Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Phosphodiesterase 2 and Its Isoform A as Therapeutic Targets in the Central Nervous System Disorders

Author(s): Sanjay K. Metkar, Yuqing Yan, Yue Lu, Jianming Lu, Xiongwei Zhu, Fu Du and Ying Xu*

Volume 23, Issue 8, 2024

Published on: 25 September, 2023

Page: [941 - 955] Pages: 15

DOI: 10.2174/1871527323666230811093126

Price: $65

conference banner
Abstract

Cyclic adenosine monophosphates (cAMP) and cyclic guanosine monophosphate (cGMP) are two essential second messengers, which are hydrolyzed by phosphodiesterase's (PDEs), such as PDE-2. Pharmacological inhibition of PDE-2 (PDE2A) in the central nervous system improves cAMP and cGMP signaling, which controls downstream proteins related to neuropsychiatric, neurodegenerative, and neurodevelopmental disorders. Considering that there are no specific treatments for these disorders, PDE-2 inhibitors' development has gained more attention in the recent decade. There is high demand for developing new-generation drugs targeting PDE2 for treating diseases in the central nervous and peripheral systems. This review summarizes the relationship between PDE-2 with neuropsychiatric, neurodegenerative, and neurodevelopmental disorders as well as its possible treatment, mainly involving inhibitors of PDE2.

Keywords: Phosphodiesterase 2 (PDE2 or PDE2A), cyclic AMP (cAMP), cyclic GMP (cGMP), neuropsychiatric, neurodegenerative, neurodevelopmental disorders.

Graphical Abstract
[1]
Azevedo MF, Faucz FR, Bimpaki E, et al. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev 2014; 35(2): 195-233.
[http://dx.doi.org/10.1210/er.2013-1053] [PMID: 24311737]
[2]
Zhang C, Lueptow LM, Zhang HT, O’Donnell JM, Xu Y. The Role of Phosphodiesterase-2 in Psychiatric and Neurodegenerative Disorders. Adv Neurobiol 2017; 17: 307-47.
[http://dx.doi.org/10.1007/978-3-319-58811-7_12] [PMID: 28956338]
[3]
Zhang C, Yu Y, Ruan L, et al. The roles of phosphodiesterase 2 in the central nervous and peripheral systems. Curr Pharm Des 2014; 21(3): 274-90.
[http://dx.doi.org/10.2174/1381612820666140826115245] [PMID: 25159070]
[4]
Steegborn C. Structure, mechanism, and regulation of soluble adenylyl cyclases - similarities and differences to transmembrane adenylyl cyclases. Biochim Biophys Acta Mol Basis Dis 2014; 1842(12) (12 Pt B): 2535-47.
[http://dx.doi.org/10.1016/j.bbadis.2014.08.012] [PMID: 25193033]
[5]
Potter LR. Guanylyl cyclase structure, function and regulation. Cell Signal 2011; 23(12): 1921-6.
[http://dx.doi.org/10.1016/j.cellsig.2011.09.001] [PMID: 21914472]
[6]
Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: Molecular regulation to clinical use. Pharmacol Rev 2006; 58(3): 488-520.
[http://dx.doi.org/10.1124/pr.58.3.5] [PMID: 16968949]
[7]
Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: Essential components in cyclic nucleotide signaling. Annu Rev Biochem 2007; 76(1): 481-511.
[http://dx.doi.org/10.1146/annurev.biochem.76.060305.150444] [PMID: 17376027]
[8]
Feil S, Zimmermann P, Knorn A, et al. Distribution of cGMP-dependent protein kinase type I and its isoforms in the mouse brain and retina. Neuroscience 2005; 135(3): 863-8.
[http://dx.doi.org/10.1016/j.neuroscience.2005.06.051] [PMID: 16154279]
[9]
Hofmann ME, Nahir B, Frazier CJ. Endocannabinoid-mediated depolarization-induced suppression of inhibition in hilar mossy cells of the rat dentate gyrus. J Neurophysiol 2006; 96(5): 2501-12.
[http://dx.doi.org/10.1152/jn.00310.2006] [PMID: 16807350]
[10]
Kleppisch T. Phosphodiesterases in the central nervous system. Handb Exp Pharmacol 2009; 191(191): 71-92.
[http://dx.doi.org/10.1007/978-3-540-68964-5_5] [PMID: 19089326]
[11]
Ashman DF, Lipton R, Melicow MM, Price TD. Isolation of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate from rat urine. Biochem Biophys Res Commun 1963; 11(4): 330-4.
[http://dx.doi.org/10.1016/0006-291X(63)90566-7] [PMID: 13965190]
[12]
Sonnenburg WK, Mullaney PJ, Beavo JA. Molecular cloning of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase cDNA. Identification and distribution of isozyme variants. J Biol Chem 1991; 266(26): 17655-61.
[http://dx.doi.org/10.1016/S0021-9258(19)47421-8] [PMID: 1654333]
[13]
Yang Q, Paskind M, Bolger G, et al. A novel cyclic GMP stimulated phosphodiesterase from rat brain. Biochem Biophys Res Commun 1994; 205(3): 1850-8.
[http://dx.doi.org/10.1006/bbrc.1994.2886] [PMID: 7811274]
[14]
Martins TJ, Mumby MC, Beavo JA. Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem 1982; 257(4): 1973-9.
[http://dx.doi.org/10.1016/S0021-9258(19)68134-2] [PMID: 6276403]
[15]
Huang D, Hinds TR, Martinez SE, Doneanu C, Beavo JA. Molecular determinants of cGMP binding to chicken cone photoreceptor phosphodiesterase. J Biol Chem 2004; 279(46): 48143-51.
[http://dx.doi.org/10.1074/jbc.M404338200] [PMID: 15331594]
[16]
Wu AY, Tang XB, Martinez SE, Ikeda K, Beavo JA. Molecular determinants for cyclic nucleotide binding to the regulatory domains of phosphodiesterase 2A. J Biol Chem 2004; 279(36): 37928-38.
[http://dx.doi.org/10.1074/jbc.M404287200] [PMID: 15210692]
[17]
Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: A new target for the development of specific therapeutic agents. Pharmacol Ther 2006; 109(3): 366-98.
[http://dx.doi.org/10.1016/j.pharmthera.2005.07.003] [PMID: 16102838]
[18]
Gomez L, Breitenbucher JG. PDE2 inhibition: Potential for the treatment of cognitive disorders. Bioorg Med Chem Lett 2013; 23(24): 6522-7.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.014] [PMID: 24189054]
[19]
Stephenson DT, Coskran TM, Kelly MP, et al. The distribution of phosphodiesterase 2A in the rat brain. Neuroscience 2012; 226: 145-55.
[http://dx.doi.org/10.1016/j.neuroscience.2012.09.011] [PMID: 23000621]
[20]
Farmer R, Burbano SD, Patel NS, Sarmiento A, Smith AJ, Kelly MP. Phosphodiesterases PDE2A and PDE10A both change mRNA expression in the human brain with age, but only PDE2A changes in a region-specific manner with psychiatric disease. Cell Signal 2020; 70: 109592.
[http://dx.doi.org/10.1016/j.cellsig.2020.109592] [PMID: 32119913]
[21]
Gu G, Scott T, Yan Y, et al. Target engagement of a phosphodiesterase 2A inhibitor affecting long-term memory in the Rat. J Pharmacol Exp Ther 2019; 370(3): 399-407.
[http://dx.doi.org/10.1124/jpet.118.255851] [PMID: 31253692]
[22]
Esteban JA, Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 2003; 6(2): 136-43.
[http://dx.doi.org/10.1038/nn997] [PMID: 12536214]
[23]
Akiyama H, Fukuda T, Tojima T, Nikolaev VO, Kamiguchi H. Cyclic nucleotide control of microtubule dynamics for axon guidance. J Neurosci 2016; 36(20): 5636-49.
[http://dx.doi.org/10.1523/JNEUROSCI.3596-15.2016] [PMID: 27194341]
[24]
Crawford DC, Mennerick S. Presynaptically silent synapses: Dormancy and awakening of presynaptic vesicle release. Neuroscientist 2012; 18(3): 216-23.
[http://dx.doi.org/10.1177/1073858411418525] [PMID: 21908849]
[25]
Kleppisch T, Feil R. cGMP signalling in the mammalian brain: Role in synaptic plasticity and behaviour. Handb Exp Pharmacol 2009; 191(191): 549-79.
[http://dx.doi.org/10.1007/978-3-540-68964-5_24] [PMID: 19089345]
[26]
Averaimo S, Nicol X. Intermingled cAMP, cGMP and calcium spatiotemporal dynamics in developing neuronal circuits. Front Cell Neurosci 2014; 8: 376.
[http://dx.doi.org/10.3389/fncel.2014.00376] [PMID: 25431549]
[27]
Stoufflet J, Chaulet M, Doulazmi M, et al. Primary cilium-dependent cAMP/PKA signaling at the centrosome regulates neuronal migration. Sci Adv 2020; 6(36): eaba3992.
[http://dx.doi.org/10.1126/sciadv.aba3992] [PMID: 32917588]
[29]
Chen CN, Denome S, Davis RL. Molecular analysis of cDNA clones and the corresponding genomic coding sequences of the Drosophila dunce+ gene, the structural gene for cAMP phosphodiesterase. Proc Natl Acad Sci USA 1986; 83(24): 9313-7.
[http://dx.doi.org/10.1073/pnas.83.24.9313] [PMID: 3025834]
[30]
Repaske DR, Swinnen JV, Jin SL, Van Wyk JJ, Conti M. A polymerase chain reaction strategy to identify and clone cyclic nucleotide phosphodiesterase cDNAs. Molecular cloning of the cDNA encoding the 63-kDa calmodulin-dependent phosphodiesterase. J Biol Chem 1992; 267(26): 18683-8.
[http://dx.doi.org/10.1016/S0021-9258(19)37015-2] [PMID: 1326532]
[31]
Martinez SE, Bruder S, Schultz A, et al. Crystal structure of the tandem GAF domains from a cyanobacterial adenylyl cyclase: Modes of ligand binding and dimerization. Proc Natl Acad Sci USA 2005; 102(8): 3082-7.
[http://dx.doi.org/10.1073/pnas.0409913102] [PMID: 15708973]
[32]
Kanacher T, Schultz A, Linder JU, Schultz JE. A GAF-domain-regulated adenylyl cyclase from Anabaena is a self-activating cAMP switch. EMBO J 2002; 21(14): 3672-80.
[http://dx.doi.org/10.1093/emboj/cdf375] [PMID: 12110580]
[33]
Ho YSJ, Burden LM, Hurley JH. Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J 2000; 19(20): 5288-99.
[http://dx.doi.org/10.1093/emboj/19.20.5288] [PMID: 11032796]
[34]
Martinez SE, Beavo JA, Hol WG. GAF domains: Two-billion-year-old molecular switches that bind cyclic nucleotides. Mol Interv 2002; 2(5): 317-23.
[http://dx.doi.org/10.1124/mi.2.5.317] [PMID: 14993386]
[35]
Pandit J, Forman MD, Fennell KF, Dillman KS, Menniti FS. Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Proc Natl Acad Sci USA 2009; 106(43): 18225-30.
[http://dx.doi.org/10.1073/pnas.0907635106] [PMID: 19828435]
[36]
Yamamoto T, Manganiello VC, Vaughan M. Purification and characterization of cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from calf liver. Effects of divalent cations on activity. J Biol Chem 1983; 258(20): 12526-33.
[http://dx.doi.org/10.1016/S0021-9258(17)44208-6] [PMID: 6313664]
[37]
Bender AT, Beavo JA. Specific localized expression of cGMP PDEs in Purkinje neurons and macrophages. Neurochem Int 2004; 45(6): 853-7.
[http://dx.doi.org/10.1016/j.neuint.2004.03.015] [PMID: 15312979]
[38]
Sjöstedt E, Zhong W, Fagerberg L, et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020; 367(6482): eaay5947.
[http://dx.doi.org/10.1126/science.aay5947] [PMID: 32139519]
[39]
Martinez SE, Wu AY, Glavas NA, et al. The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding. Proc Natl Acad Sci USA 2002; 99(20): 13260-5.
[http://dx.doi.org/10.1073/pnas.192374899] [PMID: 12271124]
[40]
Zhu J, Yang Q, Dai D, Huang Q. X-ray crystal structure of phosphodiesterase 2 in complex with a highly selective, nanomolar inhibitor reveals a binding-induced pocket important for selectivity. J Am Chem Soc 2013; 135(32): 11708-11.
[http://dx.doi.org/10.1021/ja404449g] [PMID: 23899287]
[41]
Card GL, England BP, Suzuki Y, et al. Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure 2004; 12(12): 2233-47.
[http://dx.doi.org/10.1016/j.str.2004.10.004] [PMID: 15576036]
[42]
Weber S, Zeller M, Guan K, Wunder F, Wagner M, El-Armouche A. PDE2 at the crossway between cAMP and cGMP signalling in the heart. Cell Signal 2017; 38: 76-84.
[http://dx.doi.org/10.1016/j.cellsig.2017.06.020] [PMID: 28668721]
[43]
de Oliveira SK, Hoffmeister M, Gambaryan S, Müller-Esterl W, Guimaraes JA, Smolenski AP. Phosphodiesterase 2A forms a complex with the co-chaperone XAP2 and regulates nuclear translocation of the aryl hydrocarbon receptor. J Biol Chem 2007; 282(18): 13656-63.
[http://dx.doi.org/10.1074/jbc.M610942200] [PMID: 17329248]
[44]
Meyer MR, Angele A, Kremmer E, Kaupp UB, Müller F. A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc Natl Acad Sci USA 2000; 97(19): 10595-600.
[http://dx.doi.org/10.1073/pnas.97.19.10595] [PMID: 10984544]
[45]
Colman RW. Platelet cyclic adenosine monophosphate phosphodiesterases: Targets for regulating platelet-related thrombosis. Semin Thromb Hemost 2004; 30(4): 451-60.
[http://dx.doi.org/10.1055/s-2004-833480] [PMID: 15354266]
[46]
Velardez MO, De Laurentiis A, del Carmen Díaz M, et al. Role of phosphodiesterase and protein kinase G on nitric oxide-induced inhibition of prolactin release from the rat anterior pituitary. Eur J Endocrinol 2000; 143(2): 279-84.
[http://dx.doi.org/10.1530/eje.0.1430279] [PMID: 10913949]
[47]
Suvarna NU, O’Donnell JM. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus. J Pharmacol Exp Ther 2002; 302(1): 249-56.
[http://dx.doi.org/10.1124/jpet.302.1.249] [PMID: 12065724]
[48]
Boess FG, Hendrix M, van der Staay FJ, et al. Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 2004; 47(7): 1081-92.
[http://dx.doi.org/10.1016/j.neuropharm.2004.07.040] [PMID: 15555642]
[49]
Kumar A, Sidhu J, Goyal A, Tsao JW. Alzheimer Disease. Treasure Island, FL: StatPearls 2022.
[50]
Murman D. The Impact of Age on Cognition. Semin Hear 2015; 36(3): 111-21.
[http://dx.doi.org/10.1055/s-0035-1555115] [PMID: 27516712]
[51]
Murphy MP, LeVine H III. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis 2010; 19(1): 311-23.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[52]
Sanders O, Rajagopal L. Phosphodiesterase Inhibitors for Alzheimer’s Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale. J Alzheimers Dis Rep 2020; 4(1): 185-215.
[http://dx.doi.org/10.3233/ADR-200191] [PMID: 32715279]
[53]
Ran I, Laplante I, Lacaille JC. CREB-dependent transcriptional control and quantal changes in persistent long-term potentiation in hippocampal interneurons. J Neurosci 2012; 32(18): 6335-50.
[http://dx.doi.org/10.1523/JNEUROSCI.5463-11.2012] [PMID: 22553039]
[54]
Jehle A, Garaschuk O. The Interplay between cGMP and Calcium Signaling in Alzheimer’s Disease. Int J Mol Sci 2022; 23(13): 7048.
[http://dx.doi.org/10.3390/ijms23137048] [PMID: 35806059]
[55]
Teich AF, Nicholls RE, Puzzo D, et al. Synaptic therapy in Alzheimer’s disease: A CREB-centric approach. Neurotherapeutics 2015; 12(1): 29-41.
[http://dx.doi.org/10.1007/s13311-014-0327-5] [PMID: 25575647]
[56]
Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 2013; 6(1): 19-33.
[http://dx.doi.org/10.1177/1756285612461679] [PMID: 23277790]
[57]
Lueptow LM, Zhan CG, O’Donnell JM. Cyclic GMP–mediated memory enhancement in the object recognition test by inhibitors of phosphodiesterase-2 in mice. Psychopharmacology (Berl) 2016; 233(3): 447-56.
[http://dx.doi.org/10.1007/s00213-015-4129-1] [PMID: 26525565]
[58]
Nakashima M, Suzuki N, Shiraishi E, Iwashita H. TAK-915, a phosphodiesterase 2A inhibitor, ameliorates the cognitive impairment associated with aging in rodent models. Behav Brain Res 2019; 376: 112192.
[http://dx.doi.org/10.1016/j.bbr.2019.112192] [PMID: 31521738]
[59]
Paes D, Xie K, Wheeler DG, Zook D, Prickaerts J, Peters M. Inhibition of PDE2 and PDE4 synergistically improves memory consolidation processes. Neuropharmacology 2021; 184: 108414.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108414] [PMID: 33249120]
[60]
Jiang MY, Han C, Zhang C, et al. Discovery of effective phosphodiesterase 2 inhibitors with antioxidant activities for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2021; 41: 128016.
[http://dx.doi.org/10.1016/j.bmcl.2021.128016] [PMID: 33838306]
[61]
Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet 2009; 373(9680): 2055-66.
[http://dx.doi.org/10.1016/S0140-6736(09)60492-X] [PMID: 19524782]
[62]
Carlsson A. Treatment of Parkinson’s with L-DOPA. The early discovery phase, and a comment on current problems. J Neural Transm (Vienna) 2002; 109(5-6): 777-87.
[http://dx.doi.org/10.1007/s007020200064] [PMID: 12111467]
[63]
Pedrosa DJ, Timmermann L. Review: Management of Parkinson’s disease. Neuropsychiatr Dis Treat 2013; 9: 321-40.
[http://dx.doi.org/10.2147/NDT.S32302] [PMID: 23487540]
[64]
Talati R, Baker WL, Patel AA, Reinhart K, Coleman CI. Adding a dopamine agonist to preexisting levodopa therapy vs. levodopa therapy alone in advanced Parkinson’s disease: A meta analysis. Int J Clin Pract 2009; 63(4): 613-23.
[http://dx.doi.org/10.1111/j.1742-1241.2009.02027.x] [PMID: 19222614]
[65]
Vincent P, Spitzer NC. Editorial: Dynamics of cyclic nucleotide signaling in neurons. Front Cell Neurosci 2015; 9: 296.
[http://dx.doi.org/10.3389/fncel.2015.00296] [PMID: 26283926]
[66]
Hulley P, Hartikka J, Lübbert H. Cyclic AMP promotes the survival of dopaminergic neurons in vitro and protects them from the toxic effects of MPP+. J Neural Transm Suppl 1995; 46: 217-28.
[PMID: 8821058]
[67]
Wang Y, Liu J, Song G, Yu Y, Huang X. Design and Synthesis of PDE2A Inhibitors for the Treatment of Parkinson’s Disease. ChemistrySelect 2022; 7(36): e202202874.
[http://dx.doi.org/10.1002/slct.202202874]
[68]
Loh KP, Huang SH, De Silva R, Tan BK, Zhu YZ. Oxidative stress: Apoptosis in neuronal injury. Curr Alzheimer Res 2006; 3(4): 327-37.
[http://dx.doi.org/10.2174/156720506778249515] [PMID: 17017863]
[69]
Klabnik J, O’Donnell J. Free Radic Biol Med. Curr Alzheimer Res 2011; 50(10): 1355-67.
[70]
Lee DH, Heidecke H, Schröder A, et al. Increase of angiotensin II type 1 receptor auto-antibodies in Huntington’s disease. Mol Neurodegener 2014; 9(1): 49.
[http://dx.doi.org/10.1186/1750-1326-9-49] [PMID: 25398321]
[71]
Meyer LS, Gong S, Reincke M, Williams TA, Angiotensin II, Angiotensin II. Type 1 Receptor Autoantibodies in Primary Aldosteronism. Horm Metab Res 2020; 52(6): 379-85.
[http://dx.doi.org/10.1055/a-1120-8647] [PMID: 32168525]
[72]
Salpietro V, Perez-Dueñas B, Nakashima K, et al. A homozygous loss-of-function mutation in PDE2A associated to early-onset hereditary chorea. Mov Disord 2018; 33(3): 482-8.
[http://dx.doi.org/10.1002/mds.27286] [PMID: 29392776]
[73]
Sharma SR, Gonda X, Tarazi FI. Autism Spectrum Disorder: Classification, diagnosis and therapy. Pharmacol Ther 2018; 190: 91-104.
[http://dx.doi.org/10.1016/j.pharmthera.2018.05.007] [PMID: 29763648]
[74]
Chaste P, Leboyer M. Autism risk factors: Genes, environment, and gene-environment interactions. Dialogues Clin Neurosci 2012; 14(3): 281-92.
[http://dx.doi.org/10.31887/DCNS.2012.14.3/pchaste] [PMID: 23226953]
[75]
Hannon E, Schendel D, Ladd-Acosta C, et al. Elevated polygenic burden for autism is associated with differential DNA methylation at birth. Genome Med 2018; 10(1): 19.
[http://dx.doi.org/10.1186/s13073-018-0527-4] [PMID: 29587883]
[76]
Christensen J, Grønborg TK, Sørensen MJ, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 2013; 309(16): 1696-703.
[http://dx.doi.org/10.1001/jama.2013.2270] [PMID: 23613074]
[77]
Servadio M, Melancia F, Manduca A, et al. Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid. Transl Psychiatry 2016; 6(9): e902.
[http://dx.doi.org/10.1038/tp.2016.182] [PMID: 27676443]
[78]
Tartaglione AM, Schiavi S, Calamandrei G, Trezza V. Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology 2019; 159: 107477.
[http://dx.doi.org/10.1016/j.neuropharm.2018.12.024] [PMID: 30639388]
[79]
Song F, Barton P, Sleightholme V, Yao G, Fry-Smith A. Screening for fragile X syndrome: A literature review and modelling study. Health Technol Assess 2003; 7(16): 1-106.
[http://dx.doi.org/10.3310/hta7160] [PMID: 12969542]
[80]
Hernandez RN, Feinberg RL, Vaurio R, Passanante NM, Thompson RE, Kaufmann WE. Autism spectrum disorder in fragile X syndrome: A longitudinal evaluation. Am J Med Genet A 2009; 149A(6): 1125-37.
[http://dx.doi.org/10.1002/ajmg.a.32848] [PMID: 19441123]
[81]
Berry-Kravis EM, Harnett MD, Reines SA, et al. Inhibition of phosphodiesterase-4D in adults with fragile X syndrome: A randomized, placebo-controlled, phase 2 clinical trial. Nat Med 2021; 27(5): 862-70.
[http://dx.doi.org/10.1038/s41591-021-01321-w] [PMID: 33927413]
[82]
De Rubeis S, He X, Goldberg AP, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 2014; 515(7526): 209-15.
[http://dx.doi.org/10.1038/nature13772] [PMID: 25363760]
[83]
Delhaye S, Bardoni B. Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders. Mol Psychiatry 2021; 26(9): 4570-82.
[http://dx.doi.org/10.1038/s41380-020-00997-9] [PMID: 33414502]
[84]
Gurney ME, Nugent RA, Mo X, et al. Design and Synthesis of Selective Phosphodiesterase 4D (PDE4D) Allosteric Inhibitors for the Treatment of Fragile X Syndrome and Other Brain Disorders. J Med Chem 2019; 62(10): 4884-901.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00193] [PMID: 31013090]
[85]
Schiavi S, Carbone E, Melancia F, et al. Phosphodiesterase 2A inhibition corrects the aberrant behavioral traits observed in genetic and environmental preclinical models of Autism Spectrum Disorder. Transl Psychiatry 2022; 12(1): 119.
[http://dx.doi.org/10.1038/s41398-022-01885-2] [PMID: 35338117]
[86]
Maurin T, Melancia F, Jarjat M, et al. Involvement of Phosphodiesterase 2A Activity in the Pathophysiology of Fragile X Syndrome. Cereb Cortex 2019; 29(8): 3241-52.
[http://dx.doi.org/10.1093/cercor/bhy192] [PMID: 30137253]
[87]
Maurin T, Lebrigand K, Castagnola S, et al. HITS-CLIP in various brain areas reveals new targets and new modalities of RNA binding by fragile X mental retardation protein. Nucleic Acids Res 2018; 46(12): 6344-55.
[http://dx.doi.org/10.1093/nar/gky267] [PMID: 29668986]
[88]
Ding Q, Zhang F, Feng Y, Wang H. Carbamazepine Restores Neuronal Signaling, Protein Synthesis, and Cognitive Function in a Mouse Model of Fragile X Syndrome. Int J Mol Sci 2020; 21(23): 9327.
[http://dx.doi.org/10.3390/ijms21239327] [PMID: 33297570]
[89]
Foussias G, Agid O, Fervaha G, Remington G. Negative symptoms of schizophrenia: Clinical features, relevance to real world functioning and specificity versus other CNS disorders. Eur Neuropsychopharmacol 2014; 24(5): 693-709.
[http://dx.doi.org/10.1016/j.euroneuro.2013.10.017] [PMID: 24275699]
[90]
Lin CH, Lane HY, Tsai GE. Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav 2012; 100(4): 665-77.
[http://dx.doi.org/10.1016/j.pbb.2011.03.023] [PMID: 21463651]
[91]
Hallak JEC, Maia-de-Oliveira JP, Abrao J, et al. Rapid improvement of acute schizophrenia symptoms after intravenous sodium nitroprusside: A randomized, double-blind, placebo-controlled trial. JAMA Psychiatry 2013; 70(7): 668-76.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.1292] [PMID: 23699763]
[92]
Ruan L, Du K, Tao M, et al. Phosphodiesterase-2 Inhibitor Bay 60-7550 Ameliorates Aβ-Induced Cognitive and Memory Impairment via Regulation of the HPA Axis. Front Cell Neurosci 2019; 13: 432.
[http://dx.doi.org/10.3389/fncel.2019.00432] [PMID: 31632240]
[93]
Bollen E, Akkerman S, Puzzo D, et al. Object memory enhancement by combining sub-efficacious doses of specific phosphodiesterase inhibitors. Neuropharmacology 2015; 95: 361-6.
[http://dx.doi.org/10.1016/j.neuropharm.2015.04.008] [PMID: 25896769]
[94]
Snyder GL, Vanover KE. PDE Inhibitors for the Treatment of Schizophrenia. Adv Neurobiol 2017; 17: 385-409.
[http://dx.doi.org/10.1007/978-3-319-58811-7_14] [PMID: 28956340]
[95]
Nakashima M, Imada H, Shiraishi E, et al. Phosphodiesterase 2A Inhibitor TAK-915 Ameliorates Cognitive Impairments and Social Withdrawal in N -Methyl-d-Aspartate Receptor Antagonist–Induced Rat Models of Schizophrenia. J Pharmacol Exp Ther 2018; 365(1): 179-88.
[http://dx.doi.org/10.1124/jpet.117.245506] [PMID: 29440309]
[96]
Prickaerts J, Heckman PRA, Blokland A. Investigational phosphodiesterase inhibitors in phase I and phase II clinical trials for Alzheimer’s disease. Expert Opin Investig Drugs 2017; 26(9): 1033-48.
[http://dx.doi.org/10.1080/13543784.2017.1364360] [PMID: 28772081]
[97]
Zhu MJ, Shi J, Chen Y, et al. Phosphodiesterase 2 inhibitor Hcyb1 reverses corticosterone-induced neurotoxicity and depression-like behavior. Psychopharmacology (Berl) 2020; 237(11): 3215-24.
[http://dx.doi.org/10.1007/s00213-019-05401-1] [PMID: 32926224]
[98]
Liu L, Zheng J, Huang XF, et al. The neuroprotective and antidepressant-like effects of Hcyb1, a novel selective PDE2 inhibitor. CNS Neurosci Ther 2018; 24(7): 652-60.
[http://dx.doi.org/10.1111/cns.12863] [PMID: 29704309]
[99]
Ding L, Zhang C, Masood A, et al. Protective effects of phosphodiesterase 2 inhibitor on depression- and anxiety-like behaviors: Involvement of antioxidant and anti-apoptotic mechanisms. Behav Brain Res 2014; 268: 150-8.
[http://dx.doi.org/10.1016/j.bbr.2014.03.042] [PMID: 24694839]
[100]
Huang X, Xiaokaiti Y, Yang J, et al. Inhibition of phosphodiesterase 2 reverses gp91phox oxidase-mediated depression- and anxiety-like behavior. Neuropharmacology 2018; 143: 176-85.
[http://dx.doi.org/10.1016/j.neuropharm.2018.09.039] [PMID: 30268520]
[101]
Xu Y, Pan J, Chen L, et al. Phosphodiesterase-2 inhibitor reverses corticosterone-induced neurotoxicity and related behavioural changes via cGMP/PKG dependent pathway. Int J Neuropsychopharmacol 2013; 16(4): 835-47.
[http://dx.doi.org/10.1017/S146114571200065X] [PMID: 22850435]
[102]
Mangot AG, Murthy VS. Psychiatric aspects of phosphodiesterases: An overview. Indian J Pharmacol 2015; 47(6): 594-9.
[http://dx.doi.org/10.4103/0253-7613.169593] [PMID: 26729948]
[103]
de Vente J, Markerink-van Ittersum M, Vles JSH. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord. J Chem Neuroanat 2006; 31(4): 275-303.
[http://dx.doi.org/10.1016/j.jchemneu.2006.02.006] [PMID: 16621445]
[104]
Stephenson DT, Coskran TM, Wilhelms MB, et al. Immunohistochemical localization of phosphodiesterase 2A in multiple mammalian species. J Histochem Cytochem 2009; 57(10): 933-49.
[http://dx.doi.org/10.1369/jhc.2009.953471] [PMID: 19506089]
[105]
Wang J, Wu M, Lin X, Li Y, Fu Z. Low-Concentration Oxygen/Ozone Treatment Attenuated Radiculitis and Mechanical Allodynia via PDE2A-cAMP/cGMP-NF- κ B/p65 Signaling in Chronic Radiculitis Rats. Pain Res Manag 2018; 2018: 1-8.
[http://dx.doi.org/10.1155/2018/5192814] [PMID: 30651902]
[106]
Kallenborn-Gerhardt W, Lu R, Bothe A, et al. Phosphodiesterase 2A localized in the spinal cord contributes to inflammatory pain processing. Anesthesiology 2014; 121(2): 372-82.
[http://dx.doi.org/10.1097/ALN.0000000000000270] [PMID: 24758774]
[107]
Bonetti M, Fontana A, Cotticelli B, Volta GD, Guindani M, Leonardi M. Intraforaminal O(2)-O(3) versus periradicular steroidal infiltrations in lower back pain: Randomized controlled study. AJNR Am J Neuroradiol 2005; 26(5): 996-1000.
[PMID: 15891150]
[108]
Melchionda D, Milillo P, Manente G, Stoppino L, Macarini L. Treatment of radiculopathies: A study of efficacy and tollerability of paravertebral oxygen-ozone injections compared with pharmacological anti-inflammatory treatment. J Biol Regul Homeost Agents 2012; 26(3): 467-74.
[PMID: 23034266]
[109]
Baillie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: Inhibition and beyond. Nat Rev Drug Discov 2019; 18(10): 770-96.
[http://dx.doi.org/10.1038/s41573-019-0033-4] [PMID: 31388135]
[110]
Al-Tawashi A, Gehring C. Phosphodiesterase activity is regulated by CC2D1A that is implicated in non-syndromic intellectual disability. Cell Commun Signal 2013; 11(1): 47.
[http://dx.doi.org/10.1186/1478-811X-11-47] [PMID: 23826796]
[111]
Yan Y, Zhao Y, Lu Y, et al. Characterization of two novel phosphodiesterase 2 inhibitors Hcyb1 and PF-05180999 on depression- and anxiety-like behavior. Int J Neuropsychopharmacol 2023; 26(6): 415-25.
[http://dx.doi.org/10.1093/ijnp/pyad020] [PMID: 37208298]
[112]
Wang L, Xiaokaiti Y, Wang G, et al. Inhibition of PDE2 reverses beta amyloid induced memory impairment through regulation of PKA/PKG-dependent neuro-inflammatory and apoptotic pathways. Sci Rep 2017; 7(1): 12044.
[http://dx.doi.org/10.1038/s41598-017-08070-2] [PMID: 28935920]
[113]
Seybold J, Thomas D, Witzenrath M, et al. Tumor necrosis factor-α–dependent expression of phosphodiesterase 2: Role in endothelial hyperpermeability. Blood 2005; 105(9): 3569-76.
[http://dx.doi.org/10.1182/blood-2004-07-2729] [PMID: 15650061]
[114]
Xi M, Sun T, Chai S, et al. Therapeutic potential of phosphodiesterase inhibitors for cognitive amelioration in Alzheimer’s disease. Eur J Med Chem 2022; 232: 114170.
[http://dx.doi.org/10.1016/j.ejmech.2022.114170] [PMID: 35144038]
[115]
Helal CJ, Arnold EP, Boyden TL, et al. Application of Structure-Based Design and Parallel Chemistry to Identify a Potent, Selective, and Brain Penetrant Phosphodiesterase 2A Inhibitor. J Med Chem 2017; 60(13): 5673-98.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00397] [PMID: 28574706]
[116]
Adapted and Recreated from “CREB Signalling Pathway”. 2022. Available From: https://app.biorender.com/biorender-templates

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy