Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Mini-Review Article

Tetrazoles Leitmotif: An Intriguing Insight into Contemporary Developments and Biological Activities

Author(s): Popat Mohite*, Deepali Nahar, Ankita Lonkar, Aditya Kadam and Kaustubh Desle

Volume 22, Issue 2, 2024

Published on: 11 October, 2023

Article ID: e230823220234 Pages: 19

DOI: 10.2174/2211352521666230823094517

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Heterocyclic compounds with a tetrazole core are of great interest because they represent an important class of synthetic compounds with a wide range of relevant biological properties that have the potential to be clinically translated as treatments for a variety of disorders. Due to their beneficial bioactivities, heterocycles with a tetrazole scaffold have the interest of organic and medicinal chemists and sparked much attention in recent years. Tetrazoles are a form of nitrogen heterocycle found in several natural compounds in addition to their pharmacologically active nucleus. The tetrazole ring is similar to carboxylic acids and acts as a bioisostere analogue. A booster is a set of molecules with identical physiological features, including biological activity. Tetrazole nuclei are found in compounds used to evaluate new antimicrobial, anticancer, antitubercular, anticonvulsant, antimalarial, antihypertensive, and anti-inflammatory medicines. Tetrazole and its derivatives' broad and potent actions have established them as pharmacologically significant scaffolds. So far, tetrazole ring alterations have proven to be highly efficient, with greater efficacy. This review aims to provide an in-depth recapitulation of recent trends used to synthesize promising Tetrazole incorporated compounds and focus on the clinical significance of functionalized tetrazole analogues, which would essentially aid medicinal chemists in new research exploration and discovery in this field.

Keywords: Tetrazole, cycloaddition, bioisostere, synthesis, biological activity, anti-inflammatory medicines.

Graphical Abstract
[1]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852 ] [PMID: 26389876]
[2]
Wei, C.X.; Bian, M.; Gong, G.H. Tetrazolium compounds: Synthesis and applications in medicine. Molecules, 2015, 20(4), 5528-5553.
[http://dx.doi.org/10.3390/molecules20045528 ] [PMID: 25826789]
[3]
Patowary, P. Tetrazole moiety as a pharmacophore in medicinal chemistry: A review. Malar. Control Elimin., 2021, 10, 11.
[4]
Butler, R.N. Recent advances in tetrazole chemistry. Adv. Heterocycl. Chem., 2021, 21, 323-435.
[5]
Roh, J.; Vavrova, K.; Hrabalek, A. ChemInform abstract: Synthesis and functionalization of 5-substituted tetrazoles. ChemInform, 2013, 44(11)
[http://dx.doi.org/10.1002/chin.201311214]
[6]
Witten Burger, S.J. Recent developments in tetrazole chemistry-A review. Org. Prep. Proced. Int., 1994, 26, 499-531.
[http://dx.doi.org/10.1080/00304949409458050]
[7]
Su, W.K.; Hong, Z.; Shan, W.G.; Zhang, X.X. A Facile synthesis of 1-substituted-1H-1,2,3,4-tetrazoles catalyzed by ytterbium triflate hydrate. Eur. J. Org. Chem., 2006, 2006(12), 2723-2726.
[http://dx.doi.org/10.1002/ejoc.200600007]
[8]
Feinn, L.; Dudley, J.; Coca, A.; Roberts, L. Antimicrobial evaluation of 5-substituted Aryl 1H-tetrazoles. Med. Chem., 2017, 13(4), 359-364.
[http://dx.doi.org/10.2174/1573406412666161220150028]
[9]
Dofe, V.S.; Sarkate, A.P.; Kathwate, S.H.; Gill, C.H. Synthesis, antimicrobial activity and anti-biofilm activity of novel tetrazole derivatives. Heterocycl. Commun., 2017, 23(4), 325-330.
[http://dx.doi.org/10.1515/hc-2017-0016]
[10]
Habibi, D.; Rahmani, P.; Ahmadi, F.; Bokharaei, H.; Kaboudvand, Z. Synthesis of new 1-substituted-1h-1,2,3,4-tetrazoles from L-α-amino acids and their biological assays. Lett. Org. Chem., 2014, 11(2), 145-151.
[http://dx.doi.org/10.2174/15701786113106660072]
[11]
Monk, B.C.; Keniya, M.V.; Sabherwal, M.; Wilson, R.K.; Graham, D.O.; Hassan, H.F.; Chen, D.; Tyndall, J.D.A. Azole resistance reduces susceptibility to the tetrazole antifungal VT-1161. Antimicrob. Agents Chemother., 2019, 63(1), e02114-e02118.
[http://dx.doi.org/10.1128/AAC.02114-18 ] [PMID: 30397057]
[12]
Afsarian, M.H.; Farjam, M.; Zarenezhad, E.; Behrouz, S.; Rad, M.N.S. Synthesis, antifungal evaluation and molecular docking studies of some tetrazole derivatives. Acta Chim. Slov., 2019, 66(4), 874-887.
[http://dx.doi.org/10.17344/acsi.2019.4992 ] [PMID: 34057480]
[13]
Popova, E.A.; Protas, A.V.; Trifonov, R.E. Tetrazole derivatives as promising anticancer agents. Anticancer. Agents Med. Chem., 2018, 17(14), 1856-1868.
[http://dx.doi.org/10.2174/1871520617666170327143148 ] [PMID: 28356016]
[14]
Gorle, S.; Maddila, S.; Maddila, S.; Naicker, K.; Singh, M.; Singh, P.; Jonnalagadda, S. Synthesis, molecular docking study and in vitro anticancer activity of tetrazole linked benzochromene derivatives. Anticancer. Agents Med. Chem., 2017, 17(3), 464-470.
[http://dx.doi.org/10.2174/1871520616666160627090249 ] [PMID: 27357544]
[15]
Rajasekaran, A.; Thampi, P.P. Synthesis and analgesic evaluation of some 5-[β-(10-phenothiazinyl)ethyl]-1-(acyl)-1,2,3,4-tetrazoles. Eur. J. Med. Chem., 2004, 39(3), 273-279.
[http://dx.doi.org/10.1016/j.ejmech.2003.11.016 ] [PMID: 15051176]
[16]
Kumar Pal, R.; Yasmin, H.; Nahar, L.; Kanti Datta, B.; Kalam Azad Chowdhury, A.; Kumar Kundu, J.; Chandra Bachar, S.; Dey Sarker, S. Synthesis of 5,6-dichloroindan-1-acids and their tetrazolyl derivatives as analgesic and anti-inflammatory agents. Med. Chem., 2012, 8(5), 874-882.
[http://dx.doi.org/10.2174/157340612802084234 ] [PMID: 22741799]
[17]
Lamie, P.F.; Philoppes, J.N.; Azouz, A.A.; Safwat, N.M. Novel tetrazole and cyanamide derivatives as inhibitors of cyclooxygenase-2 enzyme: Design, synthesis, anti-inflammatory evaluation, ulcerogenic liability and docking study. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 805-820.
[http://dx.doi.org/10.1080/14756366.2017.1326110 ] [PMID: 28587532]
[18]
Khanage, S.G.; Raju, A.; Mohite, P.B.; Pandhare, R.B. Analgesic activity of some 1,2,4-triazole heterocycles clubbed with pyrazole, tetrazole, isoxazole and pyrimidine. Adv. Pharm. Bull., 2013, 3(1), 13-18.
[http://dx.doi.org/10.5681/APB.2013.003]
[19]
Shantaram Khanage, S.; Popat Mohite, P.; Ramdas Pandhare, R.; Raju, S.A. Microwave assisted synthesis of 1-[5-(Substituted Aryl)-1H-Pyrazol-3-Yl]-3,5-Diphenyl-1H-1,2,4-Triazole as antinociceptive and antimicrobial agents. Adv. Pharm. Bull., 2014, 4(2), 105-112.
[http://dx.doi.org/10.5681/APB.2014.017]
[20]
Vellalacheruvu, R. Novel route for synthesis of antihypertensive activity of tetrazole analogues as a carbamate and urea derivatives. Organic Med. Chem. Int. J., 2017, 3(2)
[http://dx.doi.org/10.19080/OMCIJ.2017.03.555609]
[21]
Arif, M.; Jabeen, F.; Saeed, A.; Qureshi, I.Z.; Mushtaq, N. A new class of potential antidiabetic acetohydrazides: Synthesis, in vivo antidiabetic activity and molecular docking studies. Bangladesh J. Pharmacol., 2017, 12(3), 319-332.
[http://dx.doi.org/10.3329/bjp.v12i3.31428]
[22]
Momose, Y.; Maekawa, T.; Odaka, H.; Ikeda, H.; Sohda, T. Novel 5-substituted-1H-tetrazole derivatives as potent glucose and lipid lowering agents. Chem. Pharm. Bull., 2002, 50(1), 100-111.
[http://dx.doi.org/10.1248/cpb.50.100 ] [PMID: 11824568]
[23]
Lawong, A.; Gahalawat, S.; Okombo, J.; Striepen, J.; Yeo, T.; Mok, S.; Deni, I.; Bridgford, J.L.; Niederstrasser, H.; Zhou, A.; Posner, B.; Wittlin, S.; Gamo, F.J.; Crespo, B.; Churchyard, A.; Baum, J.; Mittal, N.; Winzeler, E.; Laleu, B.; Palmer, M.J.; Charman, S.A.; Fidock, D.A.; Ready, J.M.; Phillips, M.A. Novel antimalarial tetrazoles and amides active against the hemoglobin degradation pathway in plasmodium falciparum. J. Med. Chem., 2021, 64(5), 2739-2761.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02022 ] [PMID: 33620219]
[24]
Pandey, S.; Agarwal, P.; Srivastava, K. RajaKumar, S.; Puri, S.K.; Verma, P.; Saxena, J.K.; Sharma, A.; Lal, J.; Chauhan, P.M.S. Synthesis and bioevaluation of novel 4-aminoquinoline-tetrazole derivatives as potent antimalarial agents. Eur. J. Med. Chem., 2013, 66, 69-81.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.023 ] [PMID: 23792317]
[25]
Němeček, J.; Sychra, P.; Macháček, M.; Benková, M.; Karabanovich, G.; Konečná, K.; Kavková, V.; Stolaříková, J.; Hrabálek, A.; Vávrová, K.; Soukup, O.; Roh, J.; Klimešová, V. Structure-activity relationship studies on 3,5-dinitrophenyl tetrazoles as antitubercular agents. Eur. J. Med. Chem., 2017, 130, 419-432.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.058 ] [PMID: 28279848]
[26]
Karabanovich, G.; Roh, J.; Soukup, O.; Pávková, I.; Pasdiorová, M.; Tambor, V.; Stolaříková, J.; Vejsová, M.; Vávrová, K.; Klimešová, V.; Hrabálek, A. Tetrazole regioisomers in the development of nitro group-containing antitubercular agents. MedChemComm, 2015, 6(1), 174-181.
[http://dx.doi.org/10.1039/C4MD00301B]
[27]
Mohite, P.; Deshmukh, V.; Pandhare, R.; Ms, B. Synthesis, characterization of novel schiff’s bases of 2-(1h-tetrazol-5-yl) pyridine and evaluation of their antitubercular activity. Global J. Chem. Sci., 2021, 1(2)
[http://dx.doi.org/10.53996/2769-6170.gjcs.1000111]
[28]
Zhan, P.; Li, Z.; Liu, X.; De Clercq, E. Sulfanyltriazole/tetrazoles: A promising class of HIV-1 NNRTIs. Mini Rev. Med. Chem., 2009, 9(8), 1014-1023.
[http://dx.doi.org/10.2174/138955709788681618 ] [PMID: 19601897]
[29]
Trindade, N.R.; Lopes, P.R.; Naves, L.M.; Fajemiroye, J.O.; Alves, P.H.; Amaral, N.O.; Lião, L.M.; Rebelo, A.C.S.; Castro, C.H.; Braga, V.A.; Menegatti, R.; Pedrino, G.R. The newly synthesized pyrazole derivative 5-(1-(3 Fluorophenyl)-1H-Pyrazol-4-yl)-2H-tetrazole reduces blood pressure of spontaneously hypertensive rats via NO/cGMO pathway. Front. Physiol., 2018, 9, 1073.
[http://dx.doi.org/10.3389/fphys.2018.01073 ] [PMID: 30131720]
[30]
Leyva-Ramos, S.; Cardoso-Ortiz, J. Recent developments in the synthesis of tetrazoles and their pharmacological relevance. Curr. Org. Chem., 2021, 25(3), 388-403.
[http://dx.doi.org/10.2174/18755348MTEyoMzEFz]
[31]
Li, Y.; Liu, W.; Pang, S. Synthesis and characterization of 5-nitro-2-nitratomethyl-1,2,3,4-tetrazole: A high nitrogen energetic compound with good oxygen balance. Molecules, 2012, 17(5), 5040-5049.
[http://dx.doi.org/10.3390/molecules17055040 ] [PMID: 22555294]
[32]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem., 2011, 7, 442-495.
[http://dx.doi.org/10.3762/bjoc.7.57 ] [PMID: 21647262]
[33]
Dhiman, N.; Kaur, K.; Jaitak, V. Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Bioorg. Med. Chem., 2020, 28(15), 115599.
[http://dx.doi.org/10.1016/j.bmc.2020.115599 ] [PMID: 32631569]
[34]
Takezako, T.; Unal, H.; Karnik, S.S.; Node, K. The non-biphenyl-tetrazole angiotensin AT1 receptor antagonist eprosartan is a unique and robust inverse agonist of the active state of the AT 1 receptor. Br. J. Pharmacol., 2018, 175(12), 2454-2469.
[http://dx.doi.org/10.1111/bph.14213 ] [PMID: 29570771]
[35]
Wang, S.Q.; Wang, Y.F.; Xu, Z. Tetrazole hybrids and their antifungal activities. Eur. J. Med. Chem., 2019, 170, 225-234.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.023 ] [PMID: 30904780]
[36]
Ebenezer, O.; Shapi, M.; Tuszynski, J.A. A review of the recent developments of molecular hybrids targeting tubulin polymerization. Int. J. Mol. Sci., 2022, 23(7), 4001.
[http://dx.doi.org/10.3390/ijms23074001 ] [PMID: 35409361]
[37]
Finnegan, W.G.; Henry, R.A.; Lofquist, R. An improved synthesis of 5-substituted tetrazoles. J. Am. Chem. Soc., 1958, 80(15), 3908-3911.
[http://dx.doi.org/10.1021/ja01548a028]
[38]
Carpentier, F.; Felpin, F.X.; Zammattio, F.; Le Grognec, E. Synthesis of 5-substituted 1 H -tetrazoles from nitriles by continuous flow: Application to the synthesis of valsartan. Org. Process Res. Dev., 2020, 24(5), 752-761.
[http://dx.doi.org/10.1021/acs.oprd.9b00526]
[39]
Benson, F.R. The chemistry of the tetrazoles. Chem. Rev., 1947, 41(1), 1-61.
[http://dx.doi.org/10.1021/cr60128a001 ] [PMID: 20257066]
[40]
Synthesis, in vitro antiproliferative evaluation and molecular docking of new tetrazole-chalcone and tetrazole-pyrazoline hybrids. J. Appl. Pharm. Sci., 2018, 8(5), 75-87.
[http://dx.doi.org/10.7324/JAPS.2018.8510]
[41]
Hou, Y.; Shang, C.; Wang, H.; Yun, J. Isatin–azole hybrids and their anticancer activities. Arch. Pharm., 2020, 353(1), 1900272.
[http://dx.doi.org/10.1002/ardp.201900272 ] [PMID: 31691360]
[42]
Atef Hatamleh, A.; Al Farraj, D.; Salah Al-Saif, S.; Chidambaram, S.; Radhakrishnan, S.; Akbar, I. Synthesis, cytotoxic analysis, and molecular docking studies of tetrazole derivatives via N-mannich base condensation as potential antimicrobials. Drug Des. Devel. Ther., 2020, 14, 4477-4492.
[http://dx.doi.org/10.2147/DDDT.S270896] [PMID: 33122891]
[43]
Natarajan, U.; Kaliappan, I.; Singh, N.K. A facile design and efficient synthesis of schiff’s bases of tetrazolo [1,5-a] quinoxalines as potential anti-inflammatory and anti-microbial agents. Der. Pharma Chem., 2010, 2(1), 159-167.
[44]
Varadaraji, D.; Suban, S.S.; Ramasamy, V.R. Synthesis and evaluation of a series of 1-substituted tetrazole derivatives as antimicrobial agents. Org. Commun., 2010, 3, 45-56.
[45]
Dhayanithi, V.; Shafi, S.; Kumaran, K.; Jai, S.; Ragavan, V.; Goud, K.; Kumari, S.; Pati, H. Synthesis of selected 5-thio-substituted tetrazole derivatives and evaluation of their antibacterial and antifungal activities. J. Serb. Chem. Soc., 2011, 76(2), 165-175.
[http://dx.doi.org/10.2298/JSC090421001D]
[46]
Zhang, S.; Xu, Z.; Gao, C.; Ren, Q.C.; Chang, L.; Lv, Z.S.; Feng, L.S. Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 138, 501-513.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.051] [PMID: 28692915]
[47]
World Health Organization. Global Tuberculosis Report 2018, 2018.
[48]
Chauhan, K.; Sharma, M.; Trivedi, P.; Chaturvedi, V.; Chauhan, P.M.S. New class of methyl tetrazole based hybrid of (Z)-5-benzylidene-2-(piperazin-1-yl)thiazol-4(%H)-one as potent antitubercular agents. Bioorg. Med. Chem. Lett., 2014, 24(17), 4166-4170.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.061] [PMID: 25127167]
[49]
Tukulula, M.; Sharma, R.K.; Meurillon, M.; Mahajan, A.; Naran, K.; Warner, D.; Huang, J.; Mekonnen, B.; Chibale, K. Synthesis and antiplasmodial and antimycobacterial evaluation of new nitroimidazole and nitroimidazooxazine derivatives. ACS Med. Chem. Lett., 2013, 4(1), 128-131.
[http://dx.doi.org/10.1021/ml300362a] [PMID: 24900574]
[50]
Chitra, S.; Paul, N.; Muthusubramanian, S.; Manisankar, P.; Yogeeswari, P.; Sriram, D. Synthesis of 3-heteroarylthioquinoline derivatives and their in vitro antituberculosis and cytotoxicity studies. Eur. J. Med. Chem., 2011, 46(10), 4897-4903.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.046] [PMID: 21855182]
[51]
Tukulula, M.; Little, S.; Gut, J.; Rosenthal, P.J.; Wan, B.; Franzblau, S.G.; Chibale, K. The design, synthesis, in silico ADME profiling, antiplasmodial and antimycobacterial evaluation of new arylamino quinoline derivatives. Eur. J. Med. Chem., 2012, 57, 259-267.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.047] [PMID: 23064162]
[52]
Özkan, H.; Demirci, B. Synthesis and antimicrobial and antioxidant activities of sulfonamide derivatives containing tetrazole and oxadiazole rings. J. Heterocycl. Chem., 2019, 56(9), 2528-2535.
[http://dx.doi.org/10.1002/jhet.3647]
[53]
Łukowska-Chojnacka, E.; Mierzejewska, J.; Milner-Krawczyk, M.; Bondaryk, M.; Staniszewska, M. Synthesis of novel tetrazole derivatives and evaluation of their antifungal activity. Bioorg. Med. Chem., 2016, 24(22), 6058-6065.
[http://dx.doi.org/10.1016/j.bmc.2016.09.066] [PMID: 27745991]
[54]
Song, W.H.; Liu, M.M.; Zhong, D.W.; Zhu, Y.; Bosscher, M.; Zhou, L.; Ye, D.Y.; Yuan, Z.H. Tetrazole and triazole as bioisosteres of carboxylic acid: Discovery of diketo tetrazoles and diketo triazoles as anti-HCV agents. Bioorg. Med. Chem. Lett., 2013, 23(16), 4528-4531.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.045] [PMID: 23856047]
[55]
Perni, R.B.; Britt, S.D.; Court, J.C.; Courtney, L.F.; Deininger, D.D.; Farmer, L.J.; Gates, C.A.; Harbeson, S.L.; Kim, J.L.; Landro, J.A.; Levin, R.B.; Luong, Y.P.; O’Malley, E.T.; Pitlik, J.; Rao, B.G.; Schairer, W.C.; Thomson, J.A.; Tung, R.D.; Van Drie, J.H.; Wei, Y. Inhibitors of hepatitis C virus NS3·4A protease 1. Non-Charged tetrapeptide variants. Bioorg. Med. Chem. Lett., 2003, 13(22), 4059-4063.
[http://dx.doi.org/10.1016/j.bmcl.2003.08.050] [PMID: 14592508]
[56]
Sun, D.X.; Liu, L.; Heinz, B.; Kolykhalov, A.; Lamar, J.; Johnson, R.B.; Wang, Q.M.; Yip, Y.; Chen, S.H. P4 cap modified tetrapeptidyl α-ketoamides as potent HCV NS3 protease inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(16), 4333-4338.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.078 ] [PMID: 15261297]
[57]
Diana, G.D.; Cutcliffe, D.; Volkots, D.L.; Mallamo, J.P.; Bailey, T.R.; Vescio, N.; Oglesby, R.C.; Nitz, T.J.; Wetzel, J.; Giranda, V. Antipicornavirus activity of tetrazole analogs related to disoxaril. J. Med. Chem., 1993, 36(22), 3240-3250.
[http://dx.doi.org/10.1021/jm00074a004] [PMID: 8230114]
[59]
Jones, R.A.; Panda, S.S.; Hall, C.D. Quinine conjugates and quinine analogues as potential antimalarial agents. Eur. J. Med. Chem., 2015, 97, 335-355.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.002] [PMID: 25683799]
[60]
Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem., 2018, 158, 917-936.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.040] [PMID: 30261467]
[61]
Kaushik, N.; Kumar, N. Synthesis, antioxidant and antidiabetic activity of 1-[(5-Substituted phenyl)-4,5-dihydro-1H-pyrazol-3-yl]-5-phenyl-1H-tetrazole. Indian J. Pharm. Sci., 2016, 78(3)
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000125]
[62]
Gao, Y.L.; Zhao, G.L.; Liu, W.; Shao, H.; Wang, Y.L.; Xu, W.R.; Tang, L.D.; Wang, J.W. Cheminform abstract: Design, synthesis and in vivo hypoglycemic activity of tetrazole-bearing N-Glycosides as SGLT2 inhibitors. ChemInform, 2011, 42(9)
[http://dx.doi.org/10.1002/chin.201109205]
[63]
Pegklidou, K.; Koukoulitsa, C.; Nicolaou, I.; Demopoulos, V.J. Design and synthesis of novel series of pyrrole based chemotypes and their evaluation as selective aldose reductase inhibitors. A case of bioisosterism between a carboxylic acid moiety and that of a tetrazole. Bioorg. Med. Chem., 2010, 18(6), 2107-2114.
[http://dx.doi.org/10.1016/j.bmc.2010.02.010] [PMID: 20189816]
[64]
Sharma, M.C.; Kohli, D.V.; Sharma, S.; Sharma, A.D. Synthesis and antihypertensive activity of some N-{4-(6-Chloro-5-Nitro-1- [2′--(1H-Tetrazol-5-Yl)-Biphenyl-4-Ylmethyl]-1H-Benzoimidazol-2yl-}-Phenyl)- 3-(Substituted-Phenyl)-acryl amides. Adv. Appl. Sci. Res., 2010, 1(1), 101-112.
[65]
Rajasekaran, A.; Thampi, P.P. Synthesis and antinociceptive activity of some substituted-{5-[2-(1,2,3,4-Tetrahydrocarbazol-9-Yl)Ethyl] Tetrazol-1-Yl}alkanones. Eur. J. Med. Chem., 2005, 40(12), 1359-1364.
[http://dx.doi.org/10.1016/j.ejmech.2005.07.013] [PMID: 16169128]
[66]
Rajasekaran, A.; Rajagopal, K. Synthesis of some novel triazole derivatives as anti-nociceptive and anti-inflammatory agents. Acta Pharm., 2009, 59(3), 355-364.
[http://dx.doi.org/10.2478/v10007-009-0026-7] [PMID: 19819831]
[67]
Sun, X.Y.; Wei, C.X.; Deng, X.Q.; Sun, Z.G.; Quan, Z.S. Evaluation of the anticonvulsant activity of 6-(4-chlorophenyoxy)-tetrazolo[5,1-a]phthalazine in various experimental seizure models in mice. Pharmacol. Rep., 2010, 62(2), 273-277.
[http://dx.doi.org/10.1016/S1734-1140(10)70266-8 ] [PMID: 20508282]
[68]
Wagle, S.; Adhikari, A.V.; Kumari, N.S. Synthesis of some new 4-styryltetrazolo[1,5-a]quinoxaline and 1-substituted-4-styryl[1,2,4]triazolo[4,3-a]quinoxaline derivatives as potent anticonvulsants. Eur. J. Med. Chem., 2009, 44(3), 1135-1143.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.006] [PMID: 18672315]
[69]
Myznikov, L.V.; Hrabalek, A.; Koldobskii, G.I. Drugs in the tetrazole series. Chem. Heterocycl. Compd., 2007, 43(1), 1-9.
[http://dx.doi.org/10.1007/s10593-007-0001-5]
[70]
Zou, Y.; Liu, L.; Liu, J.; Liu, G. Bioisosteres in drug discovery: Focus on tetrazole. Future Med. Chem., 2020, 12(2), 91-93.
[http://dx.doi.org/10.4155/fmc-2019-0288] [PMID: 31762337]
[72]
Keam, S.J.; Lyseng-Williamson, K.A.; Goa, K.L. Pranlukast. Drugs, 2003, 63(10), 991-1019.
[http://dx.doi.org/10.2165/00003495-200363100-00005 ] [PMID: 12699401]
[73]
British National Formulary : BNF 76 (76 Ed.). Pharmaceutical Press., 2018. Available from: https://www.abebooks.com/9780857113382/BNF-British-National-Formulary-September-0857113380/plp
[74]
The American Society of Health-System Pharmacists. 2003. Available from: https://en.wikipedia.org/wiki/American_Society_of_Health-System_Pharmacists
[75]
XPharm. The Comprehensive Pharmacology Reference; Elsevier, 2007.
[76]
Brown, R.B.; Klar, J.; Lemeshow, S.; Teres, D.; Pastides, H.; Sands, M. Enhanced bleeding with cefoxitin or moxalactam. Statistical analysis within a defined population of 1493 patients. Arch. Intern. Med., 1986, 146(11), 2159-2164.
[http://dx.doi.org/10.1001/archinte.1986.00360230079013 ] [PMID: 3778044]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy