun., 2020, 525(3), 687-692.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.122] [PMID: 32139123]
[54]
Lee, D.S.; Roh, S.Y.; Park, J.C. The Nfic-osterix pathway regulates ameloblast differentiation and enamel formation. Cell Tissue Res., 2018, 374(3), 531-540.
[http://dx.doi.org/10.1007/s00441-018-2901-3] [PMID: 30091046]
[55]
Wang, J.; Feng, J.Q. Signaling pathways critical for tooth root formation. J. Dent. Res., 2017, 96(11), 1221-1228.
[http://dx.doi.org/10.1177/0022034517717478] [PMID: 28665752]
[56]
Xiao, Q.; Zhang, Y.; Qi, X.; Chen, Y.; Sheng, R.; Xu, R.; Yuan, Q.; Zhou, C. AFF4 regulates osteogenic differentiation of human dental follicle cells. Int. J. Oral Sci., 2020, 12(1), 20.
[http://dx.doi.org/10.1038/s41368-020-0083-9] [PMID: 32606293]
[57]
Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[58]
Liu, C.; Liu, A.S.; Zhong, D.; Wang, C.G.; Yu, M.; Zhang, H.W.; Xiao, H.; Liu, J.H.; Zhang, J.; Yin, K. Circular RNA AFF4 modulates osteogenic differentiation in BM-MSCs by activating SMAD1/5 pathway through miR-135a-5p/FNDC5/Irisin axis. Cell Death Dis., 2021, 12(7), 631.
[http://dx.doi.org/10.1038/s41419-021-03877-4] [PMID: 34145212]
[59]
Mi, B.; Xiong, Y.; Chen, L.; Yan, C.; Endo, Y.; Liu, Y.; Liu, J.; Hu, L.; Hu, Y.; Sun, Y.; Cao, F.; Zhou, W.; Liu, G. CircRNA AFF4 promotes osteoblast cells proliferation and inhibits apoptosis via the Mir-7223-5p/PIK3R1 axis. Aging, 2019, 11(24), 11988-12001.
[http://dx.doi.org/10.18632/aging.102524] [PMID: 31848327]
[60]
Novak, D.; Hüser, L.; Elton, J.J.; Umansky, V.; Altevogt, P.; Utikal, J. SOX2 in development and cancer biology. Semin. Cancer Biol., 2020, 67(Pt 1), 74-82.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.007] [PMID: 31412296]
[61]
Deng, P.; Wang, J.; Zhang, X.; Wu, X.; Ji, N.; Li, J.; Zhou, M.; Jiang, L.; Zeng, X.; Chen, Q. AFF4 promotes tumorigenesis and tumor-initiation capacity of head and neck squamous cell carcinoma cells by regulating SOX2. Carcinogenesis, 2018, 39(7), 937-947.
[http://dx.doi.org/10.1093/carcin/bgy046] [PMID: 29741610]
[62]
Chen, X.Y.; Zhang, J.; Zhu, J.S. The role of m6A RNA methylation in human cancer. Mol. Cancer, 2019, 18(1), 103.
[http://dx.doi.org/10.1186/s12943-019-1033-z] [PMID: 31142332]
[63]
Gao, Q.; Zheng, J.; Ni, Z.; Sun, P.; Yang, C.; Cheng, M.; Wu, M.; Zhang, X.; Yuan, L.; Zhang, Y.; Li, Y. The m 6 A methylation-regulated AFF4 promotes Self-Renewal of bladder cancer stem cells. Stem Cells Int., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/8849218] [PMID: 32676121]
[64]
Cheng, M.; Sheng, L.; Gao, Q.; Xiong, Q.; Zhang, H.; Wu, M.; Liang, Y.; Zhu, F.; Zhang, Y.; Zhang, X.; Yuan, Q.; Li, Y. The m6A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/MYC signaling network. Oncogene, 2019, 38(19), 3667-3680.
[http://dx.doi.org/10.1038/s41388-019-0683-z] [PMID: 30659266]
[65]
Aguilo, F.; Zhang, F.; Sancho, A.; Fidalgo, M.; Di Cecilia, S.; Vashisht, A.; Lee, D.F.; Chen, C.H.; Rengasamy, M.; Andino, B.; Jahouh, F.; Roman, A.; Krig, S.R.; Wang, R.; Zhang, W.; Wohlschlegel, J.A.; Wang, J.; Walsh, M.J. Coordination of m 6 A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell, 2015, 17(6), 689-704.
[http://dx.doi.org/10.1016/j.stem.2015.09.005] [PMID: 26526723]
[66]
Xie, J.; Ba, J.; Zhang, M.; Wan, Y.; Jin, Z.; Yao, Y. The m6A methyltransferase METTL3 promotes the stemness and malignant progression of breast cancer by mediating m6A modification on SOX2. J. BUON, 2021, 26(2), 444-449.
[PMID: 34076991]
[67]
Visvanathan, A.; Patil, V.; Arora, A.; Hegde, A.S.; Arivazhagan, A.; Santosh, V.; Somasundaram, K. Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene, 2018, 37(4), 522-533.
[http://dx.doi.org/10.1038/onc.2017.351] [PMID: 28991227]
[68]
Li, T.; Hu, P.S.; Zuo, Z.; Lin, J.F.; Li, X.; Wu, Q.N.; Chen, Z.H.; Zeng, Z.L.; Wang, F.; Zheng, J.; Chen, D.; Li, B.; Kang, T.B.; Xie, D.; Lin, D.; Ju, H.Q.; Xu, R.H. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol. Cancer, 2019, 18(1), 112.
[http://dx.doi.org/10.1186/s12943-019-1038-7] [PMID: 31230592]
[69]
Galbraith, M.D.; Allen, M.A.; Bensard, C.L.; Wang, X.; Schwinn, M.K.; Qin, B.; Long, H.W.; Daniels, D.L.; Hahn, W.C.; Dowell, R.D.; Espinosa, J.M. HIF1A employs CDK8-mediator to stimulate RNAPII elongation in response to hypoxia. Cell, 2013, 153(6), 1327-1339.
[http://dx.doi.org/10.1016/j.cell.2013.04.048] [PMID: 23746844]
[70]
Lin, C.; Garrett, A.S.; De Kumar, B.; Smith, E.R.; Gogol, M.; Seidel, C.; Krumlauf, R.; Shilatifard, A. Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC). Genes Dev., 2011, 25(14), 1486-1498.
[http://dx.doi.org/10.1101/gad.2059211] [PMID: 21764852]
[71]
Takahashi, H.; Parmely, T.J.; Sato, S.; Tomomori-Sato, C.; Banks, C.A.S.; Kong, S.E.; Szutorisz, H.; Swanson, S.K.; Martin-Brown, S.; Washburn, M.P.; Florens, L.; Seidel, C.W.; Lin, C.; Smith, E.R.; Shilatifard, A.; Conaway, R.C.; Conaway, J.W. Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell, 2011, 146(1), 92-104.
[http://dx.doi.org/10.1016/j.cell.2011.06.005] [PMID: 21729782]
[72]
Erb, M.A.; Scott, T.G.; Li, B.E.; Xie, H.; Paulk, J.; Seo, H.S.; Souza, A.; Roberts, J.M.; Dastjerdi, S.; Buckley, D.L.; Sanjana, N.E.; Shalem, O.; Nabet, B.; Zeid, R.; Offei-Addo, N.K.; Dhe-Paganon, S.; Zhang, F.; Orkin, S.H.; Winter, G.E.; Bradner, J.E. Transcription control by the ENL YEATS domain in acute leukaemia. Nature, 2017, 543(7644), 270-274.
[http://dx.doi.org/10.1038/nature21688] [PMID: 28241139]
[73]
Wan, L.; Wen, H.; Li, Y.; Lyu, J.; Xi, Y.; Hoshii, T.; Joseph, J.K.; Wang, X.; Loh, Y.H.E.; Erb, M.A.; Souza, A.L.; Bradner, J.E.; Shen, L.; Li, W.; Li, H.; Allis, C.D.; Armstrong, S.A.; Shi, X. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature, 2017, 543(7644), 265-269.
[http://dx.doi.org/10.1038/nature21687] [PMID: 28241141]
[74]
Armelin, H.A.; Armelin, M.C.S.; Kelly, K.; Stewart, T.; Leder, P.; Cochran, B.H.; Stiles, C.D. Functional role for c-myc in mitogenic response to platelet-derived growth factor. Nature, 1984, 310(5979), 655-660.
[http://dx.doi.org/10.1038/310655a0] [PMID: 6088986]
[75]
Dang, C.V. MYC on the path to cancer. Cell, 2012, 149(1), 22-35.
[http://dx.doi.org/10.1016/j.cell.2012.03.003] [PMID: 22464321]
[76]
Ross, J.; Miron, C.E.; Plescia, J.; Laplante, P.; McBride, K.; Moitessier, N.; Möröy, T. Targeting MYC: From understanding its biology to drug discovery. Eur. J. Med. Chem., 2021, 213, 113137.
[http://dx.doi.org/10.1016/j.ejmech.2020.113137] [PMID: 33460833]
[77]
Liu, M.; Hsu, J.; Chan, C.; Li, Z.; Zhou, Q. The ubiquitin ligase Siah1 controls ELL2 stability and formation of super elongation complexes to modulate gene transcription. Mol. Cell, 2012, 46(3), 325-334.
[http://dx.doi.org/10.1016/j.molcel.2012.03.007] [PMID: 22483617]
[78]
Izumi, K.; Nakato, R.; Zhang, Z.; Edmondson, A.C.; Noon, S.; Dulik, M.C.; Rajagopalan, R.; Venditti, C.P.; Gripp, K.; Samanich, J.; Zackai, E.H.; Deardorff, M.A.; Clark, D.; Allen, J.L.; Dorsett, D.; Misulovin, Z.; Komata, M.; Bando, M.; Kaur, M.; Katou, Y.; Shirahige, K.; Krantz, I.D. Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin. Nat. Genet., 2015, 47(4), 338-344.
[http://dx.doi.org/10.1038/ng.3229] [PMID: 25730767]
[79]
Liang, K.; Smith, E.R.; Aoi, Y.; Stoltz, K.L.; Katagi, H.; Woodfin, A.R.; Rendleman, E.J.; Marshall, S.A.; Murray, D.C.; Wang, L.; Ozark, P.A.; Mishra, R.K.; Hashizume, R.; Schiltz, G.E.; Shilatifard, A. Targeting processive transcription elongation via SEC disruption for MYC-induced cancer therapy. Cell, 2018, 175(3), 766-779.e17.
[http://dx.doi.org/10.1016/j.cell.2018.09.027] [PMID: 30340042]
[80]
Larson, J.D.; Kasper, L.H.; Paugh, B.S.; Jin, H.; Wu, G.; Kwon, C.H.; Fan, Y.; Shaw, T.I.; Silveira, A.B.; Qu, C.; Xu, R.; Zhu, X.; Zhang, J.; Russell, H.R.; Peters, J.L.; Finkelstein, D.; Xu, B.; Lin, T.; Tinkle, C.L.; Patay, Z.; Onar-Thomas, A.; Pounds, S.B.; McKinnon, P.J.; Ellison, D.W.; Zhang, J.; Baker, S.J. Histone H3.3 K27M accelerates spontaneous brainstem glioma and drives restricted changes in bivalent gene expression. Cancer Cell, 2019, 35(1), 140-155.e7.
[http://dx.doi.org/10.1016/j.ccell.2018.11.015] [PMID: 30595505]
[81]
Katagi, H.; Takata, N.; Aoi, Y.; Zhang, Y.; Rendleman, E.J.; Blyth, G.T.; Eckerdt, F.D.; Tomita, Y.; Sasaki, T.; Saratsis, A.M.; Kondo, A.; Goldman, S.; Becher, O.J.; Smith, E.; Zou, L.; Shilatifard, A.; Hashizume, R. Therapeutic targeting of transcriptional elongation in diffuse intrinsic pontine glioma. Neuro-oncol., 2021, 23(8), 1348-1359.
[http://dx.doi.org/10.1093/neuonc/noab009] [PMID: 33471107]
[82]
Ni, C.; Liu, W.; Zheng, K.; Guo, S.; Song, B.; Jing, W.; Li, G.; Li, B.; Ni, C.; Shi, K.; Jin, G.; Yu, G. PI3K/c-Myc/AFF4 axis promotes pancreatic tumorigenesis through fueling nucleotide metabolism. Int. J. Biol. Sci., 2023, 19(6), 1968-1982.
[http://dx.doi.org/10.7150/ijbs.77150] [PMID: 37063434]
[83]
Krivtsov, A.V.; Armstrong, S.A. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer, 2007, 7(11), 823-833.
[http://dx.doi.org/10.1038/nrc2253] [PMID: 17957188]
[84]
Liedtke, M.; Cleary, M.L. Therapeutic targeting of MLL. Blood, 2009, 113(24), 6061-6068.
[http://dx.doi.org/10.1182/blood-2008-12-197061] [PMID: 19289854]
[85]
Chen, C.S.; Sorensen, P.H.; Domer, P.H.; Reaman, G.H.; Korsmeyer, S.J.; Heerema, N.A.; Hammond, G.D.; Kersey, J.H. Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. Blood, 1993, 81(9), 2386-2393.
[http://dx.doi.org/10.1182/blood.V81.9.2386.2386] [PMID: 8481519]
[86]
Mrózek, K.; Heinonen, K.; Lawrence, D.; Carroll, A.J.; Koduru, P.R.K.; Rao, K.W.; Strout, M.P.; Hutchison, R.E.; Moore, J.O.; Mayer, R.J.; Schiffer, C.A.; Bloomfield, C.D. Adult patients with de novo acute myeloid leukemia and t(9; 11)(p22; q23) have a superior outcome to patients with other translocations involving band 11q23: A cancer and leukemia group B study. Blood, 1997, 90(11), 4532-4538.
[http://dx.doi.org/10.1182/blood.V90.11.4532] [PMID: 9373264]
[87]
Hilden, J.M.; Dinndorf, P.A.; Meerbaum, S.O.; Sather, H.; Villaluna, D.; Heerema, N.A.; McGlennen, R.; Smith, F.O.; Woods, W.G.; Salzer, W.L.; Johnstone, H.S.; Dreyer, Z.; Reaman, G.H. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: Report on CCG 1953 from the Children’s Oncology Group. Blood, 2006, 108(2), 441-451.
[http://dx.doi.org/10.1182/blood-2005-07-3011] [PMID: 16556894]
[88]
Wu, F.; Nie, S.; Yao, Y.; Huo, T.; Li, X.; Wu, X.; Zhao, J.; Lin, Y.L.; Zhang, Y.; Mo, Q.; Song, Y. Small-molecule inhibitor of AF9/ENL-DOT1L/AF4/AFF4 interactions suppresses malignant gene expression and tumor growth. Theranostics, 2021, 11(17), 8172-8184.
[http://dx.doi.org/10.7150/thno.56737] [PMID: 34373735]
[89]
Meyer, C.; Burmeister, T.; Gröger, D.; Tsaur, G.; Fechina, L.; Renneville, A.; Sutton, R.; Venn, N.C.; Emerenciano, M.; Pombo-de-Oliveira, M.S.; Barbieri Blunck, C.; Almeida Lopes, B.; Zuna, J.; Trka, J.; Ballerini, P.; Lapillonne, H.; De Braekeleer, M.; Cazzaniga, G.; Corral Abascal, L.; van der Velden, V.H.J.; Delabesse, E.; Park, T.S.; Oh, S.H.; Silva, M.L.M.; Lund-Aho, T.; Juvonen, V.; Moore, A.S.; Heidenreich, O.; Vormoor, J.; Zerkalenkova, E.; Olshanskaya, Y.; Bueno, C.; Menendez, P.; Teigler-Schlegel, A.; zur Stadt, U.; Lentes, J.; Göhring, G.; Kustanovich, A.; Aleinikova, O.; Schäfer, B.W.; Kubetzko, S.; Madsen, H.O.; Gruhn, B.; Duarte, X.; Gameiro, P.; Lippert, E.; Bidet, A.; Cayuela, J.M.; Clappier, E.; Alonso, C.N.; Zwaan, C.M.; van den Heuvel-Eibrink, M.M.; Izraeli, S.; Trakhtenbrot, L.; Archer, P.; Hancock, J.; Möricke, A.; Alten, J.; Schrappe, M.; Stanulla, M.; Strehl, S.; Attarbaschi, A.; Dworzak, M.; Haas, O.A.; Panzer-Grümayer, R.; Sedék, L. Szczepański, T.; Caye, A.; Suarez, L.; Cavé, H.; Marschalek, R. The MLL recombinome of acute leukemias in 2017. Leukemia, 2018, 32(2), 273-284.
[http://dx.doi.org/10.1038/leu.2017.213] [PMID: 28701730]
[90]
Lin, C.; Smith, E.R.; Takahashi, H.; Lai, K.C.; Martin-Brown, S.; Florens, L.; Washburn, M.P.; Conaway, J.W.; Conaway, R.C.; Shilatifard, A. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol. Cell, 2010, 37(3), 429-437.
[http://dx.doi.org/10.1016/j.molcel.2010.01.026] [PMID: 20159561]
[91]
Kuntimaddi, A.; Achille, N.J.; Thorpe, J.; Lokken, A.A.; Singh, R.; Hemenway, C.S.; Adli, M.; Zeleznik-Le, N.J.; Bushweller, J.H. Degree of recruitment of DOT1L to MLL-AF9 defines level of H3K79 Di- and tri-methylation on target genes and transformation potential. Cell Rep., 2015, 11(5), 808-820.
[http://dx.doi.org/10.1016/j.celrep.2015.04.004] [PMID: 25921540]
[92]
Feng, Q.; Wang, H.; Ng, H.H.; Erdjument-Bromage, H.; Tempst, P.; Struhl, K.; Zhang, Y. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol., 2002, 12(12), 1052-1058.
[http://dx.doi.org/10.1016/S0960-9822(02)00901-6] [PMID: 12123582]
[93]
Okada, Y.; Feng, Q.; Lin, Y.; Jiang, Q.; Li, Y.; Coffield, V.M.; Su, L.; Xu, G.; Zhang, Y. hDOT1L links histone methylation to leukemogenesis. Cell, 2005, 121(2), 167-178.
[http://dx.doi.org/10.1016/j.cell.2005.02.020] [PMID: 15851025]
[94]
Dustin, D.; Gu, G.; Fuqua, S.A.W. ESR1 mutations in breast cancer. Cancer, 2019, 125(21), 3714-3728.
[http://dx.doi.org/10.1002/cncr.32345] [PMID: 31318440]
[95]
Reinert, T.; Gonçalves, R.; Bines, J. Implications of ESR1 mutations in hormone receptor-positive breast cancer. Curr. Treat. Options Oncol., 2018, 19(5), 24.
[http://dx.doi.org/10.1007/s11864-018-0542-0] [PMID: 29666928]
[96]
Itoh, M.; Iwamoto, T.; Matsuoka, J.; Nogami, T.; Motoki, T.; Shien, T.; Taira, N.; Niikura, N.; Hayashi, N.; Ohtani, S.; Higaki, K.; Fujiwara, T.; Doihara, H.; Symmans, W.F.; Pusztai, L. Estrogen receptor (ER) mRNA expression and molecular subtype distribution in ER-negative/progesterone receptor-positive breast cancers. Breast Cancer Res. Treat., 2014, 143(2), 403-409.
[http://dx.doi.org/10.1007/s10549-013-2763-z] [PMID: 24337596]
[97]
Fuqua, S.A.W.; Gu, G.; Rechoum, Y. Estrogen receptor (ER) α mutations in breast cancer: Hidden in plain sight. Breast Cancer Res. Treat., 2014, 144(1), 11-19.
[http://dx.doi.org/10.1007/s10549-014-2847-4] [PMID: 24487689]
[98]
Gao, Y.; Chen, L.; Han, Y.; Wu, F.; Yang, W.S.; Zhang, Z.; Huo, T.; Zhu, Y.; Yu, C.; Kim, H.; Lee, M.; Tang, Z.; Phillips, K.; He, B.; Jung, S.Y.; Song, Y.; Zhu, B.; Xu, R.M.; Feng, Q. Acetylation of histone H3K27 signals the transcriptional elongation for estrogen receptor alpha. Commun. Biol., 2020, 3(1), 165.
[http://dx.doi.org/10.1038/s42003-020-0898-0] [PMID: 32265480]
[99]
Yu, H.; Lin, L.; Zhang, Z.; Zhang, H.; Hu, H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct. Target. Ther., 2020, 5(1), 209.
[http://dx.doi.org/10.1038/s41392-020-00312-6] [PMID: 32958760]
[100]
Meng, Q.; Xia, Y. c-Jun, at the crossroad of the signaling network. Protein Cell, 2011, 2(11), 889-898.
[http://dx.doi.org/10.1007/s13238-011-1113-3] [PMID: 22180088]
[101]
Hu, H.; Zhang, Y.; Zhao, L.; Zhao, W.; Wang, X.; Ye, E.; Dong, Y.; Zhang, L.; Ran, F.; Zhou, Y.; Huang, Y. AFF4 facilitates melanoma cell progression by regulating c-Jun activity. Exp. Cell Res., 2021, 399(2), 112445.
[http://dx.doi.org/10.1016/j.yexcr.2020.112445] [PMID: 33417923]
[102]
Liao, C.; Wang, Q.; An, J.; Long, Q.; Wang, H.; Xiang, M.; Xiang, M.; Zhao, Y.; Liu, Y.; Liu, J.; Guan, X. Partial EMT in squamous cell carcinoma: A snapshot. Int. J. Biol. Sci., 2021, 17(12), 3036-3047.
[http://dx.doi.org/10.7150/ijbs.61566] [PMID: 34421348]
[103]
Kong, F.; Deng, X.; Kong, X.; Du, Y.; Li, L.; Zhu, H.; Wang, Y.; Xie, D.; Guha, S.; Li, Z.; Guan, M.; Xie, K. ZFPM2-AS1, a novel lncRNA, attenuates the p53 pathway and promotes gastric carcinogenesis by stabilizing MIF. Oncogene, 2018, 37(45), 5982-5996.
[http://dx.doi.org/10.1038/s41388-018-0387-9] [PMID: 29985481]
[104]
Sun, G.; Wu, C. ZFPM2-AS1 facilitates cell growth in esophageal squamous cell carcinoma via up-regulating TRAF4. Biosci. Rep., 2020, 40(4), BSR20194352.
[http://dx.doi.org/10.1042/BSR20194352] [PMID: 32065218]
[105]
Zhao, Y.F.; Li, L.; Li, H.J.; Yang, F.R.; Liu, Z.K.; Hu, X.W.; Wang, Q. LncRNA ZFPM2-AS1 aggravates the malignant development of breast cancer via upregulating JMJD6. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(21), 11139-11147.
[http://dx.doi.org/10.26355/eurrev_202011_23601] [PMID: 33215431]
[106]
Liu, W.; Zhang, G.Q.; Zhu, D.Y.; Wang, L.J.; Li, G.T.; Xu, J.G.; Jin, X.L.; Zhu, Y.M.; Yang, X.Y. Long noncoding RNA ZFPM2-AS1 regulates ITGB1 by miR-1226-3p to promote cell proliferation and invasion in hepatocellular carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(14), 7612-7620.
[http://dx.doi.org/10.26355/eurrev_202007_22259] [PMID: 32744687]
[107]
Liu, J.G.; Wang, H.B.; Wan, G.; Yang, M.Z.; Jiang, X.J.; Yang, J.Y. Long noncoding RNA ZFPM2-AS1 promotes the tumorigenesis of renal cell cancer via targeting miR-137. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(18), 9238.
[http://dx.doi.org/10.26355/eurrev_202009_22996] [PMID: 33015759]
[108]
Lyv, X.; Wu, F.; Zhang, H.; Lu, J.; Wang, L.; Ma, Y. Long Noncoding RNA ZFPM2-AS1 knockdown restrains the development of retinoblastoma by modulating the microRNA-515/HOXA1/Wnt/β-. Catenin Axis. Invest. Ophthalmol. Vis. Sci., 2020, 61(6), 41.
[http://dx.doi.org/10.1167/iovs.61.6.41] [PMID: 32561925]
[109]
Han, S.; Cao, D.; Sha, J.; Zhu, X.; Chen, D. LncRNA ZFPM2‐AS1 promotes lung adenocarcinoma progression by interacting with UPF1 to destabilize ZFPM2. Mol. Oncol., 2020, 14(5), 1074-1088.
[http://dx.doi.org/10.1002/1878-0261.12631] [PMID: 31919993]
[110]
Li, J.; Ge, J.; Yang, Y.; Liu, B.; Zheng, M.; Shi, R. Retracted:Long noncoding RNA ZFPM2‐AS1 is involved in lung adenocarcinoma via miR‐511‐3p/AFF4 pathway. J. Cell. Biochem., 2020, 121(3), 2534-2542.
[http://dx.doi.org/10.1002/jcb.29476] [PMID: 31692047]
[111]
Hillman, M.A.; Gecz, J. Fragile XE-associated familial mental retardation protein 2 (FMR2) acts as a potent transcription activator. J. Hum. Genet., 2001, 46(5), 251-259.
[http://dx.doi.org/10.1007/s100380170074] [PMID: 11355014]
[112]
Ma, C.; Staudt, L.M. LAF-4 encodes a lymphoid nuclear protein with transactivation potential that is homologous to AF-4, the gene fused to MLL in t(4;11) leukemias. Blood, 1996, 87(2), 734-745.
[http://dx.doi.org/10.1182/blood.V87.2.734.bloodjournal872734] [PMID: 8555498]
[113]
Mak, A.B.; Nixon, A.M.L.; Moffat, J. The mixed lineage leukemia (MLL) fusion-associated gene AF4 promotes CD133 transcription. Cancer Res., 2012, 72(8), 1929-1934.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3589] [PMID: 22337994]
[114]
Lu, H.; Li, Z.; Xue, Y.; Schulze-Gahmen, U.; Johnson, J.R.; Krogan, N.J.; Alber, T.; Zhou, Q. AFF1 is a ubiquitous P-TEFb partner to enable Tat extraction of P-TEFb from 7SK snRNP and formation of SECs for HIV transactivation. Proc. Natl. Acad. Sci. USA, 2014, 111(1), E15-E24.
[http://dx.doi.org/10.1073/pnas.1318503111] [PMID: 24367103]
[115]
Melko, M.; Douguet, D.; Bensaid, M.; Zongaro, S.; Verheggen, C.; Gecz, J.; Bardoni, B. Functional characterization of the AFF (AF4/FMR2) family of RNA-binding proteins: insights into the molecular pathology of FRAXE intellectual disability. Hum. Mol. Genet., 2011, 20(10), 1873-1885.
[http://dx.doi.org/10.1093/hmg/ddr069] [PMID: 21330300]
[116]
Biswas, D.; Milne, T.A.; Basrur, V.; Kim, J.; Elenitoba-Johnson, K.S.J.; Allis, C.D.; Roeder, R.G. Function of leukemogenic mixed lineage leukemia 1 (MLL) fusion proteins through distinct partner protein complexes. Proc. Natl. Acad. Sci., 2011, 108(38), 15751-15756.
[http://dx.doi.org/10.1073/pnas.1111498108] [PMID: 21896721]
[117]
Liu, K.; Shen, D.; Shen, J.; Gao, S.M.; Li, B.; Wong, C.; Feng, W.; Song, Y. The super elongation complex drives neural stem cell fate commitment. Dev. Cell, 2017, 40(6), 537-551.e6.
[http://dx.doi.org/10.1016/j.devcel.2017.02.022] [PMID: 28350987]
[118]
Yoshida, G.J. Emerging roles of Myc in stem cell biology and novel tumor therapies. J. Exp. Clin. Cancer Res., 2018, 37(1), 173.
[http://dx.doi.org/10.1186/s13046-018-0835-y] [PMID: 30053872]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy