Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

氨磺必利降低 OXYS 大鼠大脑中 Tau 蛋白的过度磷酸化

卷 20, 期 7, 2023

发表于: 11 September, 2023

页: [496 - 505] 页: 10

弟呕挨: 10.2174/1567205020666230828144651

价格: $65

conference banner
摘要

目的:在本研究中,使用三个年龄(1、3和6个月)的OXYS大鼠(一种已证实的阿尔茨海默病(AD)模型),在疾病进展的不同阶段,深入研究阿米磺吡啶对行为和tau蛋白磷酸化的影响。 背景:随着AD患者数量的不断增加,寻找治疗方法的问题非常尖锐。AD的神经变性有多种原因,其中之一是tau蛋白的过度磷酸化。 目的:本研究旨在探讨氨磺吡啶是否会影响AD病理性tau磷酸化。 方法:我们评估了长期给药阿米磺吡啶(3周,每天3 mg/kg,腹膜内)-一种5-HT7受体反向激动剂对OXYS大鼠(1、3和6个月大)行为和tau过度磷酸化的影响。 结果:3个月大的OXYS大鼠,长期服用阿米磺吡啶可显著降低额皮层和海马的tau磷酸化。此外,在1月龄和3月龄大鼠的海马中,阿米磺吡啶降低了编码参与5-HT7受体诱导的tau磷酸化作用的主要tau激酶之一的Cdk5基因的mRNA水平。 结论:因此,我们发现长期服用阿米磺吡啶可以减少病理性tau过度磷酸化,同时减少焦虑。我们建议阿米磺吡啶对AD具有治疗潜力,并且在疾病的早期阶段可能是最有效的。

关键词: 阿尔茨海默病,tau病理学,5-HT7受体,氨磺酰亚胺,阿尔茨海默病大鼠模型,OXYS大鼠。

[1]
Bondi, M.W.; Edmonds, E.C.; Salmon, D.P. Alzheimer’s Disease: Past, Present, and Future. J. Int. Neuropsychol. Soc., 2017, 23(9-10), 818-831.
[http://dx.doi.org/10.1017/S135561771700100X] [PMID: 29198280]
[2]
Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 2020, 25(24), 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[3]
Avila, J.; Lucas, J.J.; Pérez, M.; Hernández, F. Role of tau protein in both physiological and pathological conditions. Physiol. Rev., 2004, 84(2), 361-384.
[http://dx.doi.org/10.1152/physrev.00024.2003] [PMID: 15044677]
[4]
Jouanne, M.; Rault, S.; Voisin-Chiret, A.S. Tau protein aggregation in Alzheimer’s disease: An attractive target for the development of novel therapeutic agents. Eur. J. Med. Chem., 2017, 139, 153-167.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.070] [PMID: 28800454]
[5]
Martin, L.; Latypova, X.; Wilson, C.M.; Magnaudeix, A.; Perrin, M.L.; Terro, F. Tau protein phosphatases in Alzheimer’s disease: The leading role of PP2A. Ageing Res. Rev., 2013, 12(1), 39-49.
[http://dx.doi.org/10.1016/j.arr.2012.06.008] [PMID: 22771380]
[6]
Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci., 2016, 17(1), 22-35.
[http://dx.doi.org/10.1038/nrn.2015.1] [PMID: 26631930]
[7]
Labus, J.; Röhrs, K.F.; Ackmann, J.; Varbanov, H.; Müller, F.E.; Jia, S.; Jahreis, K.; Vollbrecht, A.L.; Butzlaff, M.; Schill, Y.; Guseva, D.; Böhm, K.; Kaushik, R.; Bijata, M.; Marin, P.; Chaumont-Dubel, S.; Zeug, A.; Dityatev, A.; Ponimaskin, E. Amelioration of Tau pathology and memory deficits by targeting 5-HT7 receptor. Prog. Neurobiol., 2021, 197, 101900.
[http://dx.doi.org/10.1016/j.pneurobio.2020.101900] [PMID: 32841723]
[8]
Ballard, C.; Waite, J. The effectiveness of atypical antipsychotics for the treatment of aggression and psychosis in Alzheimer’s disease. Cochrane Database Syst. Rev., 2006, (1), CD003476.
[PMID: 16437455]
[9]
Mauri, M.; Mancioli, A.; Rebecchi, V.; Corbetta, S.; Colombo, C.; Bono, G. Amisulpride in the treatment of behavioural disturbances among patients with moderate to severe Alzheimer’s disease. Acta Neurol. Scand., 2006, 114(2), 97-101.
[http://dx.doi.org/10.1111/j.1600-0404.2006.00660.x] [PMID: 16867031]
[10]
Urban, A.; Cubała, W. Therapeutic drug monitoring of atypical antipsychotics. Psychiatr. Pol., 2017, 51(6), 1059-1077.
[http://dx.doi.org/10.12740/PP/65307] [PMID: 29432503]
[11]
Kucwaj-Brysz, K.; Baltrukevich, H.; Czarnota, K.; Handzlik, J. Chemical update on the potential for serotonin 5-HT6 and 5-HT7 receptor agents in the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2021, 49, 128275.
[http://dx.doi.org/10.1016/j.bmcl.2021.128275] [PMID: 34311086]
[12]
Jahreis, K.; Brüge, A.; Borsdorf, S.; Müller, F.E.; Sun, W.; Jia, S.; Kang, D.M.; Boesen, N.; Shin, S.; Lim, S.; Koroleva, A.; Satała, G.; Bojarski, A.J.; Rakuša, E.; Fink, A.; Doblhammer-Reiter, G.; Kim, Y.K.; Dityatev, A.; Ponimaskin, E.; Labus, J. Amisulpride as a potential disease-modifying drug in the treatment of tauopathies. Alzheimers Dement., 2023, 2023, 13090.
[http://dx.doi.org/10.1002/alz.13090] [PMID: 37218673]
[13]
Stefanova, N.; Kozhevnikova, O.; Vitovtov, A.; Maksimova, K.; Logvinov, S.; Rudnitskaya, E.; Korbolina, E.; Muraleva, N.; Kolosova, N. Senescence-accelerated OXYS rats: A model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease. Cell Cycle, 2014, 13(6), 898-909.
[http://dx.doi.org/10.4161/cc.28255] [PMID: 24552807]
[14]
Gulyaeva, N.V.; Bobkova, N.V.; Kolosova, N.G.; Samokhin, A.N.; Stepanichev, M.Y.; Stefanova, N.A. Molecular and cellular mechanisms of sporadic Alzheimer’s disease: Studies on rodent models in vivo. Biochemistry (Mosc.), 2017, 82(10), 1088-1102.
[http://dx.doi.org/10.1134/S0006297917100029] [PMID: 29037130]
[15]
Stefanova, N.A.; Muraleva, N.A.; Korbolina, E.E.; Kiseleva, E.; Maksimova, K.Y.; Kolosova, N.G. Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats. Oncotarget, 2015, 6(3), 1396-1413.
[http://dx.doi.org/10.18632/oncotarget.2751] [PMID: 25595891]
[16]
Tyumentsev, M.A.; Stefanova, N.A.; Muraleva, N.A.; Rumyantseva, Y.V.; Kiseleva, E.; Vavilin, V.A.; Kolosova, N.G. Mitochondrial dysfunction as a predictor and driver of Alzheimer’s disease-like pathology in OXYS rats. J. Alzheimers Dis., 2018, 63(3), 1075-1088.
[http://dx.doi.org/10.3233/JAD-180065] [PMID: 29710722]
[17]
Kulikov, A.V.; Naumenko, V.S.; Voronova, I.P.; Tikhonova, M.A.; Popova, N.K. Quantitative RT-PCR assay of 5-HT1A and 5-HT2A serotonin receptor mRNAs using genomic DNA as an external standard. J. Neurosci. Methods, 2005, 141(1), 97-101.
[http://dx.doi.org/10.1016/j.jneumeth.2004.06.005] [PMID: 15585293]
[18]
Naumenko, V.S.; Kulikov, A.V. Quantitative assay of 5-HT(1A) serotonin receptor gene expression in the brain. Mol. Biol. (Mosk.), 2006, 40(1), 37-44.
[PMID: 16523690]
[19]
Naumenko, V.S.; Osipova, D.V.; Kostina, E.V.; Kulikov, A.V. Utilization of a two-standard system in real-time PCR for quantification of gene expression in the brain. J. Neurosci. Methods, 2008, 170(2), 197-203.
[http://dx.doi.org/10.1016/j.jneumeth.2008.01.008] [PMID: 18308402]
[20]
Hsu, D.; Marshall, G.A. Primary and secondary prevention trials in Alzheimer disease: Looking back, moving forward. Curr. Alzheimer Res., 2017, 14(4), 426-440.
[http://dx.doi.org/10.2174/1567205013666160930112125] [PMID: 27697063]
[21]
Briggs, R.; Kennelly, S.P.; O’Neill, D. Drug treatments in Alzheimer’s disease. Clin. Med. (Lond.), 2016, 16(3), 247-253.
[http://dx.doi.org/10.7861/clinmedicine.16-3-247] [PMID: 27251914]
[22]
McKeage, K.; Plosker, G.L. Amisulpride. CNS Drugs, 2004, 18(13), 933-956.
[http://dx.doi.org/10.2165/00023210-200418130-00007] [PMID: 15521794]
[23]
Renner, U.; Zeug, A.; Woehler, A.; Niebert, M.; Dityatev, A.; Dityateva, G.; Gorinski, N.; Guseva, D.; Abdel-Galil, D.; Fröhlich, M.; Döring, F.; Wischmeyer, E.; Richter, D.W.; Neher, E.; Ponimaskin, E.G. Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. J. Cell Sci., 2012, 125(Pt 10), jcs.101337.
[http://dx.doi.org/10.1242/jcs.101337] [PMID: 22357950]
[24]
Kondaurova, E.M.; Bazovkina, D.V.; Naumenko, V.S. [5-HT1A/5-HT7 receptor interplay: Chronic activation of 5-HT7 receptors decreases the functional activity of 5-HT1A receptor and its сontent in the mouse brain]. Mol. Biol. (Mosk.), 2017, 51(1), 157-165.
[PMID: 28251979]
[25]
de Bartolomeis, A.; Marmo, F.; Buonaguro, E.F.; Rossi, R.; Tomasetti, C.; Iasevoli, F. Imaging brain gene expression profiles by antipsychotics: Region-specific action of amisulpride on postsynaptic density transcripts compared to haloperidol. Eur. Neuropsychopharmacol., 2013, 23(11), 1516-1529.
[http://dx.doi.org/10.1016/j.euroneuro.2012.11.014] [PMID: 23357084]
[26]
Shukla, V.; Skuntz, S.; Pant, H.C. Deregulated Cdk5 activity is involved in inducing Alzheimer’s disease. Arch. Med. Res., 2012, 43(8), 655-662.
[http://dx.doi.org/10.1016/j.arcmed.2012.10.015] [PMID: 23142263]
[27]
Jeong, J.; Park, Y.U.; Kim, D.K.; Lee, S.; Kwak, Y.; Lee, S.A.; Lee, H.; Suh, Y.H.; Gho, Y.S.; Hwang, D.; Park, S.K. Cdk5 phosphorylates dopamine D2 receptor and attenuates downstream signaling. PLoS One, 2013, 8(12), e84482.
[http://dx.doi.org/10.1371/journal.pone.0084482] [PMID: 24391960]
[28]
Kumar, S.P.; Babu, P.P. Aberrant dopamine receptor signaling plays critical role in the impairment of striatal neurons in experimental cerebral malaria. Mol. Neurobiol., 2020, 57(12), 5069-5083.
[http://dx.doi.org/10.1007/s12035-020-02076-0] [PMID: 32833186]
[29]
Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: From structure to function. Physiol. Rev., 1998, 78(1), 189-225.
[http://dx.doi.org/10.1152/physrev.1998.78.1.189] [PMID: 9457173]
[30]
Shah, K.; Lahiri, D.K. Cdk5 activity in the brain – multiple paths of regulation. J. Cell Sci., 2014, 127(11), 2391-2400.
[http://dx.doi.org/10.1242/jcs.147553] [PMID: 24879856]
[31]
Nikiforuk, A.; Popik, P. Amisulpride promotes cognitive flexibility in rats: The role of 5-HT7 receptors. Behav. Brain Res., 2013, 248, 136-140.
[http://dx.doi.org/10.1016/j.bbr.2013.04.008] [PMID: 23603557]
[32]
Kolosova, N.G.; Vitovtov, A.O.; Muraleva, N.A.; Akulov, A.E.; Stefanova, N.A.; Blagosklonny, M.V. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats. Aging, 2013, 5(6), 474-484.
[http://dx.doi.org/10.18632/aging.100573] [PMID: 23817674]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy