Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Research Progress of the Molecular Mechanism of Antithyroid Cancer Activity of Shikonin

Author(s): Chunguang Sun and Lin Liao*

Volume 17, 2024

Published on: 13 October, 2023

Article ID: e040923220678 Pages: 8

DOI: 10.2174/1874467217666230904104414

open_access

conference banner
Abstract

Thyroid cancer is one of the most common endocrine neoplasms. Treatment methods include surgical resection, radioactive iodine therapy, inhibition of thyroid-stimulating hormone, and inhibition of kinase-based target therapies. These treatments induced adverse effects. Lithospermum officinale possesses antioxidant, anticancer, burn-healing, and anti-inflammatory activities, and Shikonin is the main ingredient. Antithyroid cancer studies of Shikonin discovered that it inhibited thyroid cancer cell migration and invasion by suppressing the epithelial-mesenchymal transition; induced cell cycle arrest; induced DNA damage and apoptosis by producing excessive reactive oxygen species; upregulated Bax; increased the stability of p53; decreased the expression of Mdm2; downregulated Slug and MMP-2, MMP-9, and MMP-14; repressed the phosphorylation of Erk and Akt; activated the p16/retinoblastoma protein pathway, leading to apoptosis; suppressed the expression of DNMT1; reduced the PTEN gene methylation; increased the expression of PTEN, leading to the inhibition of migration; increased LC3-II to induce autophagy and apoptosis of medullary thyroid carcinoma; and upregulated βII-tubulin in the cell to produce less resistance to cisplatin and paclitaxel, without cross-resistance to other anticancer agents. In vivo studies showed that it is safe in Sprague-Dawley rats, Beagle dogs, and nude mice.

Keywords: Thyroid cancer, Lithospermum officinale, Shikonin, apoptosis, Autophagy, Drug resistance, Toxicological study.

[1]
Wiltshire, J. J.; Drake, T. M.; Uttley, L.; Balasubramanian, S. P. Systematic Review of Trends in the Incidence Rates of Thyroid Cancer. Thyroid., 2016, 26(11), 1541-1552.
[2]
Bonjoc, K.J.; Young, H.; Warner, S.; Gernon, T.; Maghami, E.; Chaudhry, A. Thyroid cancer diagnosis in the era of precision imaging. J. Thorac. Dis., 2020, 12(9), 5128-5139.
[http://dx.doi.org/10.21037/jtd.2019.08.37] [PMID: 33145090]
[3]
Haroon Al Rasheed, M.R.; Xu, B. Molecular Alterations in Thyroid Carcinoma. Surg. Pathol. Clin., 2019, 12(4), 921-930.
[http://dx.doi.org/10.1016/j.path.2019.08.002] [PMID: 31672298]
[4]
Haugen, B. R.; Alexander, E. K.; Bible, K. C.; Doherty, G. M.; Mandel, S. J.; Nikiforov, Y. E.; Pacini, F.; Randolph, G. W.; Sawka, A. M.; Schlumberger, M.; Schuff, K. G.; Sherman, S. I.; Sosa, J. A.; Steward, D. L.; Tuttle, R. M.; Wartofsky, L. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid, 2016, 26(1), 1-133.
[5]
Kim, B.H.; Kim, I.J. Recent Updates on the Management of Medullary Thyroid Carcinoma. Endocrinol. Metab. (Seoul), 2016, 31(3), 392-399.
[http://dx.doi.org/10.3803/EnM.2016.31.3.392] [PMID: 27586449]
[6]
Cabanillas, M.E.; Ryder, M.; Jimenez, C. Targeted Therapy for Advanced Thyroid Cancer: Kinase Inhibitors and Beyond. Endocr. Rev., 2019, 40(6), 1573-1604.
[http://dx.doi.org/10.1210/er.2019-00007] [PMID: 31322645]
[7]
Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol., 2015, 4(1), 27-30.
[PMID: 28197471]
[8]
Cooper, D.S. Antithyroid Drugs. N. Engl. J. Med., 2005, 352(9), 905-917.
[http://dx.doi.org/10.1056/NEJMra042972] [PMID: 15745981]
[9]
Fard-Esfahani, A.; Emami-Ardekani, A.; Fallahi, B.; Fard-Esfahani, P.; Beiki, D.; Hassanzadeh-Rad, A.; Eftekhari, M. Adverse effects of radioactive iodine-131 treatment for differentiated thyroid carcinoma. Nucl. Med. Commun., 2014, 35(8), 808-817.
[http://dx.doi.org/10.1097/MNM.0000000000000132] [PMID: 24751702]
[10]
Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboulleux, S.; Godbert, Y.; Barlesi, F.; Morris, J.C.; Owonikoko, T.K.; Tan, D.S.W.; Gautschi, O.; Weiss, J.; de la Fouchardière, C.; Burkard, M.E.; Laskin, J.; Taylor, M.H.; Kroiss, M.; Medioni, J.; Goldman, J.W.; Bauer, T.M.; Levy, B.; Zhu, V.W.; Lakhani, N.; Moreno, V.; Ebata, K.; Nguyen, M.; Heirich, D.; Zhu, E.Y.; Huang, X.; Yang, L.; Kherani, J.; Rothenberg, S.M.; Drilon, A.; Subbiah, V.; Shah, M.H.; Cabanillas, M.E. Efficacy of selpercatinib in RET -altered thyroid cancers. N. Engl. J. Med., 2020, 383(9), 825-835.
[http://dx.doi.org/10.1056/NEJMoa2005651] [PMID: 32846061]
[11]
Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; Gianoukakis, A.G.; Kiyota, N.; Taylor, M.H.; Kim, S.B.; Krzyzanowska, M.K.; Dutcus, C.E.; de las Heras, B.; Zhu, J.; Sherman, S.I. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med., 2015, 372(7), 621-630.
[http://dx.doi.org/10.1056/NEJMoa1406470] [PMID: 25671254]
[12]
Elisei, R.; Schlumberger, M.J.; Müller, S.P.; Schöffski, P.; Brose, M.S.; Shah, M.H.; Licitra, L.; Jarzab, B.; Medvedev, V.; Kreissl, M.C.; Niederle, B.; Cohen, E.E.W.; Wirth, L.J.; Ali, H.; Hessel, C.; Yaron, Y.; Ball, D.; Nelkin, B.; Sherman, S.I. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol., 2013, 31(29), 3639-3646.
[http://dx.doi.org/10.1200/JCO.2012.48.4659] [PMID: 24002501]
[13]
Resteghini, C.; Cavalieri, S.; Galbiati, D.; Granata, R.; Alfieri, S.; Bergamini, C.; Bossi, P.; Licitra, L.; Locati, L.D. Management of tyrosine kinase inhibitors (TKI) side effects in differentiated and medullary thyroid cancer patients. Best Pract. Res. Clin. Endocrinol. Metab., 2017, 31(3), 349-361.
[http://dx.doi.org/10.1016/j.beem.2017.04.012] [PMID: 28911730]
[14]
Leboulleux, S.; Bastholt, L.; Krause, T.; de la Fouchardiere, C.; Tennvall, J.; Awada, A.; Gómez, J.M.; Bonichon, F.; Leenhardt, L.; Soufflet, C.; Licour, M.; Schlumberger, M.J. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 2 trial. Lancet Oncol., 2012, 13(9), 897-905.
[http://dx.doi.org/10.1016/S1470-2045(12)70335-2] [PMID: 22898678]
[15]
Jin, Y.; Xu, Z.; Yan, H.; He, Q.; Yang, X.; Luo, P. A Comprehensive Review of Clinical Cardiotoxicity Incidence of FDA-Approved Small-Molecule Kinase Inhibitors. Front. Pharmacol., 2020, 11, 891.
[http://dx.doi.org/10.3389/fphar.2020.00891] [PMID: 32595510]
[16]
Dy, G.K.; Adjei, A.A. Understanding, recognizing, and managing toxicities of targeted anticancer therapies. CA Cancer J. Clin., 2013, 63(4), 249-279.
[http://dx.doi.org/10.3322/caac.21184] [PMID: 23716430]
[17]
Cella, D.; Lai, J.; Chang, C.H.; Peterman, A.; Slavin, M. Fatigue in cancer patients compared with fatigue in the general United States population. Cancer, 2002, 94(2), 528-538.
[http://dx.doi.org/10.1002/cncr.10245] [PMID: 11900238]
[18]
Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell. Physiol., 2019, 234(5), 5728-5740.
[http://dx.doi.org/10.1002/jcp.27442] [PMID: 30317564]
[19]
Mitchell, S.A. Cancer-related fatigue: State of the science. PM R, 2010, 2(5), 364-383.
[http://dx.doi.org/10.1016/j.pmrj.2010.03.024] [PMID: 20656618]
[20]
Bower, J.E. The role of neuro-immune interactions in cancer-related fatigue: Biobehavioral risk factors and mechanisms. Cancer, 2019, 125(3), 353-364.
[http://dx.doi.org/10.1002/cncr.31790] [PMID: 30602059]
[21]
Esmail, A. Chemical Constituents and Pharmacological Effects of Lithospermum. J Pharm, 2019, 9(8), 12-21.
[22]
Choi, S.B.; Bae, G.S.; Jo, I.J.; Park, K-C.; Seo, S-H.; Kim, D-G.; Shin, J-Y.; Gwak, T-S.; Lee, J-H.; Lee, G-S.; Park, S-J.; Song, H-J. The anti-inflammatory effect of Lithospermum Erythrorhizon on lipopolysaccharide - induced inflammatory response in RAW 264.7 cells. Korea J Herbol, 2013, 28(2), 67-73.
[http://dx.doi.org/10.6116/kjh.2013.28.2.67]
[23]
Andújar, I.; Ríos, J.; Giner, R.; Recio, M. Pharmacological properties of shikonin - a review of literature since 2002. Planta Med., 2013, 79(18), 1685-1697.
[http://dx.doi.org/10.1055/s-0033-1350934] [PMID: 24155261]
[24]
Chen, L.; Ke, C.; Jing, Y. Anti-inflammatory mechanism research of Radix Arnebiae and its preparations. World Chinese Medicine., 2018, 13(6), 1363-1367.
[25]
Wagner, H.; Wittmann, D.; Schäfer, W. Zur chemischen struktur der lithospermsäure aus lithospermum officinale L. Tetrahedron Lett., 1975, 16(8), 547-550.
[http://dx.doi.org/10.1016/S0040-4039(00)71917-4]
[26]
Haghbeen, K.; Mozaffarian, V.; Ghaffari, F.; Pourazeezi, E.; Saraji, M.; Joupari, M.D. Lithospermum officinale callus produces shikalkin. Biologia (Bratisl.), 2006, 61(4), 463-467.
[http://dx.doi.org/10.2478/s11756-006-0077-x]
[27]
Wagner, H.; Koenig, H. Isolation of a 6,9,12,15n-octadecatetraenoic acid from the fruits of Lithospermum officinale L. Biochem. Z., 1963, 339(3), 212-218.
[PMID: 14206230]
[28]
Zhao, X.; Wang, G.; Fei, H. Study on the extraction and anti-inflammatory effect of the active components of Lithospermum officinale. Pharmacol. Clin. Chinese Trad. Herb., 2008, 24(4), 36-38.
[29]
Feng, Ge; Wang, Xiao-dong; Wang, Yu-chun Advances in studies on medicinal Radix Arnebiae Seu Lithospermi. Chinese Trad Herb Drugs, 2003, 34(9), 6-9.
[30]
Min, C.; Jun, T.; Li, S. Recent advances in the research on pharmacological actions and quantitative analyses of naphthoquinones in Chinese medicinal herb “Zicao”. Yao Xue Xue Bao, 2018, 53(12), 2026-2039.
[31]
Zhang, Y.; Sun, B.; Huang, Z.; Zhao, D.W.; Zeng, Q. Shikonin inhibites migration and invasion of thyroid cancer cells by downregulating DNMT1. Med. Sci. Monit., 2018, 24, 661-670.
[http://dx.doi.org/10.12659/MSM.908381] [PMID: 29389913]
[32]
Yang, Q.; Ji, M.; Guan, H.; Shi, B.; Hou, P. Shikonin inhibits thyroid cancer cell growth and invasiveness through targeting major signaling pathways. J. Clin. Endocrinol. Metab., 2013, 98(12), E1909-E1917.
[http://dx.doi.org/10.1210/jc.2013-2583] [PMID: 24106286]
[33]
Gu, M.; Li, X.; Tang, X. Effect of autophagy on the shikonin induced apoptosis of human medullary thyroid carcinoma TT cells. Int. J. Clin. Exp. Med., 2016, 9(9), 17428-17434.
[34]
Tang, X.; Zhang, C.; Wei, J.; Fang, Y.; Zhao, R.; Yu, J. Apoptosis is induced by shikonin through the mitochondrial signaling pathway. Mol. Med. Rep., 2016, 13(4), 3668-3674.
[http://dx.doi.org/10.3892/mmr.2016.4967] [PMID: 26935754]
[35]
Wu, H.; Xie, J.; Pan, Q.; Wang, B.; Hu, D.; Hu, X. Anticancer agent shikonin is an incompetent inducer of cancer drug resistance. PLoS One, 2013, 8(1), e52706.
[http://dx.doi.org/10.1371/journal.pone.0052706] [PMID: 23300986]
[36]
Han, C.T.; Kim, M.J.; Moon, S.H.; Jeon, Y.R.; Hwang, J.S.; Nam, C.; Park, C.W.; Lee, S.H.; Na, J.B.; Park, C.S.; Park, H.W.; Lee, J.M.; Jang, H.S.; Park, S.H.; Han, K.G.; Choi, Y.W.; Lee, H.Y.; Kang, J.K. Acute and 28-day subacute toxicity studies of hexane extracts of the roots of lithospermum erythrorhizon in sprague-dawley rats. Toxicol. Res., 2015, 31(4), 403-414.
[http://dx.doi.org/10.5487/TR.2015.31.4.403] [PMID: 26877842]
[37]
Nam, C.; Hwang, J.S.; Kim, M.J.; Choi, Y.W.; Han, K.G.; Kang, J.K. Single- and repeat-dose oral toxicity studies of lithospermum erythrorhizon extract in dogs. Toxicol. Res., 2015, 31(1), 77-88.
[http://dx.doi.org/10.5487/TR.2015.31.1.077] [PMID: 25874036]

© 2024 Bentham Science Publishers | Privacy Policy