Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

胰腺癌神经侵袭的研究进展

卷 24, 期 4, 2024

发表于: 20 September, 2023

页: [397 - 410] 页: 14

弟呕挨: 10.2174/1568009623666230817105221

价格: $65

Open Access Journals Promotions 2
conference banner
摘要

胰腺癌是人类高度恶性的胃肠道肿瘤之一,患者在癌变过程中遭受癌痛。大多数患者在疾病的晚期遭受严重的疼痛。最新研究表明,胰腺癌患者疼痛的主要原因是肿瘤细胞侵袭神经引起的神经炎症,并在此基础上引发神经性疼痛,认为这是神经侵袭的结果。外周神经侵袭(PNI),定义为癌细胞沿神经或在神经鞘的神经外、神经周围和神经内膜间隙存在,是癌症向远处扩散的一种特殊方式。但由于临床资料有限,对胰腺癌神经侵袭机制的研究尚未深入开展。此外,神经周围浸润被认为是胰腺切除术后复发和转移的潜在原因之一,也是预后的独立预测因素。本文从生物信息学分析、临床表现及文献综述等方面对胰腺癌的神经侵犯进行系统综述。

关键词: 胰腺癌,PNI,癌痛,分子机制,肿瘤微环境,肿瘤。

图形摘要
[1]
Menini, S.; Iacobini, C.; Vitale, M.; Pesce, C.; Pugliese, G. Diabetes and pancreatic cancer-a dangerous liaison relying on carbonyl stress. Cancers (Basel), 2021, 13(2), 313.
[http://dx.doi.org/10.3390/cancers13020313] [PMID: 33467038]
[2]
Kolbeinsson, H.M.; Chandana, S.; Wright, G.P.; Chung, M. Pancreatic cancer: A review of current treatment and novel therapies. J. Invest. Surg., 2023, 36(1), 2129884.
[http://dx.doi.org/10.1080/08941939.2022.2129884] [PMID: 36191926]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Ferlay, J.; Partensky, C.; Bray, F. More deaths from pancreatic cancer than breast cancer in the EU by 2017. Acta Oncol., 2016, 55(9-10), 1158-1160.
[http://dx.doi.org/10.1080/0284186X.2016.1197419] [PMID: 27551890]
[5]
Zhao, C.; Gao, F.; Li, Q.; Liu, Q.; Lin, X. The distributional characteristic and growing trend of pancreatic cancer in China. Pancreas, 2019, 48(3), 309-314.
[http://dx.doi.org/10.1097/MPA.0000000000001222] [PMID: 30855427]
[6]
Hu, J.X.; Zhao, C.F.; Chen, W.B.; Liu, Q.C.; Li, Q.W.; Lin, Y.Y.; Gao, F. Pancreatic cancer: A review of epidemiology, trend, and risk factors. World J. Gastroenterol., 2021, 27(27), 4298-4321.
[http://dx.doi.org/10.3748/wjg.v27.i27.4298] [PMID: 34366606]
[7]
National Cancer Institute. Adult hodgkin lymphoma treatment (PDQ®)–patient version. 2002. Available From: https://www.cancer.gov/types/lymphoma/patient/adult-hodgkin-treatment-pdq
[8]
Tonini, V.; Zanni, M. Pancreatic cancer in 2021: What you need to know to win. World J. Gastroenterol., 2021, 27(35), 5851-5889.
[http://dx.doi.org/10.3748/wjg.v27.i35.5851] [PMID: 34629806]
[9]
Kamisawa, T.; Isawa, T.; Koike, M.; Tsuruta, K.; Okamoto, A. Hematogenous metastases of pancreatic ductal carcinoma. Pancreas, 1995, 11(4), 345-349.
[http://dx.doi.org/10.1097/00006676-199511000-00005] [PMID: 8532650]
[10]
Min, S.K.; You, Y.; Choi, D.W.; Han, I.W.; Shin, S.H.; Yoon, S.; Jung, J.H.; Yoon, S.J.; Heo, J.S. Prognosis of pancreatic head cancer with different patterns of lymph node metastasis. J. Hepatobiliary Pancreat. Sci., 2022, 29(9), 1004-1013.
[http://dx.doi.org/10.1002/jhbp.1159] [PMID: 35446462]
[11]
Avula, L.R.; Hagerty, B.; Alewine, C. Molecular mediators of peritoneal metastasis in pancreatic cancer. Cancer Metastasis Rev., 2020, 39(4), 1223-1243.
[http://dx.doi.org/10.1007/s10555-020-09924-4] [PMID: 32780245]
[12]
Carvajal, G. Pancreatic cancer related pain: Review of pathophysiology and intrathecal drug delivery systems for pain management. Pain Physician, 2021, 24(5), E583-E594.
[PMID: 34323445]
[13]
Liebl, F.; Demir, I.E.; Mayer, K.; Schuster, T.; D’Haese, J.G.; Becker, K.; Langer, R.; Bergmann, F.; Wang, K.; Rosenberg, R.; Novotny, A.R.; Feith, M.; Reim, D.; Friess, H.; Ceyhan, G.O. The impact of neural invasion severity in gastrointestinal malignancies: A clinicopathological study. Ann. Surg., 2014, 260(5), 900-908.
[http://dx.doi.org/10.1097/SLA.0000000000000968] [PMID: 25379860]
[14]
Lindsay, T.H.; Jonas, B.M.; Sevcik, M.A.; Kubota, K.; Halvorson, K.G.; Ghilardi, J.R.; Kuskowski, M.A.; Stelow, E.B.; Mukherjee, P.; Gendler, S.J.; Wong, G.Y.; Mantyh, P.W. Pancreatic cancer pain and its correlation with changes in tumor vasculature, macrophage infiltration, neuronal innervation, body weight and disease progression. Pain, 2005, 119(1-3), 233-246.
[http://dx.doi.org/10.1016/j.pain.2005.10.019] [PMID: 16298491]
[15]
Yao, P.; Ding, Y.Y.; Wang, Z.B.; Ma, J.M.; Hong, T.; Pan, S.N. Effect of gene polymorphism of COMT and OPRM1 on the preoperative pain sensitivity in patients with cancer. Int. J. Clin. Exp. Med., 2015, 8(6), 10036-10039.
[PMID: 26309696]
[16]
Wang, L.; Xu, H.; Ge, Y.; Zhu, H.; Yu, D.; Yu, W.; Lu, Z. Establishment of a murine pancreatic cancer pain model and microarray analysis of pain-associated genes in the spinal cord dorsal horn. Mol. Med. Rep., 2017, 16(4), 4429-4436.
[http://dx.doi.org/10.3892/mmr.2017.7173] [PMID: 28791352]
[17]
Dharaniprasad, G.; Samantaray, A.; Srikanth, L.; Hanumantha Rao, M.; Chandra, A.; Sarma, P.V.G.K. Chronic persistent surgical pain is strongly associated with COMT alleles in patients undergoing cardiac surgery with median sternotomy. Gen. Thorac. Cardiovasc. Surg., 2020, 68(10), 1101-1112.
[http://dx.doi.org/10.1007/s11748-020-01321-6] [PMID: 32100171]
[18]
Meloto, C.B.; Segall, S.K.; Smith, S.; Parisien, M.; Shabalina, S.A.; Rizzatti-Barbosa, C.M.; Gauthier, J.; Tsao, D.; Convertino, M.; Piltonen, M.H.; Slade, G.D.; Fillingim, R.B.; Greenspan, J.D.; Ohrbach, R.; Knott, C.; Maixner, W.; Zaykin, D.; Dokholyan, N.V.; Reenilä, I.; Männistö, P.T.; Diatchenko, L. COMT gene locus. Pain, 2015, 156(10), 2072-2083.
[http://dx.doi.org/10.1097/j.pain.0000000000000273] [PMID: 26207649]
[19]
Lindsay, T.H.; Halvorson, K.G.; Peters, C.M.; Ghilardi, J.R.; Kuskowski, M.A.; Wong, G.Y.; Mantyh, P.W. A quantitative analysis of the sensory and sympathetic innervation of the mouse pancreas. Neuroscience, 2006, 137(4), 1417-1426.
[http://dx.doi.org/10.1016/j.neuroscience.2005.10.055] [PMID: 16388907]
[20]
Chavan, S.S.; Tracey, K.J. Essential neuroscience in immunology. J. Immunol., 2017, 198(9), 3389-3397.
[http://dx.doi.org/10.4049/jimmunol.1601613] [PMID: 28416717]
[21]
Wang, J.; Chen, Y.; Li, X.; Zou, X. Perineural invasion and associated pain transmission in pancreatic cancer. Cancers (Basel), 2021, 13(18), 4594.
[http://dx.doi.org/10.3390/cancers13184594] [PMID: 34572820]
[22]
Yi, S.Q.; Miwa, K.; Ohta, T.; Kayahara, M.; Kitagawa, H.; Tanaka, A.; Shimokawa, T.; Akita, K.; Tanaka, S. Innervation of the pancreas from the perspective of perineural invasion of pancreatic cancer. Pancreas, 2003, 27(3), 225-229.
[http://dx.doi.org/10.1097/00006676-200310000-00005] [PMID: 14508126]
[23]
Schorn, S.; Demir, I.E.; Haller, B.; Scheufele, F.; Reyes, C.M.; Tieftrunk, E.; Sargut, M.; Goess, R.; Friess, H.; Ceyhan, G.O. The influence of neural invasion on survival and tumor recurrence in pancreatic ductal adenocarcinoma – A systematic review and meta-analysis. Surg. Oncol., 2017, 26(1), 105-115.
[http://dx.doi.org/10.1016/j.suronc.2017.01.007] [PMID: 28317579]
[24]
Hishinuma, S.; Ogata, Y.; Tomikawa, M.; Ozawa, I.; Hirabayashi, K.; Igarashi, S. Patterns of recurrence after curative resection of pancreatic cancer, based on autopsy findings. J. Gastrointest. Surg., 2006, 10(4), 511-518.
[http://dx.doi.org/10.1016/j.gassur.2005.09.016] [PMID: 16627216]
[25]
Chen, X.; Liu, F.; Xue, Q.; Weng, X.; Xu, F. Metastatic pancreatic cancer: Mechanisms and detection (Review). Oncol. Rep., 2021, 46(5), 231.
[http://dx.doi.org/10.3892/or.2021.8182] [PMID: 34498718]
[26]
Luo, Y.; Hu, J.; Liu, Y.; Li, L.; Li, Y.; Sun, B.; Kong, R. Invadopodia: A potential target for pancreatic cancer therapy. Crit. Rev. Oncol. Hematol., 2021, 159, 103236.
[http://dx.doi.org/10.1016/j.critrevonc.2021.103236] [PMID: 33482351]
[27]
Blouw, B.; Seals, D.F.; Pass, I.; Diaz, B.; Courtneidge, S.A. A role for the podosome/invadopodia scaffold protein Tks5 in tumor growth in vivo. Eur. J. Cell Biol., 2008, 87(8-9), 555-567.
[http://dx.doi.org/10.1016/j.ejcb.2008.02.008] [PMID: 18417249]
[28]
Xiao, Z.; Luo, G.; Liu, C.; Wu, C.; Liu, L.; Liu, Z.; Ni, Q.; Long, J.; Yu, X. Molecular mechanism underlying lymphatic metastasis in pancreatic cancer. BioMed Res. Int., 2014, 2014, 1-15.
[http://dx.doi.org/10.1155/2014/925845] [PMID: 24587996]
[29]
Li, X.; Wang, Z.; Ma, Q.; Xu, Q.; Liu, H.; Duan, W.; Lei, J.; Ma, J.; Wang, X.; Lv, S.; Han, L.; Li, W.; Guo, J.; Guo, K.; Zhang, D.; Wu, E.; Xie, K. Sonic hedgehog paracrine signaling activates stromal cells to promote perineural invasion in pancreatic cancer. Clin. Cancer Res., 2014, 20(16), 4326-4338.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3426] [PMID: 24947933]
[30]
Achen, M.G.; Stacker, S.A. Molecular control of lymphatic metastasis. Ann. N. Y. Acad. Sci., 2008, 1131(1), 225-234.
[http://dx.doi.org/10.1196/annals.1413.020] [PMID: 18519975]
[31]
Huh, J.W.; Kim, H.R.; Kim, Y.J. Prognostic value of perineural invasion in patients with stage II colorectal cancer. Ann. Surg. Oncol., 2010, 17(8), 2066-2072.
[http://dx.doi.org/10.1245/s10434-010-0982-7] [PMID: 20182809]
[32]
Chatterjee, D.; Katz, M.H.; Rashid, A.; Wang, H.; Iuga, A.C.; Varadhachary, G.R.; Wolff, R.A.; Lee, J.E.; Pisters, P.W.; Crane, C.H.; Gomez, H.F.; Abbruzzese, J.L.; Fleming, J.B.; Wang, H. Perineural and intraneural invasion in posttherapy pancreaticoduodenectomy specimens predicts poor prognosis in patients with pancreatic ductal adenocarcinoma. Am. J. Surg. Pathol., 2012, 36(3), 409-417.
[http://dx.doi.org/10.1097/PAS.0b013e31824104c5] [PMID: 22301497]
[33]
Jurcak, N.; Zheng, L. Signaling in the microenvironment of pancreatic cancer: Transmitting along the nerve. Pharmacol. Ther., 2019, 200, 126-134.
[http://dx.doi.org/10.1016/j.pharmthera.2019.04.010] [PMID: 31047906]
[34]
Gysler, S.M.; Drapkin, R. Tumor innervation: Peripheral nerves take control of the tumor microenvironment. J. Clin. Invest., 2021, 131(11), e147276.
[http://dx.doi.org/10.1172/JCI147276] [PMID: 34060481]
[35]
Saloman, J.L.; Albers, K.M.; Li, D.; Hartman, D.J.; Crawford, H.C.; Muha, E.A.; Rhim, A.D.; Davis, B.M. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc. Natl. Acad. Sci. USA, 2016, 113(11), 3078-3083.
[http://dx.doi.org/10.1073/pnas.1512603113] [PMID: 26929329]
[36]
Stopczynski, R.E.; Normolle, D.P.; Hartman, D.J.; Ying, H.; DeBerry, J.J.; Bielefeldt, K.; Rhim, A.D.; DePinho, R.A.; Albers, K.M.; Davis, B.M. Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Cancer Res., 2014, 74(6), 1718-1727.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2050] [PMID: 24448244]
[37]
Bapat, A.A.; Munoz, R.M.; Von Hoff, D.D.; Han, H. Blocking nerve growth factor signaling reduces the neural invasion potential of pancreatic cancer cells. PLoS One, 2016, 11(10), e0165586.
[http://dx.doi.org/10.1371/journal.pone.0165586] [PMID: 27792755]
[38]
Miknyoczki, S.J.; Lang, D.; Huang, L.; Klein-Szanto, A.J.P.; Dionne, C.A.; Ruggeri, B.A. Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: Expression patterns and effects on In vitro invasive behavior. Int. J. Cancer, 1999, 81(3), 417-427.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990505)81:3<417::AID-IJC16>3.0.CO;2-6] [PMID: 10209957]
[39]
He, S.; Chen, C.H.; Chernichenko, N.; He, S.; Bakst, R.L.; Barajas, F.; Deborde, S.; Allen, P.J.; Vakiani, E.; Yu, Z.; Wong, R.J. GFRα1 released by nerves enhances cancer cell perineural invasion through GDNF-RET signaling. Proc. Natl. Acad. Sci. USA, 2014, 111(19), E2008-E2017.
[http://dx.doi.org/10.1073/pnas.1402944111] [PMID: 24778213]
[40]
Ketterer, K.; Rao, S.; Friess, H.; Weiss, J.; Büchler, M.W.; Korc, M. Reverse transcription-PCR analysis of laser-captured cells points to potential paracrine and autocrine actions of neurotrophins in pancreatic cancer. Clin. Cancer Res., 2003, 9(14), 5127-5136.
[PMID: 14613990]
[41]
Marchesi, F.; Piemonti, L.; Mantovani, A.; Allavena, P. Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev., 2010, 21(1), 77-82.
[http://dx.doi.org/10.1016/j.cytogfr.2009.11.001] [PMID: 20060768]
[42]
Marchesi, F.; Piemonti, L.; Fedele, G.; Destro, A.; Roncalli, M.; Albarello, L.; Doglioni, C.; Anselmo, A.; Doni, A.; Bianchi, P.; Laghi, L.; Malesci, A.; Cervo, L.; Malosio, M.; Reni, M.; Zerbi, A.; Di Carlo, V.; Mantovani, A.; Allavena, P. The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Cancer Res., 2008, 68(21), 9060-9069.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1810] [PMID: 18974152]
[43]
Xu, Q.; Wang, Z.; Chen, X.; Duan, W.; Lei, J.; Zong, L.; Li, X.; Sheng, L.; Ma, J.; Han, L.; Li, W.; Zhang, L.; Guo, K.; Ma, Z.; Wu, Z.; Wu, E.; Ma, Q. Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer. Oncotarget, 2015, 6(7), 4717-4732.
[http://dx.doi.org/10.18632/oncotarget.3069] [PMID: 25605248]
[44]
Koide, N.; Yamada, T.; Shibata, R.; Mori, T.; Fukuma, M.; Yamazaki, K.; Aiura, K.; Shimazu, M.; Hirohashi, S.; Nimura, Y.; Sakamoto, M. Establishment of perineural invasion models and analysis of gene expression revealed an invariant chain (CD74) as a possible molecule involved in perineural invasion in pancreatic cancer. Clin. Cancer Res., 2006, 12(8), 2419-2426.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1852] [PMID: 16638847]
[45]
Harding, M.A.; Theodorescu, D. RhoGDI signaling provides targets for cancer therapy. Eur. J. Cancer, 2010, 46(7), 1252-1259.
[http://dx.doi.org/10.1016/j.ejca.2010.02.025] [PMID: 20347589]
[46]
Liang, D.; Shi, S.; Xu, J.; Zhang, B.; Qin, Y.; Ji, S.; Xu, W.; Liu, J.; Liu, L.; Liu, C.; Long, J.; Ni, Q.; Yu, X. New insights into perineural invasion of pancreatic cancer: More than pain. Biochim. Biophys. Acta Rev. Cancer, 2016, 1865(2), 111-122.
[http://dx.doi.org/10.1016/j.bbcan.2016.01.002] [PMID: 26794395]
[47]
Witz, I.P.; Levy-Nissenbaum, O. The tumor microenvironment in the post-PAGET era. Cancer Lett., 2006, 242(1), 1-10.
[http://dx.doi.org/10.1016/j.canlet.2005.12.005] [PMID: 16413116]
[48]
Greten, T.F. Myeloid-derived suppressor cells in pancreatic cancer: More than a hidden barrier for antitumour immunity? Gut, 2014, 63(11), 1690-1691.
[http://dx.doi.org/10.1136/gutjnl-2014-306790] [PMID: 24633728]
[49]
Ceyhan, G.O.; Demir, I.E.; Altintas, B.; Rauch, U.; Thiel, G.; Müller, M.W.; Giese, N.A.; Friess, H.; Schäfer, K.H. Neural invasion in pancreatic cancer: A mutual tropism between neurons and cancer cells. Biochem. Biophys. Res. Commun., 2008, 374(3), 442-447.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.035] [PMID: 18640096]
[50]
Bingle, L.; Brown, N.J.; Lewis, C.E. The role of tumour-associated macrophages in tumour progression: Implications for new anticancer therapies. J. Pathol., 2002, 196(3), 254-265.
[http://dx.doi.org/10.1002/path.1027] [PMID: 11857487]
[51]
Zhang, M.; Huang, L.; Ding, G.; Huang, H.; Cao, G.; Sun, X.; Lou, N.; Wei, Q.; Shen, T.; Xu, X.; Cao, L.; Yan, Q. Interferon gamma inhibits CXCL8–CXCR2 axis mediated tumor-associated macrophages tumor trafficking and enhances anti-PD1 efficacy in pancreatic cancer. J. Immunother. Cancer, 2020, 8(1), e000308.
[http://dx.doi.org/10.1136/jitc-2019-000308] [PMID: 32051287]
[52]
Sainz, B., Jr; Martín, B.; Tatari, M.; Heeschen, C.; Guerra, S. ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells. Cancer Res., 2014, 74(24), 7309-7320.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1354] [PMID: 25368022]
[53]
Jiang, J.; Bai, J.; Qin, T.; Wang, Z.; Han, L. NGF from pancreatic stellate cells induces pancreatic cancer proliferation and invasion by PI3K/AKT/GSK signal pathway. J. Cell. Mol. Med., 2020, 24(10), 5901-5910.
[http://dx.doi.org/10.1111/jcmm.15265] [PMID: 32294802]
[54]
Han, L.; Jiang, J.; Xue, M.; Qin, T.; Xiao, Y.; Wu, E.; Shen, X.; Ma, Q.; Ma, J. Sonic hedgehog signaling pathway promotes pancreatic cancer pain via nerve growth factor. Reg. Anesth. Pain Med., 2020, 45(2), 137-144.
[http://dx.doi.org/10.1136/rapm-2019-100991] [PMID: 31792027]
[55]
Oyama, Y.; Nagao, S.; Na, L.; Yanai, K.; Umebayashi, M.; Nakamura, K.; Nagai, S.; Fujimura, A.; Yamasaki, A.; Nakayama, K.; Morisaki, T.; Onishi, H. TrkB/BDNF signaling could be a new therapeutic target for pancreatic cancer. Anticancer Res., 2021, 41(8), 4047-4052.
[http://dx.doi.org/10.21873/anticanres.15205] [PMID: 34281873]
[56]
Fei, X.; Jin, H.Y.; Gao, Y.; Kong, L.M.; Tan, X.D. Hsa-miR-10a-5p promotes pancreatic cancer growth by BDNF/SEMA4C pathway. J. Biol. Regul. Homeost. Agents, 2020, 34(3), 927-934.
[http://dx.doi.org/10.23812/20-61-A-47] [PMID: 32683841]
[57]
Liu, D.; Song, L.; Dai, Z.; Guan, H.; Kang, H.; Zhang, Y.; Yan, W.; Zhao, X.; Zhang, S. MiR-429 suppresses neurotrophin-3 to alleviate perineural invasion of pancreatic cancer. Biochem. Biophys. Res. Commun., 2018, 505(4), 1077-1083.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.147] [PMID: 30314698]
[58]
Sclabas, G.M.; Fujioka, S.; Schmidt, C.; Li, Z.; Frederick, W.A.I.; Yang, W.; Yokoi, K.; Evans, D.B.; Abbruzzese, J.L.; Hess, K.R.; Zhang, W.; Fidler, I.J.; Chiao, P.J. Overexpression of tropomysin-related kinase B in metastatic human pancreatic cancer cells. Clin. Cancer Res., 2005, 11(2), 440-449.
[http://dx.doi.org/10.1158/1078-0432.440.11.2] [PMID: 15701826]
[59]
Duan, L.; Hu, X.; Feng, D.; Lei, S.; Hu, G. GPC-1 may serve as a predictor of perineural invasion and a prognosticator of survival in pancreatic cancer. Asian J. Surg., 2013, 36(1), 7-12.
[http://dx.doi.org/10.1016/j.asjsur.2012.08.001] [PMID: 23270819]
[60]
Bizzozero, L.; Pergolizzi, M.; Pascal, D.; Maldi, E.; Villari, G.; Erriquez, J.; Volante, M.; Serini, G.; Marchiò, C.; Bussolino, F.; Arese, M. Tumoral neuroligin 1 promotes cancer–nerve interactions and synergizes with the glial cell line-derived neurotrophic factor. Cells, 2022, 11(2), 280.
[http://dx.doi.org/10.3390/cells11020280] [PMID: 35053395]
[61]
Wang, K.; Demir, I.E.; D’Haese, J.G.; Tieftrunk, E.; Kujundzic, K.; Schorn, S.; Xing, B.; Kehl, T.; Friess, H.; Ceyhan, G.O. The neurotrophic factor neurturin contributes toward an aggressive cancer cell phenotype, neuropathic pain and neuronal plasticity in pancreatic cancer. Carcinogenesis, 2014, 35(1), 103-113.
[http://dx.doi.org/10.1093/carcin/bgt312] [PMID: 24067900]
[62]
Li, T.J.; Li, H.; Zhang, W.H.; Xu, S.S.; Jiang, W.; Li, S.; Gao, H.L.; Han, X.; Xu, H.X.; Wu, C.T.; Wang, W.Q.; Yu, X.J.; Liu, L. Human splenic TER cells: A relevant prognostic factor acting via the ARTEMIN-GFRα3-ERK pathway in pancreatic ductal adenocarcinoma. Int. J. Cancer, 2021, 148(7), 1756-1767.
[http://dx.doi.org/10.1002/ijc.33410] [PMID: 33236361]
[63]
Gao, L.; Bo, H.; Wang, Y.; Zhang, J.; Zhu, M. Neurotrophic factor artemin promotes invasiveness and neurotrophic function of pancreatic adenocarcinoma in vivo and in vitro. Pancreas, 2015, 44(1), 134-143.
[http://dx.doi.org/10.1097/MPA.0000000000000223] [PMID: 25243385]
[64]
Hirth, M.; Gandla, J.; Höper, C.; Gaida, M.M.; Agarwal, N.; Simonetti, M.; Demir, A.; Xie, Y.; Weiss, C.; Michalski, C.W.; Hackert, T.; Ebert, M.P.; Kuner, R. CXCL10 and CCL21 promote migration of pancreatic cancer cells toward sensory neurons and neural remodeling in tumors in mice, associated with pain in patients. Gastroenterology, 2020, 159(2), 665-681.e13.
[http://dx.doi.org/10.1053/j.gastro.2020.04.037] [PMID: 32330476]
[65]
Sabbineni, H.; Alwhaibi, A.; Goc, A.; Gao, F.; Pruitt, A.; Somanath, P.R. Genetic deletion and pharmacological inhibition of Akt1 isoform attenuates bladder cancer cell proliferation, motility and invasion. Eur. J. Pharmacol., 2015, 764, 208-214.
[http://dx.doi.org/10.1016/j.ejphar.2015.06.059] [PMID: 26148825]
[66]
Hauser, M.A.; Legler, D.F. Common and biased signaling pathways of the chemokine receptor CCR7 elicited by its ligands CCL19 and CCL21 in leukocytes. J. Leukoc. Biol., 2016, 99(6), 869-882.
[http://dx.doi.org/10.1189/jlb.2MR0815-380R] [PMID: 26729814]
[67]
Koper, O.; Kamińska, J.; Sawicki, K.; Kemona, H. CXCL9, CXCL10, CXCL11, and their receptor (CXCR3) in neuroinflammation and neurodegeneration. Adv. Clin. Exp. Med., 2018, 27(6), 849-856.
[http://dx.doi.org/10.17219/acem/68846] [PMID: 29893515]
[68]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[69]
Agarwal, B.; Abu-Hamda, E.; Molke, K.L.; Correa, A.M.; Ho, L. Endoscopic ultrasound-guided fine needle aspiration and multidetector spiral CT in the diagnosis of pancreatic cancer. Am. J. Gastroenterol., 2004, 99(5), 844-850.
[http://dx.doi.org/10.1111/j.1572-0241.2004.04177.x] [PMID: 15128348]
[70]
Zhang, L.; Sanagapalli, S.; Stoita, A. Challenges in diagnosis of pancreatic cancer. World J. Gastroenterol., 2018, 24(19), 2047-2060.
[http://dx.doi.org/10.3748/wjg.v24.i19.2047] [PMID: 29785074]
[71]
Zhao, Z.; Liu, W. Pancreatic cancer: A review of risk factors, diagnosis, and treatment. Technol. Cancer Res. Treat., 2020, 19,, 1533033820962117..
[http://dx.doi.org/10.1177/1533033820962117] [PMID: 33357065]
[72]
Rustgi, S.D.; Amin, S.P.; Kim, M.K.; Nagula, S.; Kumta, N.A.; DiMaio, C.J.; Boffetta, P.; Lucas, A.L. Age, socioeconomic features, and clinical factors predict receipt of endoscopic retrograde cholangiopancreatography in pancreatic cancer. World J. Gastrointest. Endosc., 2019, 11(2), 133-144.
[http://dx.doi.org/10.4253/wjge.v11.i2.133] [PMID: 30788032]
[73]
Tang, S.; Huang, G.; Liu, J.; Liu, T.; Treven, L.; Song, S.; Zhang, C.; Pan, L.; Zhang, T. Usefulness of 18F-FDG PET, combined FDG-PET/CT and EUS in diagnosing primary pancreatic carcinoma: A meta-analysis. Eur. J. Radiol., 2011, 78(1), 142-150.
[http://dx.doi.org/10.1016/j.ejrad.2009.09.026] [PMID: 19854016]
[74]
Marrelli, D.; Caruso, S.; Pedrazzani, C.; Neri, A.; Fernandes, E.; Marini, M.; Pinto, E.; Roviello, F. CA19-9 serum levels in obstructive jaundice: Clinical value in benign and malignant conditions. Am. J. Surg., 2009, 198(3), 333-339.
[http://dx.doi.org/10.1016/j.amjsurg.2008.12.031] [PMID: 19375064]
[75]
Kamisawa, T.; Wood, L.D.; Itoi, T.; Takaori, K. Pancreatic cancer. Lancet, 2016, 388(10039), 73-85.
[http://dx.doi.org/10.1016/S0140-6736(16)00141-0] [PMID: 26830752]
[76]
Eibl, G.; Reber, H.A. A xenograft nude mouse model for perineural invasion and recurrence in pancreatic cancer. Pancreas, 2005, 31(3), 258-262.
[http://dx.doi.org/10.1097/01.mpa.0000175176.40045.0f] [PMID: 16163058]
[77]
Bélanger, P.; West, C.R.; Brown, M.T. Development of pain therapies targeting nerve growth factor signal transduction and the strategies used to resolve safety issues. J. Toxicol. Sci., 2018, 43(1), 1-10.
[http://dx.doi.org/10.2131/jts.43.1] [PMID: 29415946]
[78]
Liddle, R.A. The role of transient receptor potential vanilloid 1 (TRPV1) channels in pancreatitis. Biochim. Biophys. Acta Mol. Basis Dis., 2007, 1772(8), 869-878.
[http://dx.doi.org/10.1016/j.bbadis.2007.02.012] [PMID: 17428642]
[79]
Hansford, J.R.; Mulligan, L.M. Multiple endocrine neoplasia type 2 and RET: From neoplasia to neurogenesis. J. Med. Genet., 2000, 37(11), 817-827.
[http://dx.doi.org/10.1136/jmg.37.11.817] [PMID: 11073534]
[80]
Bartscht, T.; Lehnert, H.; Gieseler, F.; Ungefroren, H. The Src family kinase inhibitors PP2 and PP1 effectively block TGF-beta1-induced cell migration and invasion in both established and primary carcinoma cells. Cancer Chemother. Pharmacol., 2012, 70(2), 221-230.
[http://dx.doi.org/10.1007/s00280-012-1904-0] [PMID: 22699812]
[81]
Cederblad, L.; Rosengren, B.; Ryberg, E.; Hermansson, N.O. AZD8797 is an allosteric non-competitive modulator of the human CX3CR1 receptor. Biochem. J., 2016, 473(5), 641-649.
[http://dx.doi.org/10.1042/BJ20150520] [PMID: 26656484]
[82]
Lyu, Z.; Guo, Y.; Gong, Y.; Fan, W.; Dou, B.; Li, N.; Wang, S.; Xu, Y.; Liu, Y.; Chen, B.; Guo, Y.; Xu, Z.; Lin, X. The role of neuroglial crosstalk and synaptic plasticity-mediated central sensitization in acupuncture analgesia. Neural Plast., 2021, 2021, 1-18.
[http://dx.doi.org/10.1155/2021/8881557] [PMID: 33531894]
[83]
Rauch, J N LRP1 is a master regulator of tau uptake and spread. Nature, 2020, 580(7803), 3811-385.
[http://dx.doi.org/10.1038/s41586-020-2156-5]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy