Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Oxidative Stress is a New Avenue for Treatment of Neuropsychiatric Disorders: Hype of Hope?

Author(s): Sajad Sahab Negah and Fatemeh Forouzanfar*

Volume 24, Issue 12, 2024

Published on: 16 November, 2023

Page: [1494 - 1505] Pages: 12

DOI: 10.2174/1566524023666230904150907

Price: $65

conference banner
Abstract

The biochemical integrity of the brain is critical in maintaining normal central nervous system (CNS) functions. One of the factors that plays an important role in causing biochemical impairment of the brain is known as oxidative stress. Oxidative stress is generally defined as the excessive formation of free radicals relative to antioxidant defenses. The brain is particularly susceptible to oxidative stress because of its high oxygen consumption and lipid-rich content. Therefore, oxidative stress damage is associated with abnormal CNS function. Psychiatric disorders are debilitating diseases. The underlying pathophysiology of psychiatric disorders is poorly defined and may involve the interplay of numerous clinical factors and mechanistic mechanisms. Considerable evidence suggests that oxidative stress plays a complex role in several neuropsychiatric disorders, including anxiety, bipolar disorder, depression, obsessivecompulsive disorder, panic disorder, and schizophrenia. To address these issues, we reviewed the literature and considered the role of oxidative stress as one of the first pathological changes in the course of neuropsychiatric disorders, which should receive more attention in future research.

Keywords: Oxidative stress, psychiatric disorders, central nervous system, depression, anxiety disorders, abnormal CNS function.

[1]
van Os J, Kenis G, Rutten BPF. The environment and schizophrenia. Nature 2010; 468(7321): 203-12.
[http://dx.doi.org/10.1038/nature09563] [PMID: 21068828]
[2]
Nanou E, Catterall WA. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 2018; 98(3): 466-81.
[http://dx.doi.org/10.1016/j.neuron.2018.03.017] [PMID: 29723500]
[3]
Marín O. Developmental timing and critical windows for the treatment of psychiatric disorders. Nat Med 2016; 22(11): 1229-38.
[http://dx.doi.org/10.1038/nm.4225] [PMID: 27783067]
[4]
Tsukahara H. Biomarkers for oxidative stress: Clinical application in pediatric medicine. Curr Med Chem 2007; 14(3): 339-51.
[http://dx.doi.org/10.2174/092986707779941177] [PMID: 17305536]
[5]
Morris G, Stubbs B, Köhler CA, et al. The putative role of oxidative stress and inflammation in the pathophysiology of sleep dysfunction across neuropsychiatric disorders: Focus on chronic fatigue syndrome, bipolar disorder and multiple sclerosis. Sleep Med Rev 2018; 41: 255-65.
[http://dx.doi.org/10.1016/j.smrv.2018.03.007] [PMID: 29759891]
[6]
Azami S, Shahriari Z, Asgharzade S, Farkhondeh T, Sadeghi M, Ahmadi F. Therapeutic potential of saffron (Crocus sativus L.) in ischemia stroke. Evid Based Complement Alternat Med 2021; 2021: 6643950.
[7]
Forouzanfar F, Hosseinzadeh H. Protective Role of Nigella sativa and Thymoquinone in Oxidative Stress: A ReviewNuts and Seeds in Health and Disease Prevention. Massachusetts: Academic Press 2020; pp. 127-46.
[http://dx.doi.org/10.1016/B978-0-12-818553-7.00011-5]
[8]
Ramani S, Pathak A, Dalal V, Paul A, Biswas S. Oxidative stress in autoimmune diseases: An under dealt malice. Curr Protein Pept Sci 2020; 21(6): 611-21.
[http://dx.doi.org/10.2174/1389203721666200214111816] [PMID: 32056521]
[9]
Chiurchiù V. Novel targets in multiple sclerosis: To oxidative stress and beyond. Curr Top Med Chem 2014; 14(22): 2590-9.
[http://dx.doi.org/10.2174/1568026614666141203143801] [PMID: 25478879]
[10]
Gutteridge JMC, Halliwell B. Mini-Review: Oxidative stress, redox stress or redox success? Biochem Biophys Res Commun 2018; 502(2): 183-6.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.045] [PMID: 29752940]
[11]
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 2013; 3(4): 461-91.
[http://dx.doi.org/10.3233/JPD-130230] [PMID: 24252804]
[12]
Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 2010; 469(1): 6-10.
[http://dx.doi.org/10.1016/j.neulet.2009.11.033] [PMID: 19914330]
[13]
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[14]
Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longev 2008; 1(1): 15-24.
[http://dx.doi.org/10.4161/oxim.1.1.6843] [PMID: 19794904]
[15]
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 13: 757-72.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[16]
Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 2015; 24(4): 325-40.
[http://dx.doi.org/10.5607/en.2015.24.4.325] [PMID: 26713080]
[17]
Johnson WM, Wilson-Delfosse AL, Mieyal JJ. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 2012; 4(10): 1399-440.
[http://dx.doi.org/10.3390/nu4101399] [PMID: 23201762]
[18]
van Velzen LS, Wijdeveld M, Black CN, et al. Oxidative stress and brain morphology in individuals with depression, anxiety and healthy controls. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76: 140-4.
[http://dx.doi.org/10.1016/j.pnpbp.2017.02.017] [PMID: 28249819]
[19]
Kuloglu M, Atmaca M, Tezcan E, Geçici Ö, Tunckol H, Ustundag B. Antioxidant enzyme activities and malondialdehyde levels in patients with obsessive-compulsive disorder. Neuropsychobiology 2002; 46(1): 27-32.
[http://dx.doi.org/10.1159/000063573] [PMID: 12207144]
[20]
Halliwell B. Free radicals and antioxidants – quo vadis? Trends Pharmacol Sci 2011; 32(3): 125-30.
[http://dx.doi.org/10.1016/j.tips.2010.12.002] [PMID: 21216018]
[21]
Adibhatla RM, Hatcher JF. Role of lipids in brain injury and diseases. Future Lipidol 2007; 2(4): 403-22.
[http://dx.doi.org/10.2217/17460875.2.4.403] [PMID: 18176634]
[22]
Chiurchiù V, Orlacchio A, Maccarrone M. Is modulation of oxidative stress an answer? The state of the art of redox therapeutic actions in neurodegenerative diseases. Oxid Med Cell Longev 2016; 2016: 7909380.
[http://dx.doi.org/10.1155/2016/7909380]
[23]
Chiurchiù V, Maccarrone M. Chronic inflammatory disorders and their redox control: From molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 15(9): 2605-41.
[http://dx.doi.org/10.1089/ars.2010.3547] [PMID: 21391902]
[24]
Lehtinen M, Bonni A. Modeling oxidative stress in the central nervous system. Curr Mol Med 2006; 6(8): 871-81.
[http://dx.doi.org/10.2174/156652406779010786] [PMID: 17168738]
[25]
Massaad CA, Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 2011; 14(10): 2013-54.
[http://dx.doi.org/10.1089/ars.2010.3208] [PMID: 20649473]
[26]
Maes M, Yirmyia R, Noraberg J, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: Leads for future research and new drug developments in depression. Metab Brain Dis 2009; 24(1): 27-53.
[http://dx.doi.org/10.1007/s11011-008-9118-1] [PMID: 19085093]
[27]
Shao L, Martin MV, Watson SJ, et al. Mitochondrial involvement in psychiatric disorders. Ann Med 2008; 40(4): 281-95.
[http://dx.doi.org/10.1080/07853890801923753] [PMID: 18428021]
[28]
Greaney JL, Saunders EFH, Santhanam L, Alexander LM. Oxidative stress contributes to microvascular endothelial dysfunction in men and women with major depressive disorder. Circ Res 2019; 124(4): 564-74.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313764] [PMID: 30582458]
[29]
Dalal V, Sharma NK, Biswas S. Oxidative stress: Diagnostic methods and application in medical science. Cham: Springer 2017.
[http://dx.doi.org/10.1007/978-981-10-4711-4_2]
[30]
Meier SM, Deckert J. Genetics of anxiety disorders. Curr Psychiatry Rep 2019; 21(3): 16.
[http://dx.doi.org/10.1007/s11920-019-1002-7] [PMID: 30826936]
[31]
Blair KS, Blair RJR. A cognitive neuroscience approach to generalized anxiety disorder and social phobia. Emot Rev 2012; 4(2): 133-8.
[http://dx.doi.org/10.1177/1754073911430251]
[32]
Yoon HJ, Seo EH, Kim JJ, Choo ILH. Neural correlates of self-referential processing and their clinical implications in social anxiety disorder. Clin Psychopharmacol Neurosci 2019; 17(1): 12-24.
[http://dx.doi.org/10.9758/cpn.2019.17.1.12] [PMID: 30690936]
[33]
Kumar A, Kaur G, Rinwa P. Buspirone along with melatonin attenuates oxidative damage and anxiety-like behavior in a mouse model of immobilization stress. Chin J Nat Med 2014; 12(8): 582-9.
[http://dx.doi.org/10.1016/S1875-5364(14)60089-3] [PMID: 25156283]
[34]
Patki G, Allam FH, Atrooz F, et al. Grape powder intake prevents ovariectomy-induced anxiety-like behavior, memory impairment and high blood pressure in female Wistar rats. PLoS One 2013; 8(9): e74522.
[http://dx.doi.org/10.1371/journal.pone.0074522] [PMID: 24040270]
[35]
Brocardo PS, Boehme F, Patten A, Cox A, Gil-Mohapel J, Christie BR. Anxiety- and depression-like behaviors are accompanied by an increase in oxidative stress in a rat model of fetal alcohol spectrum disorders: Protective effects of voluntary physical exercise. Neuropharmacology 2012; 62(4): 1607-18.
[http://dx.doi.org/10.1016/j.neuropharm.2011.10.006] [PMID: 22019722]
[36]
Berry A, Capone F, Giorgio M, et al. Deletion of the life span determinant p66Shc prevents age-dependent increases in emotionality and pain sensitivity in mice. Exp Gerontol 2007; 42(1-2): 37-45.
[http://dx.doi.org/10.1016/j.exger.2006.05.018] [PMID: 16809014]
[37]
Stadtman ER. Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 2001; 928(1): 22-38.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb05632.x] [PMID: 11795513]
[38]
Floyd R, Hensley K. Oxidative stress in brain agingImplications for therapeutics of neurodegenerative diseases. Neurobiol Aging 2002; 23(5): 795-807.
[http://dx.doi.org/10.1016/S0197-4580(02)00019-2] [PMID: 12392783]
[39]
Masood A, Nadeem A, Mustafa SJ, O’Donnell JM. Reversal of oxidative stress-induced anxiety by inhibition of phosphodiesterase-2 in mice. J Pharmacol Exp Ther 2008; 326(2): 369-79.
[http://dx.doi.org/10.1124/jpet.108.137208] [PMID: 18456873]
[40]
Steenkamp LR, Hough CM, Reus VI, et al. Severity of anxiety– but not depression– is associated with oxidative stress in Major Depressive Disorder. J Affect Disord 2017; 219: 193-200.
[http://dx.doi.org/10.1016/j.jad.2017.04.042] [PMID: 28564628]
[41]
Black CN, Bot M, Scheffer PG, Penninx BWJH. Oxidative stress in major depressive and anxiety disorders, and the association with antidepressant use; results from a large adult cohort. Psychol Med 2017; 47(5): 936-48.
[http://dx.doi.org/10.1017/S0033291716002828] [PMID: 27928978]
[42]
Belmaker RH, Bersudsky Y. Bipolar disorder: Treatment. Discov Med 2004; 4(24): 415-20.
[PMID: 20704941]
[43]
Angst F, Stassen HH, Clayton PJ, Angst J. Mortality of patients with mood disorders: Follow-up over 34–38 years. J Affect Disord 2002; 68(2-3): 167-81.
[http://dx.doi.org/10.1016/S0165-0327(01)00377-9] [PMID: 12063145]
[44]
Ranjekar PK, Hinge A, Hegde MV, et al. Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res 2003; 121(2): 109-22.
[http://dx.doi.org/10.1016/S0165-1781(03)00220-8] [PMID: 14656446]
[45]
Andreazza AC, Noronha Frey B, Erdtmann B, et al. DNA damage in bipolar disorder. Psychiatry Res 2007; 153(1): 27-32.
[http://dx.doi.org/10.1016/j.psychres.2006.03.025] [PMID: 17582509]
[46]
Steckert AV, Valvassori SS, Moretti M, Dal-Pizzol F, Quevedo J. Role of oxidative stress in the pathophysiology of bipolar disorder. Neurochem Res 2010; 35(9): 1295-301.
[http://dx.doi.org/10.1007/s11064-010-0195-2] [PMID: 20499165]
[47]
Clay HB, Sillivan S, Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 2011; 29(3): 311-24.
[http://dx.doi.org/10.1016/j.ijdevneu.2010.08.007] [PMID: 20833242]
[48]
Andreazza AC, Kauer-Sant’Anna M, Frey BN, et al. Effects of mood stabilizers on DNA damage in an animal model of mania. J Psychiatry Neurosci 2008; 33(6): 516-24.
[PMID: 18982174]
[49]
Frey BN, Martins MR, Petronilho FC, Dal-Pizzol F, Quevedo J, Kapczinski F. Increased oxidative stress after repeated amphetamine exposure: Possible relevance as a model of mania. Bipolar Disord 2006; 8(3): 275-80.
[http://dx.doi.org/10.1111/j.1399-5618.2006.00318.x] [PMID: 16696830]
[50]
Tan H, Young LT, Shao L, Che Y, Honer WG, Wang JF. Mood stabilizer lithium inhibits amphetamine-increased 4-hydroxynonenal-protein adducts in rat frontal cortex. Int J Neuropsychopharmacol 2012; 15(9): 1275-85.
[http://dx.doi.org/10.1017/S1461145711001416] [PMID: 21939588]
[51]
Kuloglu M, Ustundag B, Atmaca M, Canatan H, Tezcan AE, Cinkilinc N. Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct 2002; 20(2): 171-5.
[http://dx.doi.org/10.1002/cbf.940] [PMID: 11979513]
[52]
Wang JF, Shao L, Sun X, Young LT. Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord 2009; 11(5): 523-9.
[http://dx.doi.org/10.1111/j.1399-5618.2009.00717.x] [PMID: 19624391]
[53]
Andreazza AC, Kauer-Sant’Anna M, Frey BN, et al. Oxidative stress markers in bipolar disorder: A meta-analysis. J Affect Disord 2008; 111(2-3): 135-44.
[http://dx.doi.org/10.1016/j.jad.2008.04.013] [PMID: 18539338]
[54]
Brown NC, Andreazza AC, Young LT. An updated meta-analysis of oxidative stress markers in bipolar disorder. Psychiatry Res 2014; 218(1-2): 61-8.
[http://dx.doi.org/10.1016/j.psychres.2014.04.005] [PMID: 24794031]
[55]
Frey BN, Andreazza AC, Kunz M, et al. Increased oxidative stress and DNA damage in bipolar disorder: A twin-case report. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31(1): 283-5.
[http://dx.doi.org/10.1016/j.pnpbp.2006.06.011] [PMID: 16859818]
[56]
Andreazza AC, Gildengers A, Rajji TK, Zuzarte PML, Mulsant BH, Young LT. Oxidative stress in older patients with bipolar disorder. Am J Geriatr Psychiatry 2015; 23(3): 314-9.
[http://dx.doi.org/10.1016/j.jagp.2014.05.008] [PMID: 24974141]
[57]
Valvassori SS, Bavaresco DV, Feier G, et al. Increased oxidative stress in the mitochondria isolated from lymphocytes of bipolar disorder patients during depressive episodes. Psychiatry Res 2018; 264: 192-201.
[http://dx.doi.org/10.1016/j.psychres.2018.03.089] [PMID: 29653348]
[58]
Akarsu S, Bolu A, Aydemir E, et al. The relationship between the number of manic episodes and oxidative stress indicators in bipolar disorder. Psychiatry Investig 2018; 15(5): 514-9.
[http://dx.doi.org/10.30773/pi.2016.12.31] [PMID: 29674601]
[59]
Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BWJH. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 2015; 51: 164-75.
[http://dx.doi.org/10.1016/j.psyneuen.2014.09.025] [PMID: 25462890]
[60]
Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(3): 676-92.
[http://dx.doi.org/10.1016/j.pnpbp.2010.05.004] [PMID: 20471444]
[61]
Eren İ, Nazıroğlu M, Demirdaş A, et al. Venlafaxine modulates depression-induced oxidative stress in brain and medulla of rat. Neurochem Res 2007; 32(3): 497-505.
[http://dx.doi.org/10.1007/s11064-006-9258-9] [PMID: 17268845]
[62]
Todorović N, Tomanović N, Gass P, Filipović D. Olanzapine modulation of hepatic oxidative stress and inflammation in socially isolated rats. Eur J Pharm Sci 2016; 81: 94-102.
[http://dx.doi.org/10.1016/j.ejps.2015.10.010] [PMID: 26474692]
[63]
Desouza F, Rodrigues M, Tufik S, Nobrega J, Dalmeida V. Acute stressor-selective effects on homocysteine metabolism and oxidative stress parameters in female rats. Pharmacol Biochem Behav 2006; 85(2): 400-7.
[http://dx.doi.org/10.1016/j.pbb.2006.09.008] [PMID: 17056102]
[64]
Zhang D, Wen X, Wang X, Shi M, Zhao Y. Antidepressant effect of Shudihuang on mice exposed to unpredictable chronic mild stress. J Ethnopharmacol 2009; 123(1): 55-60.
[http://dx.doi.org/10.1016/j.jep.2009.02.029] [PMID: 19429340]
[65]
Yanik M, Erel O, Kati M. The relationship between potency of oxidative stress and severity of depression. Acta Neuropsychiatr 2004; 16(4): 200-3.
[http://dx.doi.org/10.1111/j.0924-2708.2004.00090.x] [PMID: 26984307]
[66]
Palta P, Samuel LJ, Miller ER III, Szanton SL. Depression and oxidative stress: Results from a meta-analysis of observational studies. Psychosom Med 2014; 76(1): 12-9.
[http://dx.doi.org/10.1097/PSY.0000000000000009] [PMID: 24336428]
[67]
Liu T, Zhong S, Liao X, et al. A meta-analysis of oxidative stress markers in depression. PLoS One 2015; 10(10): e0138904.
[http://dx.doi.org/10.1371/journal.pone.0138904] [PMID: 26445247]
[68]
Diniz BS, Mendes-Silva AP, Silva LB, et al. Oxidative stress markers imbalance in late-life depression. J Psychiatr Res 2018; 102: 29-33.
[http://dx.doi.org/10.1016/j.jpsychires.2018.02.023] [PMID: 29574402]
[69]
Pasquali MA, Harlow BL, Soares CN, et al. A longitudinal study of neurotrophic, oxidative, and inflammatory markers in first-onset depression in midlife women. Eur Arch Psychiatry Clin Neurosci 2018; 268(8): 771-81.
[http://dx.doi.org/10.1007/s00406-017-0812-z] [PMID: 28550365]
[70]
Katrenčíková B, Vaváková M, Paduchová Z, et al. Oxidative stress markers and antioxidant enzymes in children and adolescents with depressive disorder and impact of omega-3 fatty acids in randomised clinical trial. Antioxidants 2021; 10(8): 1256.
[http://dx.doi.org/10.3390/antiox10081256] [PMID: 34439504]
[71]
Talaei A, Forouzanfar F, Akhondzadeh S. Medicinal plants in the treatment of obsessive-compulsive disorder: A review. Curr Drug Discov Technol 2021; 18(1): 8-16.
[http://dx.doi.org/10.2174/1570163816666191011105050] [PMID: 31660838]
[72]
Talaei A, Hosseini FF, Aghili Z, et al. A comparative, single-blind, randomized study on quetiapine and aripiperazole augmentation in treatment of selective serotonin reuptake inhibitor refractory obsessive-compulsive disorder. Can J Physiol Pharmacol 2020; 98(4): 236-42.
[http://dx.doi.org/10.1139/cjpp-2019-0381] [PMID: 32228235]
[73]
Kandemir H, Abuhandan M, Aksoy N, Savik E, Kaya C. Oxidative imbalance in child and adolescent patients with obsessive compulsive disorder. J Psychiatr Res 2013; 47(11): 1831-4.
[http://dx.doi.org/10.1016/j.jpsychires.2013.08.010] [PMID: 24011862]
[74]
Alici D, Bulbul F, Virit O, et al. Evaluation of oxidative metabolism and oxidative DNA damage in patients with obsessive-compulsive disorder. Psychiatry Clin Neurosci 2016; 70(2): 109-15.
[http://dx.doi.org/10.1111/pcn.12362] [PMID: 26388322]
[75]
Selek S, Herken H, Bulut M, et al. Oxidative imbalance in obsessive compulsive disorder patients: A total evaluation of oxidant–antioxidant status. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(2): 487-91.
[http://dx.doi.org/10.1016/j.pnpbp.2007.10.002] [PMID: 18006203]
[76]
Chakraborty S, Dasgupta A, Das HN, Singh OP, Mandal AK, Mandal N. Study of oxidative stress in obsessive compulsive disorder in response to treatment with Fluoxetine. Indian J Clin Biochem 2009; 24(2): 194-7.
[http://dx.doi.org/10.1007/s12291-009-0035-9] [PMID: 23105832]
[77]
Chakraborty S, Singh OP, Dasgupta A, Mandal N, Das HN. Correlation between lipid peroxidation-induced TBARS level and disease severity in obsessive–compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(2): 363-6.
[http://dx.doi.org/10.1016/j.pnpbp.2009.01.001] [PMID: 19272303]
[78]
Atmaca M, Tezcan E, Kuloglu M, Ustundag B. Plasma nitrate values in patients with obsessive-compulsive disorder. Psychiatry Clin Neurosci 2005; 59(5): 621-3.
[http://dx.doi.org/10.1111/j.1440-1819.2005.01426.x] [PMID: 16194270]
[79]
Ozdemir E, Cetinkaya S, Ersan S, Kucukosman S, Ersan EE. Serum selenium and plasma malondialdehyde levels and antioxidant enzyme activities in patients with obsessive–compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(1): 62-5.
[http://dx.doi.org/10.1016/j.pnpbp.2008.10.004] [PMID: 18957313]
[80]
Danışman Sonkurt M, Altınöz AE, Köşger F, Yiğitaslan S, Güleç G, Eşsizoğlu A. Are there differences in oxidative stress and inflammatory processes between the autogenous and reactive subtypes of obsessive-compulsive disorder? A controlled cross-sectional study. Br J Psychiatry 2022; 44(2): 171-7.
[http://dx.doi.org/10.1590/1516-4446-2021-1740] [PMID: 34190826]
[81]
Kurhan F, Kamış GZ, Alp HH, Akyuz Cim EF, Atli A. A Cross-Sectional Measurement of Endogenous Oxidative Stress Marker Levels in Obsessive Compulsive Disorder. Psychiatry Clin Psychopharmacol 2022; 32(3): 215-21.
[http://dx.doi.org/10.5152/pcp.2022.21318]
[82]
Greenslade JH, Hawkins T, Parsonage W, Cullen L. Panic disorder in patients presenting to the emergency department with chest pain: Prevalence and presenting symptoms. Heart Lung Circ 2017; 26(12): 1310-6.
[http://dx.doi.org/10.1016/j.hlc.2017.01.001] [PMID: 28256404]
[83]
Hodges LM, Fyer AJ, Weissman MM, Logue MW, Haghighi F, Evgrafov O, et al. Evidence for linkage and association of GABRB3 and GABRA5 to panic disorder. Neuropsychopharmacology 2014; 39(10): 2423-31.
[http://dx.doi.org/10.1038/npp.2014.92]
[84]
Kuloglu M, Atmaca M, Tezcan E, Ustundag B, Bulut S. Antioxidant enzyme and malondialdehyde levels in patients with panic disorder. Neuropsychobiology 2002; 46(4): 186-9.
[http://dx.doi.org/10.1159/000067810] [PMID: 12566935]
[85]
Ersoy MA, Selek S, Celik H, et al. Role of oxidative and antioxidative parameters in etiopathogenesis and prognosis of panic disorder. Int J Neurosci 2008; 118(7): 1025-37.
[http://dx.doi.org/10.1080/00207450701769026] [PMID: 18569158]
[86]
Gul IG, Karlidag R, Cumurcu BE, et al. The effect of agoraphobia on oxidative stress in panic disorder. Psychiatry Investig 2013; 10(4): 317-25.
[http://dx.doi.org/10.4306/pi.2013.10.4.317] [PMID: 24474979]
[87]
Herken H, Akyol O, Yilmaz HR, et al. Nitric oxide, adenosine deaminase, xanthine oxidase and superoxide dismutase in patients with panic disorder: Alterations by antidepressant treatment. Hum Psychopharmacol 2006; 21(1): 53-9.
[http://dx.doi.org/10.1002/hup.742] [PMID: 16329160]
[88]
Nahar Z, Sarwar M, Safiqul Islam M, et al. Determination of serum antioxidant vitamins, glutathione and MDA levels in panic disorder patients. Drug Res (Stuttg) 2013; 63(8): 424-8.
[http://dx.doi.org/10.1055/s-0033-1343494] [PMID: 23670827]
[89]
Momtazmanesh S, Zare-Shahabadi A, Rezaei N. Cytokine alterations in schizophrenia: An updated review. Front Psychiatry 2019; 10: 892.
[http://dx.doi.org/10.3389/fpsyt.2019.00892] [PMID: 31908647]
[90]
Murphy CE, Walker AK, Weickert CS. Neuroinflammation in schizophrenia: The role of nuclear factor kappa B. Transl Psychiatry 2021; 11(1): 528.
[http://dx.doi.org/10.1038/s41398-021-01607-0] [PMID: 34650030]
[91]
Bitanihirwe BKY, Woo TUW. Oxidative stress in schizophrenia: An integrated approach. Neurosci Biobehav Rev 2011; 35(3): 878-93.
[http://dx.doi.org/10.1016/j.neubiorev.2010.10.008] [PMID: 20974172]
[92]
van Kesteren C F MG, Gremmels H, de Witte LD, et al. Immune involvement in the pathogenesis of schizophrenia: A meta-analysis on postmortem brain studies. Transl Psychiatry 2017; 7(3): e1075.
[http://dx.doi.org/10.1038/tp.2017.4] [PMID: 28350400]
[93]
Herken H, Uz E, Özyurt H, Söğüt S, Virit O, Akyol Ö. Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia. Mol Psychiatry 2001; 6(1): 66-73.
[http://dx.doi.org/10.1038/sj.mp.4000789] [PMID: 11244487]
[94]
Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 2011; 14(1): 123-30.
[http://dx.doi.org/10.1017/S1461145710000805] [PMID: 20633320]
[95]
Yao JK, Leonard S, Reddy R. Altered glutathione redox state in schizophrenia. Dis Markers 2006; 22(1-2): 83-93.
[http://dx.doi.org/10.1155/2006/248387] [PMID: 16410648]
[96]
Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY, Shen YC. The effect of risperidone treatment on superoxide dismutase in schizophrenia. J Clin Psychopharmacol 2003; 23(2): 128-31.
[http://dx.doi.org/10.1097/00004714-200304000-00004] [PMID: 12640213]
[97]
Raffa M, Mechri A, Othman LB, Fendri C, Gaha L, Kerkeni A. Decreased glutathione levels and antioxidant enzyme activities in untreated and treated schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(7): 1178-83.
[http://dx.doi.org/10.1016/j.pnpbp.2009.06.018] [PMID: 19576938]
[98]
Bai ZL, Li XS, Chen GY, et al. Serum oxidative stress marker levels in unmedicated and medicated patients with schizophrenia. J Mol Neurosci 2018; 66(3): 428-36.
[http://dx.doi.org/10.1007/s12031-018-1165-4] [PMID: 30298298]
[99]
Fraguas D, Díaz-Caneja CM, Ayora M, Hernández-Álvarez F, Rodríguez-Quiroga A, Recio S, et al. Oxidative stress and inflammation in first-episode psychosis: A systematic review and meta-analysis. Schizophr Bull 2018.
[PMID: 30169868]
[100]
Wang YP, Zhang PF, Yuan XX, et al. Effects of oxidative stress on cognitive impairment in first episode schizophrenia. Zhonghua Yi Xue Za Zhi 2019; 99(1): 9-13.
[PMID: 30641657]
[101]
Desrumaux C, Risold PY, Schroeder H, et al. Phospholipid transfer protein (PLTP) deficiency reduces brain vitamin E content and increases anxiety in mice. FASEB J 2005; 19(2): 1-16.
[http://dx.doi.org/10.1096/fj.04-2400fje] [PMID: 15576481]
[102]
Souza CG, Moreira JD, Siqueira IR, et al. Highly palatable diet consumption increases protein oxidation in rat frontal cortex and anxiety-like behavior. Life Sci 2007; 81(3): 198-203.
[http://dx.doi.org/10.1016/j.lfs.2007.05.001] [PMID: 17574275]
[103]
Frey BN, Valvassori SS, Gomes KM, et al. Increased oxidative stress in submitochondrial particles after chronic amphetamine exposure. Brain Res 2006; 1097(1): 224-9.
[http://dx.doi.org/10.1016/j.brainres.2006.04.076] [PMID: 16730669]
[104]
Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S. Major depressive disorder is accompanied with oxidative stress: Short-term antidepressant treatment does not alter oxidative–antioxidative systems. Hum Psychopharmacol 2007; 22(2): 67-73.
[http://dx.doi.org/10.1002/hup.829] [PMID: 17299810]
[105]
Bilici M, Efe H, Köroğlu MA, Uydu HA, Bekaroğlu M, Değer O. Antioxidative enzyme activities and lipid peroxidation in major depression: Alterations by antidepressant treatments. J Affect Disord 2001; 64(1): 43-51.
[http://dx.doi.org/10.1016/S0165-0327(00)00199-3] [PMID: 11292519]
[106]
Srivastava N, Barthwal MK, Dalal PK, et al. A study on nitric oxide, β-adrenergic receptors and antioxidant status in the polymorphonuclear leukocytes from the patients of depression. J Affect Disord 2002; 72(1): 45-52.
[http://dx.doi.org/10.1016/S0165-0327(01)00421-9] [PMID: 12204316]
[107]
Herken H, Gurel A, Selek S, et al. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: Impact of antidepressant treatment. Arch Med Res 2007; 38(2): 247-52.
[http://dx.doi.org/10.1016/j.arcmed.2006.10.005] [PMID: 17227736]
[108]
Reddy R, Keshavan M, Yao JK. Reduced plasma antioxidants in first-episode patients with schizophrenia. Schizophr Res 2003; 62(3): 205-12.
[http://dx.doi.org/10.1016/S0920-9964(02)00407-3] [PMID: 12837516]
[109]
Zhang XY, Tan YL, Cao LY, et al. Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr Res 2006; 81(2-3): 291-300.
[http://dx.doi.org/10.1016/j.schres.2005.10.011] [PMID: 16309894]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy