Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Current Trends on Innovative Technologies in Topical Wound Care for Advanced Healing and Management

Author(s): Qazi Saifullah and Abhishek Sharma*

Volume 16, Issue 3, 2024

Published on: 02 October, 2023

Page: [319 - 332] Pages: 14

DOI: 10.2174/0125899775262048230925054922

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Objectives: To investigate critically traditional and modern techniques for cutaneous wound healing and to provide comprehensive information on these novel techniques to encounter the challenges with the existing wound healing methods.

Significance: The financial burden and mortality associated with wounds is increasing, so managing wounds is essential. Traditional wound treatments include surgical and non-surgical methods, while modern techniques are advancing rapidly. This review examines the various traditional and modern techniques used for cutaneous wound healing.

Key Findings: Traditional wound treatments include surgical techniques such as debridement, skin flaps, and grafts. Non-surgical treatments include skin replacements, topical formulations, scaffold-based skin grafts, and hydrogel-based skin dressings. More modern techniques include using nanoparticles, growth factors, and bioactive substances in wound dressings. Bioengineered skin substitutes using biomaterials, cells, and growth factors are also being developed. Other techniques include stem cell therapy, growth factor/cytokine therapy, vacuum-assisted wound closure, and 3D-printed/bio-printed wound dressings.

Conclusion: Traditional wound treatments have been replaced by modern techniques such as stem cell therapy, growth factor/cytokine therapy, vacuum-assisted wound closure, and bioengineered skin substitutes. However, most of these strategies lack effectiveness and thorough evaluation. Therefore, further research is required to develop new techniques for cutaneous wound healing that are effective, cost-efficient, and appealing to patients.

Keywords: Wound healing, wound dressings, chronic wounds, tissue engineering, stem cells, nano-therapeutics, 3D-bio-printing.

Graphical Abstract
[1]
Tavakoli S, Klar AS. Advanced hydrogels as wound dressings. Biomolecules 2020; 10(8): 1169.
[http://dx.doi.org/10.3390/biom10081169]
[2]
Herndon DN, Barrow R, Rutan RL, Rutan TC, Desai MH, Abston S. A comparison of conservative versus early excision. Therapies in severely burned patients. Ann Surg 1989; 209(5): 547-53.
[http://dx.doi.org/10.1097/00000658-198905000-00006] [PMID: 2650643]
[3]
Robson MC, Steed DL, Franz MG. Wound healing: Biologic features and approaches to maximize healing trajectories. Curr Probl Surg 2001; 38(2): A1-A140.
[http://dx.doi.org/10.1067/msg.2001.111167] [PMID: 11452260]
[4]
Zhang X, Sun D, Jiang GC. Comparative efficacy of nine different dressings in healing diabetic foot ulcer: A Bayesian network analysis. J Diabetes 2019; 11(6): 418-26.
[http://dx.doi.org/10.1111/1753-0407.12871] [PMID: 30324760]
[5]
World Health Organization. Wounds: Global Health Estimates 2020. Available from: https://www.who.int/publications/i/item/9789240021867
[6]
Monavarian M, Kader S, Moeinzadeh S, Jabbari E. Regenerative scar-free skin wound healing. Tissue Eng Part B Rev 2019; 25(4): 294-311.
[http://dx.doi.org/10.1089/ten.teb.2018.0350] [PMID: 30938269]
[7]
Driver VR, Fabbi M, Lavery LA, Gibbons G, Phillips TJ. The costs of diabetic foot: The economic case for the limb salvage team. J Vasc Surg 2014; 60(3): 791-9.
[PMID: 20804928]
[8]
Mustoe TA, O’Shaughnessy K, Kloeters O. Chronic wound pathogenesis and current treatment strategies: A unifying hypothesis. Plast Reconstr Surg 2006; 117(7) (Suppl.): 35S-41S.
[http://dx.doi.org/10.1097/01.prs.0000225431.63010.1b] [PMID: 16799373]
[9]
Bischoff M, Kinzl L, Schmelz A. Die komplizierte Wunde. Unfallchirurg 1999; 102(10): 797-804.
[http://dx.doi.org/10.1007/s001130050483] [PMID: 10525624]
[10]
Kim J, Simon R. Calculated decisions: Wound closure classification. pediatric. Emerg Med Pract 2018; 14: 1-3.
[11]
Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020; 12(8): 735.
[http://dx.doi.org/10.3390/pharmaceutics12080735] [PMID: 32764269]
[12]
Swanson T, Keast D, Cooper R, et al. Ten top tips: Identification of wound infection in a chronic wound. Wounds Int 2015; 6: 22-7.
[13]
Tort S, Demiröz FT, Coşkun Cevher Ş, Sarıbaş S, Özoğul C, Acartürk F. The effect of a new wound dressing on wound healing: Biochemical and histopathological evaluation. Burns 2020; 46(1): 143-55.
[http://dx.doi.org/10.1016/j.burns.2019.02.013] [PMID: 31862280]
[14]
Cañedo-Dorantes L, Cañedo-Ayala M. Skin acute wound healing: A comprehensive review. Int J Inflamm 2019; 2019: 1-15.
[http://dx.doi.org/10.1155/2019/3706315] [PMID: 31275545]
[15]
Desmet CM, Préat V, Gallez B. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv Drug Deliv Rev 2018; 129: 262-84.
[http://dx.doi.org/10.1016/j.addr.2018.02.001] [PMID: 29448035]
[16]
Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med 2014; 6(265): 265sr6.
[http://dx.doi.org/10.1126/scitranslmed.3009337] [PMID: 25473038]
[17]
Wallace HA, Basehore BM, Zito PM. Wound Healing Phases. Treasure Island, FL, USA: StatPearls Publishing 2017.
[18]
El-Ashram S, El-Samad LM, Basha AA, El Wakil A. Naturally-derived targeted therapy for wound healing: Beyond classical strategies. Pharmacol Res 2021; 170: 105749.
[http://dx.doi.org/10.1016/j.phrs.2021.105749] [PMID: 34214630]
[19]
Kanji S, Das H. Advances of stem cell therapeutics in cutaneous wound healing and regeneration. Mediators Inflamm 2017; 2017: 1-14.
[http://dx.doi.org/10.1155/2017/5217967] [PMID: 29213192]
[20]
Wu L, Chen X, Zhao J, et al. A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4–ERK5 axis. J Exp Med 2015; 212(10): 1571-87.
[http://dx.doi.org/10.1084/jem.20150204] [PMID: 26347473]
[21]
Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in chronic wounds. Int J Mol Sci 2016; 17(12): 2085.
[http://dx.doi.org/10.3390/ijms17122085] [PMID: 27973441]
[22]
Barchitta M, Maugeri A, Favara G, et al. Nutrition and wound healing: An overview focusing on the beneficial effects of curcumin. Int J Mol Sci 2019; 20(5): 1119.
[http://dx.doi.org/10.3390/ijms20051119] [PMID: 30841550]
[23]
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: A cellular perspective. Physiol Rev 2019; 99(1): 665-706.
[http://dx.doi.org/10.1152/physrev.00067.2017] [PMID: 30475656]
[24]
Raja R, Sivamani K, Garcia MS, Isseroff RR. Wound re-epithelialization: Modulating kerationcyte migration in wound healing. Front Biosci 2007; 12(8-12): 2849-68.
[http://dx.doi.org/10.2741/2277] [PMID: 17485264]
[25]
Darby IA, Laverdet B, Bonté F, Desmoulière A. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol 2014; 7: 301-11.
[PMID: 25395868]
[26]
Larouche J, Sheoran S, Maruyama K, Martino MM. Immune regulation of skin wound healing: Mechanisms and novel therapeutic targets. Adv Wound Care 2018; 7(7): 209-31.
[http://dx.doi.org/10.1089/wound.2017.0761] [PMID: 29984112]
[27]
Aydemir I, Öztürk Ş, Kılıçaslan Sönmez P, Tuğlu Mİ. Mesenchymal stem cells in skin wound healing. Anatomy 2016; 10(3): 228-34.
[http://dx.doi.org/10.2399/ana.16.043]
[28]
Chhabra S, Chhabra N, Kaur A, Gupta N. Wound healing concepts in clinical practice of OMFS. J Maxillofac Oral Surg 2017; 16(4): 403-23.
[http://dx.doi.org/10.1007/s12663-016-0880-z] [PMID: 29038623]
[29]
Gushiken LFS, Beserra FP, Bastos JK, Jackson CJ, Pellizzon CH. Cutaneous wound healing: An update from physiopathology to current therapies. Life 2021; 11(7): 665.
[http://dx.doi.org/10.3390/life11070665] [PMID: 34357037]
[30]
Lumbers M. Wound debridement: Choices and practice. Br J Nurs 2018; 27(15): S16-20.
[http://dx.doi.org/10.12968/bjon.2018.27.15.S16] [PMID: 30089045]
[31]
David JA, Chiu ES. Surgical debridement.Interventional Treatment of Wounds. Berlin/Heidelberg, Germany: Springer 2018; pp. 3-15.
[http://dx.doi.org/10.1007/978-3-319-66990-8_1]
[32]
Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N. Innovative treatment strategies to accelerate wound healing: Trajectory and recent advancements. Cells 2022; 11(15): 2439.
[http://dx.doi.org/10.3390/cells11152439] [PMID: 35954282]
[33]
Powers JG, Higham C, Broussard K, Phillips TJ. Wound healing and treating wounds. J Am Acad Dermatol 2016; 74(4): 607-25.
[http://dx.doi.org/10.1016/j.jaad.2015.08.070] [PMID: 26979353]
[34]
Xu K, Chai B, Zhang K, et al. Topical application of fibroblast growth factor 10-plga microsphere accelerates wound healing via inhibition of ER Stress. Oxid Med Cell Longev 2020; 2020: 1-13.
[http://dx.doi.org/10.1155/2020/8586314] [PMID: 33354279]
[35]
Dhivya S, Padma VV, Santhini E. Wound dressings: A review. Biomedicine 2015; 5(4): 22.
[http://dx.doi.org/10.7603/s40681-015-0022-9] [PMID: 26615539]
[36]
Goodarzi P, Falahzadeh K, Nematizadeh M, et al. Tissue engineered skin substitutes. Adv Exp Med Biol 2018; 1107: 143-88.
[http://dx.doi.org/10.1007/5584_2018_226] [PMID: 29855826]
[37]
Antezana PE, Municoy S, Álvarez-Echazú MI, et al. The 3D bioprinted scaffolds for wound healing. Pharmaceutics 2022; 14(2): 464.
[http://dx.doi.org/10.3390/pharmaceutics14020464] [PMID: 35214197]
[38]
He P, Zhao J, Zhang J, et al. Bio-printing of skin constructs for wound healing. Burns Trauma 2018; 6: 5.
[39]
Robin A, Nandakumar K, Sabu T. Microbial barrier property and blood compatibility studies of electrospun Poly-ƹ-caprolactone/zinc oxide nanocomposite scaffolds. J Sibe Fed Univ Biol 2017; 10: 226-36.
[40]
Zhang X, Zhang Y. Tissue engineering applications of three-dimensional bioprinting. Cell Biochem Biophys 2015; 72(3): 777-82.
[http://dx.doi.org/10.1007/s12013-015-0531-x] [PMID: 25663505]
[41]
Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 2020; 226: 119536.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119536] [PMID: 31648135]
[42]
Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects. Science 2015; 347(6228): 1349-52.
[http://dx.doi.org/10.1126/science.aaa2397] [PMID: 25780246]
[43]
Skylar-Scott MA, Mueller J, Visser CW, Lewis JA. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 2019; 575(7782): 330-5.
[http://dx.doi.org/10.1038/s41586-019-1736-8] [PMID: 31723289]
[44]
Kelly BE, Bhattacharya I, Heidari H, Shusteff M, Spadaccini CM, Taylor HK. Volumetric additive manufacturing via tomographic reconstruction. Science 2019; 363(6431): 1075-9.
[http://dx.doi.org/10.1126/science.aau7114] [PMID: 30705152]
[45]
Groll J, Burdick JA, Cho D-W, et al. A definition of bioinks and their distinction from biomaterial inks. Biofabrication 2018; 11(1): 013001.
[http://dx.doi.org/10.1088/1758-5090/aaec52] [PMID: 30468151]
[46]
Donderwinkel I, van Hest JCM, Cameron NR. Bio-inks for 3D bioprinting: Recent advances and future prospects. Polym Chem 2017; 8(31): 4451-71.
[http://dx.doi.org/10.1039/C7PY00826K]
[47]
Masri S, Fauzi MB. Current insight of printability quality improvement strategies in natural-based bioinks for skin regeneration and wound healing. Polymers 2021; 13(7): 1011.
[http://dx.doi.org/10.3390/polym13071011] [PMID: 33805995]
[48]
Jorgensen AM, Varkey M, Gorkun A, et al. Bioprinted skin recapitulates normal collagen remodeling in full-thickness wounds. Tissue Eng Part A 2020; 26(9-10): 512-26.
[http://dx.doi.org/10.1089/ten.tea.2019.0319] [PMID: 31861970]
[49]
Liu X, Michael S, Bharti K, Ferrer M, Song MJ. A biofabricated vascularized skin model of atopic dermatitis for preclinical studies. Biofabrication 2020; 12(3): 035002.
[http://dx.doi.org/10.1088/1758-5090/ab76a1] [PMID: 32059197]
[50]
Zidariˇc T, Milojevi’c M, Gradišnik L. Polysaccharide-based bioink formulation for 3d bio-printing of an in vitro model of the human dermis. Nanomaterials 2020; 10: 733.
[http://dx.doi.org/10.3390/nano10040733]
[51]
Kim BS, Kwon YW, Kong JS, et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials 2018; 168: 38-53.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.040] [PMID: 29614431]
[52]
Kim BS, Gao G, Kim JY, Cho DW. 3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin. Adv Healthc Mater 2019; 8(7): 1801019.
[http://dx.doi.org/10.1002/adhm.201801019] [PMID: 30358939]
[53]
Jang MJ, Bae SK, Jung YS, et al. Enhanced wound healing using a 3D printed VEGF-mimicking peptide incorporated hydrogel patch in a pig model. Biomed Mater 2021; 16(4): 045013.
[http://dx.doi.org/10.1088/1748-605X/abf1a8] [PMID: 33761488]
[54]
Chu B, He J, Wang Z, et al. Proangiogenic peptide nanofiber hydrogel/3D printed scaffold for dermal regeneration. Chem Eng J 2021; 424: 128146.
[http://dx.doi.org/10.1016/j.cej.2020.128146]
[55]
Guan G, Qizhuang Lv, Liu S, Jiang Z, Zhou C, Liao W. 3D-bioprinted peptide coupling patches for wound healing. Mater Today Bio 2022; 13: 100188.
[http://dx.doi.org/10.1016/j.mtbio.2021.100188] [PMID: 34977527]
[56]
Ahmad Z, Howard D, Brooks RA, et al. The role of platelet rich plasma in musculoskeletal science. JRSM Short Rep 2012; 3(6): 1-9.
[http://dx.doi.org/10.1258/shorts.2011.011148] [PMID: 22768374]
[57]
Jinming W, Caiyue L, Baojin W, et al. Effects of platelet-rich plasma on tissue expansion in rabbits. Aesthetic Plast Surg 2017; 41(2): 454-60.
[http://dx.doi.org/10.1007/s00266-017-0797-z] [PMID: 28175965]
[58]
Griffeth RJ, García-Párraga D, Mellado-López M, et al. Platelet-rich plasma and adipose-derived mesenchymal stem cells for regenerative medicine-associated treatments in bottlenose dolphins (Tursiops truncatus). PLoS One 2014; 9(9): e108439.
[http://dx.doi.org/10.1371/journal.pone.0108439] [PMID: 25251412]
[59]
Jee CH, Eom NY, Jang HM, et al. Effect of autologous platelet-rich plasma application on cutaneous wound healing in dogs. J Vet Sci 2016; 17(1): 79-87.
[http://dx.doi.org/10.4142/jvs.2016.17.1.79] [PMID: 27051343]
[60]
Ostvar O, Shadvar S, Yahaghi E, et al. RETRACTED ARTICLE: Effect of platelet-rich plasma on the healing of cutaneous defects exposed to acute to chronic wounds: A clinico-histopathologic study in rabbits. Diagn Pathol 2015; 10(1): 85.
[http://dx.doi.org/10.1186/s13000-015-0327-8] [PMID: 26134399]
[61]
Pallua N, Wolter T, Markowicz M. Platelet-rich plasma in burns. Burns 2010; 36(1): 4-8.
[http://dx.doi.org/10.1016/j.burns.2009.05.002] [PMID: 19541423]
[62]
Villela DL, Santos VLÚCIACG. Evidence on the use of platelet-rich plasma for diabetic ulcer: A systematic review. Growth Factors 2010; 28(2): 111-6.
[http://dx.doi.org/10.3109/08977190903468185] [PMID: 20001406]
[63]
Sommeling CE, Heyneman A, Hoeksema H, Verbelen J, Stillaert FB, Monstrey S. The use of platelet-rich plasma in plastic surgery: A systematic review. J Plast Reconstr Aesthet Surg 2013; 66(3): 301-11.
[http://dx.doi.org/10.1016/j.bjps.2012.11.009] [PMID: 23238115]
[64]
Martinez-Zapata MJ, Martí-Carvajal AJ, Solà I, et al. Autologous platelet-rich plasma for treating chronic wounds. Cochrane Libr 2016; 2016(5): CD006899.
[http://dx.doi.org/10.1002/14651858.CD006899.pub3] [PMID: 27223580]
[65]
Lacci KM, Dardik A. Platelet-rich plasma: Support for its use in wound healing. Yale J Biol Med 2010; 83(1): 1-9.
[PMID: 20351977]
[66]
Li H, Li B, Ma J, Ye J, Guo P, Li L. Fate of antibiotic-resistant bacteria and antibiotic resistance genes in the electrokinetic treatment of antibiotic-polluted soil. Chem Eng J 2018; 337: 584-94.
[http://dx.doi.org/10.1016/j.cej.2017.12.154]
[67]
Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, et al. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 2018; 123: 33-64.
[http://dx.doi.org/10.1016/j.addr.2017.08.001] [PMID: 28782570]
[68]
Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H. A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol 2018; 44: 421-30.
[http://dx.doi.org/10.1016/j.jddst.2018.01.009]
[69]
Sharma A, Sharma RB, Verma A, Thakur R. Insight on nanoparticles, green synthesisand applications in drug delivery system-a comprehensive review. Int J Life Sci Pharma Res 2022; 12(5): 68-84.
[70]
Hussain Z, Thu HE, Rawas-Qalaji M, Naseem M, Khan S, Sohail M. Recent developments and advanced strategies for promoting burn wound healing. J Drug Deliv Sci Technol 2022; 68: 103092.
[http://dx.doi.org/10.1016/j.jddst.2022.103092]
[71]
Debone HS, Lopes PS, Severino P, Yoshida CMP, Souto EB, da Silva CF. Chitosan/Copaiba oleoresin films for would dressing application. Int J Pharm 2019; 555: 146-52.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.054] [PMID: 30468843]
[72]
Das S, Baker AB. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front Bioeng Biotechnol 2016; 4: 82.
[http://dx.doi.org/10.3389/fbioe.2016.00082] [PMID: 27843895]
[73]
Cao L, Shao G, Ren F, et al. RETRACTED ARTICLE: Cerium oxide nanoparticle-loaded polyvinyl alcohol nanogels delivery for wound healing care systems on surgery. Drug Deliv 2021; 28(1): 390-9.
[http://dx.doi.org/10.1080/10717544.2020.1858998] [PMID: 33594917]
[74]
Abazari M, Ghaffari A, Rashidzadeh H. Momeni badeleh S, Maleki Y. Current status and future outlook of nano‐based systems for burn wound management. J Biomed Mater Res B Appl Biomater 2020; 108(5): 1934-52.
[http://dx.doi.org/10.1002/jbm.b.34535] [PMID: 31886606]
[75]
Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine 2015; 11(6): 1551-73.
[http://dx.doi.org/10.1016/j.nano.2015.03.002] [PMID: 25804415]
[76]
Ashoori MR, Rahmati-Yamchi M, Ostadrahimi A, Fekri Aval S, Zarghami N. MicroRNAs and adipocytokines: Promising biomarkers for pharmacological targets in diabetes mellitus and its complications. Biomed Pharmacother 2017; 93: 1326-36.
[http://dx.doi.org/10.1016/j.biopha.2017.07.059] [PMID: 28747014]
[77]
Blanpain C, Fuchs E. Epidermal homeostasis: A balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 2009; 10(3): 207-17.
[http://dx.doi.org/10.1038/nrm2636] [PMID: 19209183]
[78]
Soliman AM, Das S, Abd Ghafar N, Teoh SL. Role of MicroRNA in proliferation phase of wound healing. Front Genet 2018; 9: 38.
[http://dx.doi.org/10.3389/fgene.2018.00038] [PMID: 29491883]
[79]
Mulholland EJ, Dunne N, McCarthy HO. MicroRNA as therapeutic targets for chronic wound healing. Mol Ther Nucleic Acids 2017; 8: 46-55.
[http://dx.doi.org/10.1016/j.omtn.2017.06.003] [PMID: 28918046]
[80]
Jiang Y, Xu X, Xiao L, Wang L, Qiang S. The Role of microRNA in the inflammatory response of wound healing. Front Immunol 2022; 13: 852419.
[http://dx.doi.org/10.3389/fimmu.2022.852419] [PMID: 35386721]
[81]
Li D, Li XI, Wang A, et al. MicroRNA-31 promotes skin wound healing by enhancing keratinocyte proliferation and migration. J Invest Dermatol 2015; 135(6): 1676-85.
[http://dx.doi.org/10.1038/jid.2015.48] [PMID: 25685928]
[82]
Li X, Li D, Wang A, et al. MicroRNA-132 with therapeutic potential in chronic wounds. J Invest Dermatol 2017; 137(12): 2630-8.
[http://dx.doi.org/10.1016/j.jid.2017.08.003] [PMID: 28807666]
[83]
Umegaki-Arao N, Pasmooij AMG, Itoh M, et al. Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci Transl Med 2014; 6(264): 264ra164.
[http://dx.doi.org/10.1126/scitranslmed.3009342] [PMID: 25429057]
[84]
Chen M, Przyborowski M, Berthiaume F. Stem cells for skin tissue engineering and wound healing. Crit Rev Biomed Eng 2009; 37(4-5): 399-421.
[http://dx.doi.org/10.1615/CritRevBiomedEng.v37.i4-5.50] [PMID: 20528733]
[85]
Kølle SFT, Fischer-Nielsen A, Mathiasen AB, et al. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: A randomised placebo-controlled trial. Lancet 2013; 382(9898): 1113-20.
[http://dx.doi.org/10.1016/S0140-6736(13)61410-5] [PMID: 24075051]
[86]
Duscher D, Barrera J, Wong VW, et al. Stem cells in wound healing: The future of regenerative medicine? a mini-review. Gerontology 2016; 62(2): 216-25.
[http://dx.doi.org/10.1159/000381877] [PMID: 26045256]
[87]
Hu MS, Borrelli MR, Lorenz HP, Longaker MT, Wan DC. Mesenchymal stromal cells and cutaneous wound healing: A comprehensive review of the background, role, and therapeutic potential. Stem Cells Int 2018; 2018: 1-13.
[http://dx.doi.org/10.1155/2018/6901983] [PMID: 29887893]
[88]
Dash B, Xu Z, Lin L, et al. Stem cells and engineered scaffolds for regenerative wound healing. Bioengineering 2018; 5(1): 23.
[http://dx.doi.org/10.3390/bioengineering5010023] [PMID: 29522497]
[89]
Yu J, Wang MY, Tai HC, Cheng NC. Cell sheet composed of adipose-derived stem cells demonstrates enhanced skin wound healing with reduced scar formation. Acta Biomater 2018; 77: 191-200.
[http://dx.doi.org/10.1016/j.actbio.2018.07.022] [PMID: 30017923]
[90]
Xu Y, Huang S, Fu X. Autologous transplantation of bone marrow-derived mesenchymal stem cells: A promising therapeutic strategy for prevention of skin-graft contraction. Clin Exp Dermatol 2012; 37(5): 497-500.
[http://dx.doi.org/10.1111/j.1365-2230.2011.04260.x] [PMID: 22300217]
[91]
An Y, Liu WJ, Xue P, et al. Autophagy promotes MSC-mediated vascularization in cutaneous wound healing via regulation of VEGF secretion. Cell Death Dis 2018; 9(2): 58.
[http://dx.doi.org/10.1038/s41419-017-0082-8] [PMID: 29352190]
[92]
Hamdan S, Pastar I, Drakulich S, et al. Nanotechnology-driven therapeutic interventions in wound healing: Potential uses and applications. ACS Cent Sci 2017; 3(3): 163-75.
[http://dx.doi.org/10.1021/acscentsci.6b00371] [PMID: 28386594]
[93]
Navone SE, Pascucci L, Dossena M, et al. Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Res Ther 2014; 5(1): 7.
[http://dx.doi.org/10.1186/scrt396] [PMID: 24423450]
[94]
Li M, Qiu L, Hu W, et al. Genetically-modified bone mesenchymal stem cells with TGF-β 3 improve wound healing and reduce scar tissue formation in a rabbit model. Exp Cell Res 2018; 367(1): 24-9.
[http://dx.doi.org/10.1016/j.yexcr.2018.02.006] [PMID: 29453974]
[95]
Zhang M, Cao Y, Li X, et al. Cd271 mediates proliferation and differentiation of epidermal stem cells to support cutaneous burn wound healing. Cell Tissue Res 2018; 371(2): 273-82.
[http://dx.doi.org/10.1007/s00441-017-2723-8] [PMID: 29150821]
[96]
Roshangar L, Rad JS, Kheirjou R, Khosroshahi AF. Using 3D‐bioprinting scaffold loaded with adipose‐derived stem cells to burns wound healing. J Tissue Eng Regen Med 2021; 15(6): 546-55.
[http://dx.doi.org/10.1002/term.3194] [PMID: 33779071]
[97]
Heo JS, Kim S, Yang CE, Choi Y, Song SY, Kim HO. Human adipose mesenchymal stem cell-derived exosomes: A Key player in wound healing. Tissue Eng Regen Med 2021; 18(4): 537-48.
[http://dx.doi.org/10.1007/s13770-020-00316-x] [PMID: 33547566]
[98]
Jung JA, Yoon YD, Lee HW, Kang SR, Han SK. Comparison of human umbilical cord blood-derived mesenchymal stem cells with healthy fibroblasts on wound-healing activity of diabetic fibroblasts. Int Wound J 2018; 15(1): 133-9.
[http://dx.doi.org/10.1111/iwj.12849] [PMID: 29115054]
[99]
Wang L, Su Y, Huang C, et al. NANOG and LIN28 dramatically improve human cell reprogramming by modulating LIN41 and canonical WNT activities. Biol Open 2019; 8(12): bio047225.
[http://dx.doi.org/10.1242/bio.047225] [PMID: 31806618]
[100]
Gao F, Li W, Deng J, et al. Recombinant human hair keratin nanoparticles accelerate dermal wound healing. ACS Appl Mater Interfaces 2019; 11(20): 18681-90.
[http://dx.doi.org/10.1021/acsami.9b01725] [PMID: 31038908]
[101]
Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 2007; 1(1): 39-49.
[http://dx.doi.org/10.1016/j.stem.2007.05.012] [PMID: 18371333]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy