Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Role of Th17 and IL-17 Cytokines on Inflammatory and Auto-immune Diseases

Author(s): Saima Akhter, Farhin Muntaha Tasnim, Mohammad Nazmul Islam, Abdur Rauf*, Saikat Mitra, Talha Bin Emran, Fahad A. Alhumaydhi, Anees Ahmed Khalil, Abdullah S.M. Aljohani, Waleed Al Abdulmonem and Muthu Thiruvengadam*

Volume 29, Issue 26, 2023

Published on: 07 September, 2023

Page: [2078 - 2090] Pages: 13

DOI: 10.2174/1381612829666230904150808

Price: $65

conference banner
Abstract

Background: The IL-17 (interleukin 17) family consists of six structurally related pro-inflammatory cytokines, namely IL-17A to IL-17F. These cytokines have garnered significant scientific interest due to their pivotal role in the pathogenesis of various diseases. Notably, a specific subset of T-cells expresses IL-17 family members, highlighting their importance in immune responses against microbial infections.

Introduction: IL-17 cytokines play a critical role in host defense mechanisms by inducing cytokines and chemokines, recruiting neutrophils, modifying T-cell differentiation, and stimulating the production of antimicrobial proteins. Maintaining an appropriate balance of IL-17 is vital for overall health. However, dysregulated production of IL-17A and other members can lead to the pathogenesis of numerous inflammatory and autoimmune diseases.

Method: This review provides a comprehensive overview of the IL-17 family and its involvement in several inflammatory and autoimmune diseases. Relevant literature and research studies were analyzed to compile the data presented in this review.

Results: IL-17 cytokines, particularly IL-17A, have been implicated in the development of various inflammatory and autoimmune disorders, including multiple sclerosis, Hashimoto's thyroiditis, systemic lupus erythematosus, pyoderma gangrenosum, autoimmune hepatic disorders, rheumatoid arthritis, psoriasis, psoriatic arthritis, ankylosing spondylitis, osteoarthritis, and graft-versus-host disease. Understanding the role of IL-17 in these diseases is crucial for developing targeted therapeutic strategies.

Conclusion: The significant involvement of IL-17 cytokines in inflammatory and autoimmune diseases underscores their potential as therapeutic targets. Current treatments utilizing antibodies against IL-17 cytokines and IL-17RA receptors have shown promise in managing these conditions. This review consolidates the understanding of IL-17 family members and their roles, providing valuable insights for the development of novel immunomodulators to effectively treat inflammatory and autoimmune diseases.

Keywords: Th17, IL-17, autoimmune disease, T cell, CD4+, cytokines.

[1]
Rudner XL, Happel KI, Young EA, Shellito JE. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect Immun 2007; 75(6): 3055-61.
[http://dx.doi.org/10.1128/IAI.01329-06] [PMID: 17403873]
[2]
Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 2004; 190(3): 624-31.
[http://dx.doi.org/10.1086/422329] [PMID: 15243941]
[3]
Tipping PG, Kitching AR. Glomerulonephritis, Th1 and Th2: what’s new? Clin Exp Immunol 2005; 142(2): 207-15.
[http://dx.doi.org/10.1111/j.1365-2249.2005.02842.x] [PMID: 16232206]
[4]
Kitching AR, Holdsworth SR. The emergence of TH17 cells as effectors of renal injury. J Am Soc Nephrol 2011; 22(2): 235-8.
[http://dx.doi.org/10.1681/ASN.2010050536] [PMID: 21289213]
[5]
Ramani K, Biswas PS. Emerging roles of the Th17/IL-17-axis in glomerulonephritis. Cytokine 2016; 77: 238-44.
[http://dx.doi.org/10.1016/j.cyto.2015.07.029] [PMID: 26440138]
[6]
Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007; 8(9): 950-7.
[http://dx.doi.org/10.1038/ni1497] [PMID: 17676044]
[7]
Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 2008; 8(5): 337-48.
[http://dx.doi.org/10.1038/nri2295] [PMID: 18408735]
[8]
Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol 2009; 27(1): 485-517.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132710] [PMID: 19132915]
[9]
Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 2010; 140(6): 845-58.
[http://dx.doi.org/10.1016/j.cell.2010.02.021] [PMID: 20303875]
[10]
Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev 2014; 13(6): 668-77.
[http://dx.doi.org/10.1016/j.autrev.2013.12.004] [PMID: 24418308]
[11]
Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med 2009; 361(9): 888-98.
[http://dx.doi.org/10.1056/NEJMra0707449] [PMID: 19710487]
[12]
Cypowyj S, Picard C. Maródi L, Casanova JL, Puel A. Immunity to infection in IL-17-deficient mice and humans. Eur J Immunol 2012; 42(9): 2246-54.
[http://dx.doi.org/10.1002/eji.201242605] [PMID: 22949323]
[13]
Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov 2012; 11(10): 763-76.
[http://dx.doi.org/10.1038/nrd3794] [PMID: 23023676]
[14]
Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 2010; 129(3): 311-21.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03240.x] [PMID: 20409152]
[15]
Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 2010; 10(7): 479-89.
[http://dx.doi.org/10.1038/nri2800] [PMID: 20559326]
[16]
Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 2014; 14(9): 585-600.
[http://dx.doi.org/10.1038/nri3707] [PMID: 25145755]
[17]
Kenna TJ, Davidson SI, Duan R, et al. Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive γ/δ T cells in patients with active ankylosing spondylitis. Arthritis Rheum 2012; 64(5): 1420-9.
[http://dx.doi.org/10.1002/art.33507] [PMID: 22144400]
[18]
Beringer A, Noack M, Miossec P. IL-17 in chronic inflammation: from discovery to targeting. Trends Mol Med 2016; 22(3): 230-41.
[http://dx.doi.org/10.1016/j.molmed.2016.01.001] [PMID: 26837266]
[19]
Dong C, Kong S, Zheng X, et al. Genome-wide identification of interleukin-17 (IL17) in common carp (Cyprinus carpio) and its expression following Aeromonas hydrophila infection. Gene 2019; 686: 68-75.
[http://dx.doi.org/10.1016/j.gene.2018.10.038] [PMID: 30342169]
[20]
Mauermann N, Burian J, von Garnier C, et al. Interferon-γ regulates idiopathic pneumonia syndrome, a Th17+CD4+ T-cell-mediated graft-versus-host disease. Am J Respir Crit Care Med 2008; 178(4): 379-88.
[http://dx.doi.org/10.1164/rccm.200711-1648OC] [PMID: 18511701]
[21]
Brembilla NC, Senra L, Boehncke WH. The IL-17 family of cytokines in psoriasis: IL-17A and beyond. Front Immunol 2018; 9: 1682.
[http://dx.doi.org/10.3389/fimmu.2018.01682] [PMID: 30127781]
[22]
Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2003; 14(2): 155-74.
[http://dx.doi.org/10.1016/S1359-6101(03)00002-9] [PMID: 12651226]
[23]
Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity 2011; 34(2): 149-62.
[http://dx.doi.org/10.1016/j.immuni.2011.02.012] [PMID: 21349428]
[24]
Chi H, Sun L. Comparative study of four interleukin 17 cytokines of tongue sole Cynoglossus semilaevis: Genomic structure, expression pattern, and promoter activity. Fish Shellfish Immunol 2015; 47(1): 321-30.
[http://dx.doi.org/10.1016/j.fsi.2015.09.020] [PMID: 26364740]
[25]
Jiang B, Li YW, Hu YZ, Luo HL, Li AX. Characterization and expression analysis of six interleukin-17 receptor genes in grouper (Epinephelus coioides) after Cryptocaryon irritans infection. Fish Shellfish Immunol 2017; 69: 46-51.
[http://dx.doi.org/10.1016/j.fsi.2017.08.010] [PMID: 28811226]
[26]
González-Fernández C Chaves-Pozo E, Cuesta A. Identification and regulation of interleukin-17 (IL-17) family ligands in the teleost fish European sea bass. Int J Mol Sci 2020; 21(7): 2439.
[http://dx.doi.org/10.3390/ijms21072439] [PMID: 32244562]
[27]
Mao X, Tian Y, Wen H, et al. Effects of Vibrio harveyi infection on serum biochemical parameters and expression profiles of interleukin-17 (IL-17)/interleukin-17 receptor (IL-17R) genes in spotted sea bass. Dev Comp Immunol 2020; 110: 103731.
[http://dx.doi.org/10.1016/j.dci.2020.103731] [PMID: 32387558]
[28]
Bordon Y. Cytokines: IL-17C joins the family firm. Nat Rev Immunol 2011; 11(12): 805.
[PMID: 22094986]
[29]
de Beaucoudrey L, Puel A, Filipe-Santos O, et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17–producing T cells. J Exp Med 2008; 205(7): 1543-50.
[http://dx.doi.org/10.1084/jem.20080321] [PMID: 18591412]
[30]
Puel A, Cypowyj S, Bustamante J, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 2011; 332(6025): 65-8.
[http://dx.doi.org/10.1126/science.1200439] [PMID: 21350122]
[31]
Song X, Qian Y. The activation and regulation of IL-17 receptor mediated signaling. Cytokine 2013; 62(2): 175-82.
[http://dx.doi.org/10.1016/j.cyto.2013.03.014] [PMID: 23557798]
[32]
Kuestner RE, Taft DW, Haran A, et al. Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol 2007; 179(8): 5462-73.
[http://dx.doi.org/10.4049/jimmunol.179.8.5462] [PMID: 17911633]
[33]
Shibabaw T. Inflammatory cytokine: IL-17A signaling pathway in patients present with COVID-19 and current treatment strategy. J Inflamm Res 2020; 13: 673-80.
[http://dx.doi.org/10.2147/JIR.S278335] [PMID: 33116747]
[34]
Song X, Qian Y. IL-17 family cytokines mediated signaling in the pathogenesis of inflammatory diseases. Cell Signal 2013; 25(12): 2335-47.
[http://dx.doi.org/10.1016/j.cellsig.2013.07.021] [PMID: 23917206]
[35]
Chang SH, Dong C. Signaling of interleukin-17 family cytokines in immunity and inflammation. Cell Signal 2011; 23(7): 1069-75.
[http://dx.doi.org/10.1016/j.cellsig.2010.11.022] [PMID: 21130872]
[36]
Liu S, Song X, Chrunyk BA, et al. Crystal structures of interleukin 17A and its complex with IL-17 receptor A. Nat Commun 2013; 4(1): 1888.
[http://dx.doi.org/10.1038/ncomms2880] [PMID: 23695682]
[37]
Kirkham BW, Kavanaugh A, Reich K. Interleukin-17A: a unique pathway in immune-mediated diseases: psoriasis, psoriatic arthritis and rheumatoid arthritis. Immunology 2014; 141(2): 133-42.
[http://dx.doi.org/10.1111/imm.12142] [PMID: 23819583]
[38]
Kagami S, Rizzo HL, Kurtz SE, Miller LS, Blauvelt A. IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J Immunol 2010; 185(9): 5453-62.
[http://dx.doi.org/10.4049/jimmunol.1001153] [PMID: 20921529]
[39]
Bie Q, Jin C, Zhang B, Dong H. IL-17B: A new area of study in the IL-17 family. Mol Immunol 2017; 90: 50-6.
[http://dx.doi.org/10.1016/j.molimm.2017.07.004] [PMID: 28704706]
[40]
Yamaguchi Y, Fujio K, Shoda H, et al. IL-17B and IL-17C are associated with TNF-α production and contribute to the exacerbation of inflammatory arthritis. J Immunol 2007; 179(10): 7128-36.
[http://dx.doi.org/10.4049/jimmunol.179.10.7128] [PMID: 17982105]
[41]
Reynolds JM, Lee YH, Shi Y, et al. Interleukin-17B antagonizes interleukin-25-mediated mucosal inflammation. Immunity 2015; 42(4): 692-703.
[http://dx.doi.org/10.1016/j.immuni.2015.03.008] [PMID: 25888259]
[42]
Bie Q, Zhang B, Sun C, et al. IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells. Oncotarget 2017; 8(12): 18914-23.
[http://dx.doi.org/10.18632/oncotarget.14835] [PMID: 28145881]
[43]
Yang YF, Lee YC, Lo S, et al. A positive feedback loop of IL-17B-IL-17RB activates ERK/β-catenin to promote lung cancer metastasis. Cancer Lett 2018; 422: 44-55.
[http://dx.doi.org/10.1016/j.canlet.2018.02.037] [PMID: 29496538]
[44]
Laprevotte E, Cochaud S, du Manoir S, et al. The IL-17B-IL-17 receptor B pathway promotes resistance to paclitaxel in breast tumors through activation of the ERK1/2 pathway. Oncotarget 2017; 8(69): 113360-72.
[http://dx.doi.org/10.18632/oncotarget.23008] [PMID: 29371916]
[45]
Wu HH, Hwang-Verslues WW, Lee WH, et al. Targeting IL-17B–IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. J Exp Med 2015; 212(3): 333-49.
[http://dx.doi.org/10.1084/jem.20141702] [PMID: 25732306]
[46]
Peng T, Chanthaphavong RS, Sun S, et al. Keratinocytes produce IL-17c to protect peripheral nervous systems during human HSV-2 reactivation. J Exp Med 2017; 214(8): 2315-29.
[http://dx.doi.org/10.1084/jem.20160581] [PMID: 28663436]
[47]
Chang SH, Reynolds JM, Pappu BP, Chen G, Martinez GJ, Dong C. Interleukin-17C promotes Th17 cell responses and autoimmune disease via interleukin-17 receptor E. Immunity 2011; 35(4): 611-21.
[http://dx.doi.org/10.1016/j.immuni.2011.09.010] [PMID: 21982598]
[48]
Song X, Zhu S, Shi P, et al. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat Immunol 2011; 12(12): 1151-8.
[http://dx.doi.org/10.1038/ni.2155] [PMID: 21993849]
[49]
Ramirez-Carrozzi V, Sambandam A, Luis E, et al. IL-17C regulates the innate immune function of epithelial cells in an autocrine manner. Nat Immunol 2011; 12(12): 1159-66.
[http://dx.doi.org/10.1038/ni.2156] [PMID: 21993848]
[50]
Mellett M, Atzei P, Horgan A, et al. Orphan receptor IL-17RD tunes IL-17A signalling and is required for neutrophilia. Nat Commun 2012; 3(1): 1119.
[http://dx.doi.org/10.1038/ncomms2127] [PMID: 23047677]
[51]
Li D, Cai W, Gu R, et al. Th17 cell plays a role in the pathogenesis of Hashimoto’s thyroiditis in patients. Clin Immunol 2013; 149(3): 411-20.
[http://dx.doi.org/10.1016/j.clim.2013.10.001] [PMID: 24211715]
[52]
Mellett M, Atzei P, Bergin R, et al. Orphan receptor IL-17RD regulates Toll-like receptor signalling via SEFIR/TIR interactions. Nat Commun 2015; 6(1): 6669-83.
[http://dx.doi.org/10.1038/ncomms7669] [PMID: 25808990]
[53]
Yang S, Wang Y, Mei K, et al. Tumor necrosis factor receptor 2 (TNFR2) interleukin-17 receptor D (IL-17RD) heteromerization reveals a novel mechanism for NF-κB activation. J Biol Chem 2015; 290(2): 861-71.
[http://dx.doi.org/10.1074/jbc.M114.586560] [PMID: 25378394]
[54]
Saddawi-Konefka R, Seelige R, Gross ETE, et al. Nrf2 induces IL-17D to mediate tumor and virus surveillance. Cell Rep 2016; 16(9): 2348-58.
[http://dx.doi.org/10.1016/j.celrep.2016.07.075] [PMID: 27545889]
[55]
Reynolds JM, Angkasekwinai P, Dong C. IL-17 family member cytokines: Regulation and function in innate immunity. Cytokine Growth Factor Rev 2010; 21(6): 413-23.
[http://dx.doi.org/10.1016/j.cytogfr.2010.10.002] [PMID: 21074482]
[56]
Gratchev A, Kzhyshkowska J, Duperrier K, Utikal J, Velten FW, Goerdt S. The receptor for interleukin-17E is induced by Th2 cytokines in antigen-presenting cells. Scand J Immunol 2004; 60(3): 233-7.
[http://dx.doi.org/10.1111/j.0300-9475.2004.01443.x] [PMID: 15320879]
[57]
Hurst SD, Muchamuel T, Gorman DM, et al. New IL-17 family members promote Th1 or Th2 responses in the lung: In vivo function of the novel cytokine IL-25. J Immunol 2002; 169(1): 443-53.
[http://dx.doi.org/10.4049/jimmunol.169.1.443] [PMID: 12077275]
[58]
Kleinschek MA, Owyang AM, Joyce-Shaikh B, et al. IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med 2007; 204(1): 161-70.
[http://dx.doi.org/10.1084/jem.20061738] [PMID: 17200411]
[59]
Moro K, Yamada T, Tanabe M, et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 2010; 463(7280): 540-4.
[http://dx.doi.org/10.1038/nature08636] [PMID: 20023630]
[60]
Beale J, Jayaraman A, Jackson DJ, et al. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci Transl Med 2014; 6(256): 256ra134.
[http://dx.doi.org/10.1126/scitranslmed.3009124] [PMID: 25273095]
[61]
Kohanski MA, Workman AD, Patel NN, et al. Solitary chemosensory cells are a primary epithelial source of IL-25 in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2018; 142(2): 460-469.e7.
[http://dx.doi.org/10.1016/j.jaci.2018.03.019] [PMID: 29778504]
[62]
Akimzhanov AM, Yang XO, Dong C. Chromatin remodeling of interleukin-17 (IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J Biol Chem 2007; 282(9): 5969-72.
[http://dx.doi.org/10.1074/jbc.C600322200] [PMID: 17218320]
[63]
Hartupee J, Liu C, Novotny M, Li X, Hamilton T. IL-17 enhances chemokine gene expression through mRNA stabilization. J Immunol 2007; 179(6): 4135-41.
[http://dx.doi.org/10.4049/jimmunol.179.6.4135] [PMID: 17785852]
[64]
Piper C, Drobyski WR. Role of TH17 cells and interleukin 17 in graft-versus-host disease and graft versus leukemia reactivity. Immune Biology of Allogeneic Hematopoietic Stem Cell Transplantation 2019; pp. 231-49.
[http://dx.doi.org/10.1016/B978-0-12-812630-1.00014-1]
[65]
Chen B, Deng Y, Tan Y, Qin J, Chen LB. Association between severity of knee osteoarthritis and serum and synovial fluid interleukin 17 concentrations. J Int Med Res 2014; 42(1): 138-44.
[http://dx.doi.org/10.1177/0300060513501751] [PMID: 24319050]
[66]
Pawłowska J, Mikosik A, Soroczynska-Cybula M,, et al. Different distribution of CD4 and CD8 T cells in synovial membrane and peripheral blood of rheumatoid arthritis and osteoarthritis patients. Folia Histochem Cytobiol 2009; 47(4): 627-32.
[PMID: 20430731]
[67]
Suurmond J, Dorjée AL, Boon MR, et al. Retraction Note: Mast cells are the main interleukin 17-positive cells in anticitrullinated protein antibody-positive and -negative rheumatoid arthritis and osteoarthritis synovium. Arthritis Res Ther 2015; 17(1): 354.
[http://dx.doi.org/10.1186/s13075-015-0847-3] [PMID: 26653257]
[68]
Honorati MC, Neri S, Cattini L, Facchini A. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthritis Cartilage 2006; 14(4): 345-52.
[http://dx.doi.org/10.1016/j.joca.2005.10.004] [PMID: 16311048]
[69]
Honorati MC, Bovara M, Cattini L, Piacentini A, Facchini A. Contribution of interleukin 17 to human cartilage degradation and synovial inflammation in osteoarthritis. Osteoarthritis Cartilage 2002; 10(10): 799-807.
[http://dx.doi.org/10.1053/joca.2002.0829] [PMID: 12359166]
[70]
Johansen C, Usher PA, Kjellerup RB, Lundsgaard D, Iversen L, Kragballe K. Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br J Dermatol 2009; 160(2): 319-24.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08902.x] [PMID: 19016708]
[71]
Raychaudhuri S, Raychaudhuri S. Scid mouse model of psoriasis: A unique tool for drug development of autoreactive T-cell and TH-17 cell-mediated autoimmune diseases. Indian J Dermatol 2010; 55(2): 157-60.
[http://dx.doi.org/10.4103/0019-5154.62752] [PMID: 20606886]
[72]
Raychaudhuri SP, Raychaudhuri SK, Genovese MC. IL-17 receptor and its functional significance in psoriatic arthritis. Mol Cell Biochem 2012; 359(1-2): 419-29.
[http://dx.doi.org/10.1007/s11010-011-1036-6] [PMID: 21894442]
[73]
Menon B, Gullick NJ, Walter GJ, et al. Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol 2014; 66(5): 1272-81.
[http://dx.doi.org/10.1002/art.38376] [PMID: 24470327]
[74]
Kirkham BW, Lassere MN, Edmonds JP, et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: A two-year prospective study (the DAMAGE study cohort). Arthritis Rheum 2006; 54(4): 1122-31.
[http://dx.doi.org/10.1002/art.21749] [PMID: 16572447]
[75]
Schaeffer J, Cossetti C, Mallucci G, Pluchino S. Chapter 30-Multiple sclerosis. In: Zigmond MJ, Rowland LP, Coyle JT, Eds. Neurobiology of brain disorders. San Diego: Academic Press 2015; pp. 497-520.
[76]
Tzartos JS, Friese MA, Craner MJ, et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 2008; 172(1): 146-55.
[http://dx.doi.org/10.2353/ajpath.2008.070690] [PMID: 18156204]
[77]
Huppert J, Closhen D, Croxford A, et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J 2010; 24(4): 1023-34.
[http://dx.doi.org/10.1096/fj.09-141978] [PMID: 19940258]
[78]
Bossowski A, Moniuszko M, Idźkowska E, et al. Analiza komórek CD4+CD161+CD196+ i CD4+IL-17+ Th17 we krwi obwodowej u młodocianych z zapaleniem tarczycy typu Hashimoto i chorobą Gravesa-Basedowa. Pediatr Endocrinol Diabetes Metab 2012; 18(3): 89-95.
[PMID: 23146786]
[79]
Bossowski A, Moniuszko M, Idźkowska E, et al. Decreased proportions of CD4 + IL17+/CD4 + CD25 + CD127− and CD4 + IL17+/CD4 + CD25 + CD127 − FoxP3+ T cells in children with autoimmune thyroid diseases. Autoimmunity 2016; 49(5): 320-8.
[http://dx.doi.org/10.1080/08916934.2016.1183654] [PMID: 27206624]
[80]
El-Zawawy HT, Farag HF, Tolba MM, Abdalsamea HA. Improving Hashimoto’s thyroiditis by eradicating Blastocystis hominis: relation to IL-17. Ther Adv Endocrinol Metab 2020; 11.
[http://dx.doi.org/10.1177/2042018820907013] [PMID: 32128107]
[81]
Duan J, Kang J, Deng T, Yang X, Chen M. Exposure to DBP and high iodine aggravates autoimmune thyroid disease through increasing the levels of IL-17 and thyroid-binding globulin in Wistar rats. Toxicol Sci 2018; 163(1): 196-205.
[http://dx.doi.org/10.1093/toxsci/kfy019] [PMID: 29385629]
[82]
Jadali Z, Esfahanian F, Ghelich R, Rashidian H. Increased levels of serum interleukin-17 in patients with Hashimoto’s thyroiditis. Indian J Endocrinol Metab 2017; 21(4): 551-4.
[http://dx.doi.org/10.4103/ijem.IJEM_412_16] [PMID: 28670539]
[83]
Simoni Y, Gautron AS, Beaudoin L, et al. NOD mice contain an elevated frequency of iNKT17 cells that exacerbate diabetes. Eur J Immunol 2011; 41(12): 3574-85.
[http://dx.doi.org/10.1002/eji.201141751] [PMID: 22002883]
[84]
Nikoopour E, Schwartz JA, Huszarik K, et al. Th17 polarized cells from nonobese diabetic mice following mycobacterial adjuvant immunotherapy delay type 1 diabetes. J Immunol 2010; 184(9): 4779-88.
[http://dx.doi.org/10.4049/jimmunol.0902822] [PMID: 20363968]
[85]
Marwaha AK, Crome SQ, Panagiotopoulos C, et al. Cutting edge: Increased IL-17-secreting T cells in children with new-onset type 1 diabetes. J Immunol 2010; 185(7): 3814-8.
[http://dx.doi.org/10.4049/jimmunol.1001860] [PMID: 20810982]
[86]
Schmidt T, Schwinge D, Rolvien T, et al. Th17 cell frequency is associated with low bone mass in primary sclerosing cholangitis. J Hepatol 2019; 70(5): 941-53.
[http://dx.doi.org/10.1016/j.jhep.2018.12.035] [PMID: 30641095]
[87]
Miller PD. Denosumab: Anti-RANKL antibody. Curr Osteoporos Rep 2009; 7(1): 18-22.
[http://dx.doi.org/10.1007/s11914-009-0004-5] [PMID: 19239825]
[88]
Vaillant AJ, Akpaka PE. Cytokines (IL-17, IL-23 and IL-33) in systemic lupus erythematosus in Trinidad and Tobago. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.09.27.20202762]
[89]
Papp KA, Leonardi CL, Blauvelt A, et al. Ixekizumab treatment for psoriasis: integrated efficacy analysis of three double-blinded, controlled studies (UNCOVER-1, UNCOVER-2, UNCOVER-3). Br J Dermatol 2018; 178(3): 674-81.
[http://dx.doi.org/10.1111/bjd.16050] [PMID: 28991370]
[90]
Wong CK, Lit LCW, Tam LS, Li EKM, Wong PTY, Lam CWK. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: Implications for Th17-mediated inflammation in auto-immunity. Clin Immunol 2008; 127(3): 385-93.
[http://dx.doi.org/10.1016/j.clim.2008.01.019] [PMID: 18373953]
[91]
Tanasescu C, Balanescu E, Balanescu P, et al. IL-17 in cutaneous lupus erythematosus. Eur J Intern Med 2010; 21(3): 202-7.
[http://dx.doi.org/10.1016/j.ejim.2010.03.004] [PMID: 20493423]
[92]
van der Horst-Bruinsma I, Miceli-Richard C, Braun J, et al. A pooled analysis reporting the efficacy and safety of secukinumab in male and female patients with ankylosing spondylitis. Rheumatol Ther 2021; 8(4): 1775-87.
[http://dx.doi.org/10.1007/s40744-021-00380-2] [PMID: 34618347]
[93]
Schett G, Baraliakos X, Van den Bosch F, et al. Secukinumab efficacy on enthesitis in patients with ankylosing spondylitis: pooled analysis of four pivotal phase III studies. J Rheumatol 2021; 48(8): 1251-8.
[http://dx.doi.org/10.3899/jrheum.201111] [PMID: 33722947]
[94]
Baraliakos X, Van den Bosch F, Machado PM, et al. Achievement of remission endpoints with secukinumab over 3 years in active ankylosing spondylitis: pooled analysis of two phase 3 studies. Rheumatol Ther 2021; 8(1): 273-88.
[http://dx.doi.org/10.1007/s40744-020-00269-6] [PMID: 33351179]
[95]
Braun J, Deodhar A, Landewé R, et al. Impact of baseline C-reactive protein levels on the response to secukinumab in ankylosing spondylitis: 3-year pooled data from two phase III studies. RMD Open 2018; 4(2): e000749.
[http://dx.doi.org/10.1136/rmdopen-2018-000749] [PMID: 30564451]
[96]
Deodhar AA, Miceli-Richard C, Baraliakos X, et al. Incidence of uveitis in secukinumab‐treated patients with ankylosing spondylitis: pooled data analysis from three phase 3 studies. ACR Open Rheumatol 2020; 2(5): 294-9.
[http://dx.doi.org/10.1002/acr2.11139] [PMID: 32352653]
[97]
Wei JCC, Baeten D, Sieper J, et al. Efficacy and safety of secukinumab in Asian patients with active ankylosing spondylitis: 52-week pooled results from two phase 3 studies. Int J Rheum Dis 2017; 20(5): 589-96.
[http://dx.doi.org/10.1111/1756-185X.13094] [PMID: 28544533]
[98]
Kharwar NK, Prasad KN, Singh K, Paliwal VK, Modi DR. Polymorphisms of IL-17 and ICAM-1 and their expression in Guillain-Barré syndrome. Int J Neurosci 2017; 127(8): 680-7.
[http://dx.doi.org/10.1080/00207454.2016.1231186] [PMID: 27595159]
[99]
Li S, Yu M, Li H, Zhang H, Jiang Y. IL-17 and IL-22 in cerebrospinal fluid and plasma are elevated in Guillain-Barré syndrome. Mediators Inflamm 2012; 2012: 1-7.
[http://dx.doi.org/10.1155/2012/260473] [PMID: 23091305]
[100]
Ahn C, Negus D, Huang W. Pyoderma gangrenosum: A review of pathogenesis and treatment. Expert Rev Clin Immunol 2018; 14(3): 225-33.
[http://dx.doi.org/10.1080/1744666X.2018.1438269] [PMID: 29406827]
[101]
Hobbs MM, Ortega-Loayza AG. Pyoderma gangrenosum: From historical perspectives to emerging investigations. Int Wound J 2020; 17(5): 1255-65.
[http://dx.doi.org/10.1111/iwj.13389] [PMID: 32378319]
[102]
Marzano AV, Damiani G, Ceccherini I, Berti E, Gattorno M, Cugno M. Autoinflammation in pyoderma gangrenosum and its syndromic form (pyoderma gangrenosum, acne and suppurative hidradenitis). Br J Dermatol 2017; 176(6): 1588-98.
[http://dx.doi.org/10.1111/bjd.15226] [PMID: 27943240]
[103]
Tee MW, Avarbock AB, Ungar J, Frew JW. Rapid resolution of pyoderma gangrenosum with brodalumab therapy. JAAD Case Rep 2020; 6(11): 1167-9.
[http://dx.doi.org/10.1016/j.jdcr.2020.08.033] [PMID: 32953958]
[104]
Frew JW, Navrazhina K, Grand D, et al. The effect of subcutaneous brodalumab on clinical disease activity in hidradenitis suppurativa: An open-label cohort study. J Am Acad Dermatol 2020; 83(5): 1341-8.
[http://dx.doi.org/10.1016/j.jaad.2020.05.007] [PMID: 32416208]
[105]
Zhao L, Tang Y, You Z, et al. Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 expression. PLoS One 2011; 6(4): e18909.
[http://dx.doi.org/10.1371/journal.pone.0018909] [PMID: 21526159]
[106]
Yan S, Wang L, Liu N, Wang Y, Chu Y. Critical role of interleukin‐17/interleukin‐17 receptor axis in mediating Con A‐induced hepatitis. Immunol Cell Biol 2012; 90(4): 421-8.
[http://dx.doi.org/10.1038/icb.2011.59] [PMID: 21691280]
[107]
Tyagi AM, Mansoori MN, Srivastava K, et al. Enhanced immunoprotective effects by anti-IL-17 antibody translates to improved skeletal parameters under estrogen deficiency compared with anti-RANKL and anti-TNF-α antibodies. J Bone Miner Res 2014; 29(9): 1981-92.
[http://dx.doi.org/10.1002/jbmr.2228] [PMID: 24677326]
[108]
Mease PJ, Genovese MC, Mutebi A, et al. Improvement in psoriasis signs and symptoms assessed by the Psoriasis Symptom Inventory with brodalumab treatment in patients with psoriatic arthritis. J Rheumatol 2016; 43(2): 343-9.
[http://dx.doi.org/10.3899/jrheum.150182] [PMID: 26773108]
[109]
Papp KA, Weinberg MA, Morris A, Reich K. IL17A/F nanobody sonelokimab in patients with plaque psoriasis: a multicentre, randomised, placebo-controlled, phase 2b study. Lancet 2021; 397(10284): 1564-75.
[http://dx.doi.org/10.1016/S0140-6736(21)00440-2] [PMID: 33894834]
[110]
Kaul M, Jarvis P, Rozenberg I, et al. First-in-human study demonstrating the safety and clinical efficacy of novel anti-IL-17A monoclonal antibody CJM112 in moderate to severe plaque psoriasis. J Eur Acad Dermatol Venereol 2021; 35(5): 1143-51.
[http://dx.doi.org/10.1111/jdv.17071] [PMID: 33617042]
[111]
Röhn TA, Jennings GT, Hernandez M, et al. Vaccination against IL-17 suppresses autoimmune arthritis and encephalomyelitis. Eur J Immunol 2006; 36(11): 2857-67.
[http://dx.doi.org/10.1002/eji.200636658] [PMID: 17048275]
[112]
Sonderegger I, Röhn TA, Kurrer MO, et al. Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis. Eur J Immunol 2006; 36(11): 2849-56.
[http://dx.doi.org/10.1002/eji.200636484] [PMID: 17039570]
[113]
Gelderblom M, Weymar A, Bernreuther C, et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 2012; 120(18): 3793-802.
[http://dx.doi.org/10.1182/blood-2012-02-412726] [PMID: 22976954]
[114]
Langley RG, Rich P, Menter A, et al. Improvement of scalp and nail lesions with ixekizumab in a phase 2 trial in patients with chronic plaque psoriasis. J Eur Acad Dermatol Venereol 2015; 29(9): 1763-70.
[http://dx.doi.org/10.1111/jdv.12996] [PMID: 25693783]
[115]
Menter A, Warren RB, Langley RG, et al. Efficacy of ixekizumab compared to etanercept and placebo in patients with moderate-to-severe plaque psoriasis and non-pustular palmoplantar involvement: results from three phase 3 trials (UNCOVER-1, UNCOVER-2 and UNCOVER-3). J Eur Acad Dermatol Venereol 2017; 31(10): 1686-92.
[http://dx.doi.org/10.1111/jdv.14237] [PMID: 28322474]
[116]
Genovese MC, Greenwald M, Cho CS, et al. A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheumatol 2014; 66(7): 1693-704.
[http://dx.doi.org/10.1002/art.38617] [PMID: 24623718]
[117]
Genovese MC, Braun DK, Erickson JS, et al. Safety and efficacy of open-label subcutaneous ixekizumab treatment for 48 weeks in a phase II study in biologic-naive and TNF-IR patients with rheumatoid arthritis. J Rheumatol 2016; 43(2): 289-97.
[http://dx.doi.org/10.3899/jrheum.140831] [PMID: 26669919]
[118]
Hueber W, Patel DD, Dryja T, et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med 2010; 2(52): 52ra72.
[http://dx.doi.org/10.1126/scitranslmed.3001107] [PMID: 20926833]
[119]
Burmester GR, Durez P, Shestakova G, et al. Association of HLA-DRB1 alleles with clinical responses to the anti-interleukin-17A monoclonal antibody secukinumab in active rheumatoid arthritis. Rheumatology (Oxford) 2016; 55(1): 49-55.
[http://dx.doi.org/10.1093/rheumatology/kev258] [PMID: 26268815]
[120]
Khokhlovich E, Grant S, Kazani S, et al. Late Breaking Abstract - The biological pathways underlying response to anti-IL-17A (AIN457; secukinumab) therapy differ across severe asthmatic patients. Eur Respir J 2017; 50: OA2897.
[http://dx.doi.org/10.1183/1393003.congress-2017.OA2897]
[121]
Letko E, Yeh S, Foster CS, Pleyer U, Brigell M, Grosskreutz CL. Efficacy and safety of intravenous secukinumab in noninfectious uveitis requiring steroid-sparing immunosuppressive therapy. Ophthalmology 2015; 122(5): 939-48.
[http://dx.doi.org/10.1016/j.ophtha.2014.12.033] [PMID: 25638011]
[122]
Erdes S, Nasonov E, Kunder E, et al. Primary efficacy of netakimab, a novel interleukin-17 inhibitor, in the treatment of active ankylosing spondylitis in adults. Clin Exp Rheumatol 2020; 38(1): 27-34.
[PMID: 31025924]
[123]
Puig L, Bakulev AL, Kokhan MM, et al. Efficacy and safety of netakimab, a novel anti-IL-17 monoclonal antibody, in patients with moderate to severe plaque psoriasis. Results of a 54-week randomized double-blind placebo-controlled PLANETA clinical trial. Dermatol Ther (Heidelb) 2021; 11(4): 1319-32.
[http://dx.doi.org/10.1007/s13555-021-00554-4] [PMID: 34060012]
[124]
Pavelka K, Chon Y, Newmark R, Lin SL, Baumgartner S, Erondu N. A study to evaluate the safety, tolerability, and efficacy of brodalumab in subjects with rheumatoid arthritis and an inadequate response to methotrexate. J Rheumatol 2015; 42(6): 912-9.
[http://dx.doi.org/10.3899/jrheum.141271] [PMID: 25877498]
[125]
Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med 2013; 188(11): 1294-302.
[http://dx.doi.org/10.1164/rccm.201212-2318OC] [PMID: 24200404]
[126]
Mease PJ, Genovese MC, Greenwald MW, et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N Engl J Med 2014; 370(24): 2295-306.
[http://dx.doi.org/10.1056/NEJMoa1315231] [PMID: 24918373]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy