Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

An Overview of Current Progress and Challenges in Brain Cancer Therapy Using Advanced Nanoparticles

Author(s): Mahima Chauhan, Rahul Pratap Singh*, Sonali, Ghazala Zia, Saurabh Shekhar, Bhavna Yadav, Vandana Garg and Rohit Dutt

Volume 18, Issue 3, 2024

Published on: 13 September, 2023

Page: [295 - 304] Pages: 10

DOI: 10.2174/1872210517666230815105031

Price: $65

conference banner
Abstract

Brain tumors pose significant challenges in terms of complete cure and early-stage prognosis. The complexity of brain tumors, including their location, infiltrative nature, and intricate tumor microenvironment (TME), contributes to the difficulties in achieving a complete cure.

The primary objective of brain cancer therapy is to effectively treat brain tumors and improve the patient’s quality of life. Nanoparticles (NPs) have emerged as promising tools in this regard. They can be designed to deliver therapeutic drugs to the brain tumor site while also incorporating imaging agents.

The NPs with the 10-200 nm range can cross the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) and facilitate drug bioavailability. NPs can be designed by several methods to improve the pharmaceutical and pharmacological aspects of encapsulated therapeutic agents.

NPs can be developed in various dosage forms to suit different administration routes in brain cancer therapy. The unique properties and versatility of NPs make them essential tools in the fight against brain tumors, offering new opportunities to improve patient outcomes and care. Having the ability to target brain tumors directly, overcome the BBB, and minimize systemic side effects makes NPs valuable tools in improving patient outcomes and care.

The review highlights the challenges associated with brain tumor treatment and emphasizes the importance of early detection and diagnosis. The use of NPs for drug delivery and imaging in brain tumors is a promising approach to improving patient outcomes and quality of life. The versatility and unique properties of NPs make them valuable tools in the fight against brain tumors, and innovative NP-related patents have the potential to revolutionize healthcare.

Keywords: Blood-brain barrier, brain tumor inhibition, chemotherapy, clinical translation of nanomedicines, theranostic approaches, nanoparticles.

Graphical Abstract
[1]
Miller KD, Ostrom QT, Kruchko C, et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin 2021; 71(5): 381-406.
[http://dx.doi.org/10.3322/caac.21693] [PMID: 34427324]
[2]
Aldape K, Brindle KM, Chesler L, et al. Reply to ‘Assembling the brain trust: The multidisciplinary imperative in neuro-oncology’. Nat Rev Clin Oncol 2019; 16(8): 522-3.
[http://dx.doi.org/10.1038/s41571-019-0236-y] [PMID: 31150022]
[3]
Shergalis A, Bankhead A III, Luesakul U, Muangsin N, Neamati N. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev 2018; 70(3): 412-45.
[http://dx.doi.org/10.1124/pr.117.014944] [PMID: 29669750]
[4]
Ni J, Miao T, Su M, et al. PSMA-targeted nanoparticles for specific penetration of blood-brain tumor barrier and combined therapy of brain metastases. J Control Release 2021; 329: 934-47.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.023] [PMID: 33069744]
[5]
Kemp JA, Kwon YJ. Cancer nanotechnology: Current status and perspectives. Nano Converg 2021; 8(1): 34.
[http://dx.doi.org/10.1186/s40580-021-00282-7] [PMID: 34727233]
[6]
Hu Y, Hammarlund-Udenaes M. Perspectives on nanodelivery to the brain: Prerequisites for successful brain treatment. Mol Pharm 2020; 17(11): 4029-39.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00881] [PMID: 33064009]
[7]
Pandey P, Gulati N, Makhija M, et al. Nanoemulsion: A novel drug delivery approach for enhancement of bioavailability. Recent Pat Nanotechnol 2020; 14(4): 276-93.
[http://dx.doi.org/10.2174/1872210514666200604145755]
[8]
Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect Medicin Chem 2014; 6: S13384.
[http://dx.doi.org/10.4137/PMC.S13384] [PMID: 24963272]
[9]
Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Control Release 2018; 270: 290-303.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.015] [PMID: 29269142]
[10]
Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 2020; 10(17): 7921-4.
[http://dx.doi.org/10.7150/thno.49577] [PMID: 32685029]
[11]
Maeda H, Tsukigawa K, Fang JA. A Retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: Next-generation chemotherapeutics and photodynamic therapy-problems, solutions, and prospects. Microcirculation 2016; 23(3): 173-82.
[http://dx.doi.org/10.1111/micc.12228]
[12]
Mo F, Pellerino A, Soffietti R, Rudà R. Blood-brain barrier in brain tumors: Biology and clinical relevance. Int J Mol Sci 2021; 22(23): 12654.
[http://dx.doi.org/10.3390/ijms222312654] [PMID: 34884457]
[13]
Erthal LCS, Gobbo OL, Ruiz-Hernandez E. Biocompatible copolymer formulations to treat glioblastoma multiforme. Acta Biomater 2021; 121: 89-102.
[http://dx.doi.org/10.1016/j.actbio.2020.11.030] [PMID: 33227487]
[14]
Azizi M, Dianat-Moghadam H, Salehi R, et al. Interactions between tumor biology and targeted nanoplatforms for imaging applications. Adv Funct Mater 2020; 30(19): 1910402.
[http://dx.doi.org/10.1002/adfm.201910402] [PMID: 34093104]
[15]
Gandhi H, Sharma AK, Mahant S, Kapoor DN. Recent advancements in brain tumor targeting using magnetic nanoparticles. Ther Deliv 2020; 11(2): 97-112.
[http://dx.doi.org/10.4155/tde-2019-0077] [PMID: 31914859]
[16]
Heidari A, Javaheri D, Toumaj S, Navimipour NJ, Rezaei M, Unal M. A new lung cancer detection method based on the chest CT images using Federated Learning and blockchain systems. Artif Intell Med 2023; 141: 102572.
[http://dx.doi.org/10.1016/j.artmed.2023.102572] [PMID: 37295902]
[17]
Lollo G, Vincent M, Ullio-Gamboa G, et al. Development of multifunctional lipid nanocapsules for the co-delivery of paclitaxel and CpG-ODN in the treatment of glioblastoma. Int J Pharm 2015; 495(2): 972-80.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.062] [PMID: 26428632]
[18]
Caraway CA, Gaitsch H, Wicks EE, Kalluri A, Kunadi N, Tyler BM. Polymeric nanoparticles in brain cancer therapy: A review of current approaches. Polymers (Basel) 2022; 14(14): 2963.
[http://dx.doi.org/10.3390/polym14142963] [PMID: 35890738]
[19]
Hainfeld JF, Smilowitz HM, O’Connor MJ, Dilmanian FA, Slatkin DN. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine 2013; 8(10): 1601-9.
[http://dx.doi.org/10.2217/nnm.12.165] [PMID: 23265347]
[20]
Gosselet F, Loiola RA, Roig A, Rosell A, Culot M. Central nervous system delivery of molecules across the blood-brain barrier. Neurochem Int 2021; 144: 104952.
[http://dx.doi.org/10.1016/j.neuint.2020.104952] [PMID: 33400964]
[21]
Baeza A, Vallet-Regí M. Mesoporous silica nanoparticles as theranostic antitumoral nanomedicines. Pharmaceutics 2020; 12(10): 957.
[http://dx.doi.org/10.3390/pharmaceutics12100957] [PMID: 33050613]
[22]
Vahdat S. Clinical profile, outcome and management of kidney disease in COVID-19 patients - a narrative review. Eur Rev Med Pharmacol Sci 2022; 26(6): 2188-95.
[http://dx.doi.org/10.26355/eurrev_202203_28367] [PMID: 35363369]
[23]
Yu B, Tai HC, Xue W, Lee LJ, Lee RJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 2010; 27(7): 286-98.
[http://dx.doi.org/10.3109/09687688.2010.521200] [PMID: 21028937]
[24]
Satapathy BS, Kumar LA, Pattnaik G, Swapna S, Mohanty D. Targeting to brain tumor: Nanocarrier-based drug delivery platforms, opportunities, and challenges. J Pharm Bioallied Sci 2021; 13(2): 172-7.
[http://dx.doi.org/10.4103/jpbs.JPBS_239_20] [PMID: 34349476]
[25]
Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release 2016; 240: 504-26.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.016] [PMID: 27292178]
[26]
Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012; 32(11): 1959-72.
[http://dx.doi.org/10.1038/jcbfm.2012.126] [PMID: 22929442]
[27]
Chauhan M, Shekhar S, Yadav B, et al. Nanoparticles: A promising tool to promote reactive oxygen species in cancer therapy. Curr Protein Pept Sci 2021; 22(12): 827-30.
[http://dx.doi.org/10.2174/1389203722666211210115819] [PMID: 34895121]
[28]
Reinholz J, Landfester K, Mailänder V. The challenges of oral drug delivery via nanocarriers. Drug Deliv 2018; 25(1): 1694-705.
[http://dx.doi.org/10.1080/10717544.2018.1501119] [PMID: 30394120]
[29]
He B, Lin P, Jia Z, et al. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials 2013; 34(25): 6082-98.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.053] [PMID: 23694903]
[30]
Vyas T, Shahiwala A, Marathe S, Misra A. Intranasal drug delivery for brain targeting. Curr Drug Deliv 2005; 2(2): 165-75.
[http://dx.doi.org/10.2174/1567201053586047] [PMID: 16305417]
[31]
Munir MU. Nanomedicine penetration to tumor: Challenges, and advanced strategies to tackle this issue. Cancers 2022; 14(12): 2904.
[http://dx.doi.org/10.3390/cancers14122904] [PMID: 35740570]
[32]
Bruinsmann FA, Richter Vaz G, de Cristo Soares Alves A, et al. Nasal drug delivery of anticancer drugs for the treatment of glioblastoma: Preclinical and clinical trials. Molecules 2019; 24(23): 4312.
[http://dx.doi.org/10.3390/molecules24234312] [PMID: 31779126]
[33]
Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol 2015; 55(1): 613-31.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124852] [PMID: 25340933]
[34]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2): 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[35]
Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 2019; 23(1): 20.
[http://dx.doi.org/10.1186/s40824-019-0166-x] [PMID: 31832232]
[36]
Qian X, Long L, Shi Z, et al. Star-branched amphiphilic PLA-b-PDMAEMA copolymers for co-delivery of miR-21 inhibitor and doxorubicin to treat glioma. Biomaterials 2014; 35(7): 2322-35.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.039] [PMID: 24332459]
[37]
Rechberger JS, Thiele F, Daniels DJ. Status Quo and trends of intra-arterial therapy for brain tumors: A bibliometric and clinical trials analysis. Pharmaceutics 2021; 13(11): 1885.
[http://dx.doi.org/10.3390/pharmaceutics13111885] [PMID: 34834300]
[38]
Wang M, Etu J, Joshi S. Enhanced disruption of the blood brain barrier by intracarotid mannitol injection during transient cerebral hypoperfusion in rabbits. J Neurosurg Anesthesiol 2007; 19(4): 249-56.
[http://dx.doi.org/10.1097/ANA.0b013e3181453851] [PMID: 17893577]
[39]
Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer 2006; 6(8): 583-92.
[http://dx.doi.org/10.1038/nrc1893] [PMID: 16862189]
[40]
Young JS, Llumsden CE, Stalker AL. The significance of the “tissue pressure” of normal testicular and of neoplastic (Brown-Pearce carcinoma) tissue in the rabbit. J Pathol Bacteriol 1950; 62(3): 313-33.
[http://dx.doi.org/10.1002/path.1700620303] [PMID: 14784896]
[41]
Zadeh FA, Bokov DO, Yasin G, et al. Central obesity accelerates leukocyte telomere length (LTL) shortening in apparently healthy adults: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2023; 63(14): 2119-28.
[http://dx.doi.org/10.1080/10408398.2021.1971155]
[42]
Ardekani AM, Vahdat S, Hojati A, et al. Evaluating the association between the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet, mental health, and cardio-metabolic risk factors among individuals with obesity. BMC Endocr Disord 2023; 23(1): 29.
[http://dx.doi.org/10.1186/s12902-023-01284-8] [PMID: 36726099]
[43]
Upton DH, Ung C, George SM, Tsoli M, Kavallaris M, Ziegler DS. Challenges and opportunities to penetrate the blood-brain barrier for brain cancer therapy. Theranostics 2022; 12(10): 4734-52.
[http://dx.doi.org/10.7150/thno.69682] [PMID: 35832071]
[44]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[45]
a) Akter F, Simon B, de Boer NL, et al. Pre-clinical tumor models of primary brain tumors: Challenges and opportunities. Biochim Biophys Acta Rev Cancer 2021; 1875(2021): 188458.
[http://dx.doi.org/10.1016/j.bbcan.2020.188458];
b) Yang Z, Yang Y. Exosome analysis and brain tumors. WO Patent 2021261733A2, 2021.
[46]
Wu SK, Tsai CL, Huang Y, Hynynen K. Focused ultrasound and microbubbles-mediated drug delivery to brain tumor. Pharmaceutics 2020; 13(1): 15.
[http://dx.doi.org/10.3390/pharmaceutics13010015] [PMID: 33374205]
[47]
Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. J Nanopart Res 2023; 25(3): 43.
[http://dx.doi.org/10.1007/s11051-023-05690-w] [PMID: 36875184]
[48]
Paramo LA, Feregrino-Pérez AA, Guevara R, Mendoza S, Esquivel K. Nanoparticles in agroindustry: Applications, Toxicity, Challenges, and Trends. Nanomaterials 2020; 10(9): 1654.
[http://dx.doi.org/10.3390/nano10091654] [PMID: 32842495]
[49]
Allan J, Belz S, Hoeveler A, et al. Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regul Toxicol Pharmacol 2021; 122: 104885.
[http://dx.doi.org/10.1016/j.yrtph.2021.104885] [PMID: 33617940]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy