Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Case Report

CCNF基因突变引起的行为变异额颞叶痴呆1例报告

卷 20, 期 5, 2023

发表于: 22 September, 2023

页: [371 - 378] 页: 8

弟呕挨: 10.2174/1567205020666230811092906

价格: $65

conference banner
摘要

背景:额叶、颞叶痴呆(FTD)和肌萎缩侧索硬化症(ALS)是致命的神经退行性疾病。研究发现在家族性和散发性ALS和FTD患者中发现了CCNF突变。行为变异额颞叶痴呆(behavioral variant frontotemporal dementia, bvFTD)是一种以人格、社会行为和认知功能进行性恶化为特征的临床综合征,与遗传因素关系最为密切。由于bvFTD的早期症状是高度异质性的,这种情况经常被误诊为阿尔茨海默病或精神障碍。本研究中,一名bvFTD患者发生CCNF基因突变,导致泛素化蛋白积累,最终导致神经退行性疾病。迫切需要提高bvFTD患者及其家属的基因检测水平,为早期诊断额颞叶痴呆提供临床参考。 案例展示:本例患者年龄65岁,起病隐匿,早发性记忆丧失,情节记忆明显下降,早期诊断为AD,口服盐酸多奈哌齐3年疗效不佳,后改为口服盐酸美金刚片,病情控制数月。改用低甘露酸钠胶囊治疗,病情逐渐得到控制,但未见明显好转。自发停药后,病情进展迅速;因此,他到我们医院接受了中度至重度认知障碍的神经心理测试。AD脑脊液标志物未见明显异常,头颅MRI显示额颞叶萎缩,海马体积减小。基因检测显示CCNF基因存在c.1532C > a (p. T511N)杂合变异,这可能是bvFTD的诊断标准。因此,患者联用多奈哌齐、口服盐酸美金刚片、低甘露酸钠治疗后症状一过性改善后再次出现,但总体情况较术前有所改善,并在随访中继续观察该治疗方案的变化。 结论:bvFTD的早期临床表现复杂多变,易误诊,延误治疗。因此,对于临床高度怀疑FTD的患者,除了详细了解其病史和家族史,完善相关检查外,还应尽早进行基因检测,以帮助确诊。对于与基因密切相关的疾病,应尽可能优化其他家庭成员的基因检测,以便早期诊断和干预,指导下一代生育。

关键词: 行为变异,额颞叶痴呆,肌萎缩侧索硬化症,CCNF基因,病例报告,FTD。

« Previous
[1]
Devenney, E.M.; Ahmed, R.M.; Hodges, J.R. Frontotemporal dementia. Handb. Clin. Neurol., 2019, 167, 279-299.
[http://dx.doi.org/10.1016/B978-0-12-804766-8.00015-7] [PMID: 31753137]
[2]
China Dementia and Cognitive Impairment Guide Writing Group,Professional Committee on Cognitive Disorders of Neurology Branch of Chinese Medical Doctor Association.. Chinese Guidelines for the Diagnosis and treatment of dementia and cognitive disorders(I): Dementia and its classification criteria. Chin J Med, 2018, 98(13), 965-970.
[3]
Greaves, C.V.; Rohrer, J.D. An update on genetic frontotemporal dementia. J. Neurol., 2019, 266(8), 2075-2086.
[http://dx.doi.org/10.1007/s00415-019-09363-4] [PMID: 31119452]
[4]
Wood, E.M.; Falcone, D.; Suh, E.; Irwin, D.J.; Chen-Plotkin, A.S.; Lee, E.B.; Xie, S.X.; Van Deerlin, V.M.; Grossman, M. Development and validation of pedigree classification criteria for frontotemporal lobar degeneration. JAMA Neurol., 2013, 70(11), 1411-1417.
[http://dx.doi.org/10.1001/jamaneurol.2013.3956] [PMID: 24081456]
[5]
Klein, D.K.; Hoffmann, S.; Ahlskog, J.K.; O’Hanlon, K.; Quaas, M.; Larsen, B.D.; Rolland, B.; Rösner, H.I.; Walter, D.; Kousholt, A.N.; Menzel, T.; Lees, M.; Johansen, J.V.; Rappsilber, J.; Engeland, K.; Sørensen, C.S. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control. Nat. Commun., 2015, 6(1), 5800.
[http://dx.doi.org/10.1038/ncomms6800] [PMID: 25557911]
[6]
D’Angiolella, V.; Esencay, M.; Pagano, M. A cyclin without cyclin-dependent kinases: Cyclin F controls genome stability through ubiquitin-mediated proteolysis. Trends Cell Biol., 2013, 23(3), 135-140.
[http://dx.doi.org/10.1016/j.tcb.2012.10.011] [PMID: 23182110]
[7]
Lee, A.; Rayner, S.L.; Gwee, S.S.L.; De Luca, A.; Shahheydari, H.; Sundaramoorthy, V.; Ragagnin, A.; Morsch, M.; Radford, R.; Galper, J.; Freckleton, S.; Shi, B.; Walker, A.K.; Don, E.K.; Cole, N.J.; Yang, S.; Williams, K.L.; Yerbury, J.J.; Blair, I.P.; Atkin, J.D.; Molloy, M.P.; Chung, R.S. Pathogenic mutation in the ALS/FTD gene, CCNF, causes elevated Lys48-linked ubiquitylation and defective autophagy. Cell. Mol. Life Sci., 2018, 75(2), 335-354.
[http://dx.doi.org/10.1007/s00018-017-2632-8] [PMID: 28852778]
[8]
Williams, K.L.; Topp, S.; Yang, S.; Smith, B.; Fifita, J.A.; Warraich, S.T.; Zhang, K.Y.; Farrawell, N.; Vance, C.; Hu, X.; Chesi, A.; Leblond, C.S.; Lee, A.; Rayner, S.L.; Sundaramoorthy, V.; Dobson-Stone, C.; Molloy, M.P.; van Blitterswijk, M.; Dickson, D.W.; Petersen, R.C.; Graff-Radford, N.R.; Boeve, B.F.; Murray, M.E.; Pottier, C.; Don, E.; Winnick, C.; McCann, E.P.; Hogan, A.; Daoud, H.; Levert, A.; Dion, P.A.; Mitsui, J.; Ishiura, H.; Takahashi, Y.; Goto, J.; Kost, J.; Gellera, C.; Gkazi, A.S.; Miller, J.; Stockton, J.; Brooks, W.S.; Boundy, K.; Polak, M.; Muñoz-Blanco, J.L.; Esteban-Pérez, J.; Rábano, A.; Hardiman, O.; Morrison, K.E.; Ticozzi, N.; Silani, V.; de Belleroche, J.; Glass, J.D.; Kwok, J.B.J.; Guillemin, G.J.; Chung, R.S.; Tsuji, S.; Brown, R.H., Jr; García-Redondo, A.; Rademakers, R.; Landers, J.E.; Gitler, A.D.; Rouleau, G.A.; Cole, N.J.; Yerbury, J.J.; Atkin, J.D.; Shaw, C.E.; Nicholson, G.A.; Blair, I.P. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat. Commun., 2016, 7(1), 11253.
[http://dx.doi.org/10.1038/ncomms11253] [PMID: 27080313]
[9]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[10]
Mann, D.M.A.; Snowden, J.S. Frontotemporal lobar degeneration: Pathogenesis, pathology and pathways to phenotype. Brain Pathol., 2017, 27(6), 723-736.
[http://dx.doi.org/10.1111/bpa.12486] [PMID: 28100023]
[11]
Olszewska, D.A.; Lonergan, R.; Fallon, E.M.; Lynch, T. Genetics of frontotemporal dementia. Curr. Neurol. Neurosci. Rep., 2016, 16(12), 107.
[http://dx.doi.org/10.1007/s11910-016-0707-9] [PMID: 27878525]
[12]
Goldman, J.S.; Farmer, J.M.; Wood, E.M.; Johnson, J.K.; Boxer, A.; Neuhaus, J.; Lomen-Hoerth, C.; Wilhelmsen, K.C.; Lee, V.M.Y.; Grossman, M.; Miller, B.L. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology, 2005, 65(11), 1817-1819.
[http://dx.doi.org/10.1212/01.wnl.0000187068.92184.63] [PMID: 16344531]
[13]
Lillo, P.; Mioshi, E.; Zoing, M.C.; Kiernan, M.C.; Hodges, J.R. How common are behavioural changes in amyotrophic lateral sclerosis? Amyotroph. Lateral Scler., 2011, 12(1), 45-51.
[http://dx.doi.org/10.3109/17482968.2010.520718] [PMID: 20849323]
[14]
Burrell, J.R.; Halliday, G.M.; Kril, J.J.; Ittner, L.M.; Götz, J.; Kiernan, M.C.; Hodges, J.R. The frontotemporal dementia-motor neuron disease continuum. Lancet, 2016, 388(10047), 919-931.
[http://dx.doi.org/10.1016/S0140-6736(16)00737-6] [PMID: 26987909]
[15]
Burrell, J.R.; Kiernan, M.C.; Vucic, S.; Hodges, J.R. Motor Neuron dysfunction in frontotemporal dementia. Brain, 2011, 134(9), 2582-2594.
[http://dx.doi.org/10.1093/brain/awr195] [PMID: 21840887]
[16]
Van Langenhove, T.; Piguet, O.; Burrell, J.R.; Leyton, C.; Foxe, D.; Abela, M.; Bartley, L.; Kim, W.S.; Jary, E.; Huang, Y.; Dobson-Stone, C.; Kwok, J.B.; Halliday, G.M.; Hodges, J.R. Predicting development of amyotrophic lateral sclerosis in frontotemporal dementia. J. Alzheimers Dis., 2017, 58(1), 163-170.
[http://dx.doi.org/10.3233/JAD-161272] [PMID: 28387671]
[17]
Robberecht, W.; Philips, T. The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci., 2013, 14(4), 248-264.
[http://dx.doi.org/10.1038/nrn3430] [PMID: 23463272]
[18]
Wheaton, M.W.; Salamone, A.R.; Mosnik, D.M.; McDonald, R.O.; Appel, S.H.; Schmolck, H.I.; Ringholz, G.M.; Schulz, P.E. Cognitive impairment in familial ALS. Neurology, 2007, 69(14), 1411-1417.
[http://dx.doi.org/10.1212/01.wnl.0000277422.11236.2c] [PMID: 17909153]
[19]
Umoh, M.E.; Dammer, E.B.; Dai, J.; Duong, D.M.; Lah, J.J.; Levey, A.I.; Gearing, M.; Glass, J.D.; Seyfried, N.T. A proteomic network approach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain. EMBO Mol. Med., 2018, 10(1), 48-62.
[http://dx.doi.org/10.15252/emmm.201708202] [PMID: 29191947]
[20]
Nguyen, H.P.; Van Broeckhoven, C.; van der Zee, J. ALS genes in the genomic era and their implications for FTD. Trends Genet., 2018, 34(6), 404-423.
[http://dx.doi.org/10.1016/j.tig.2018.03.001] [PMID: 29605155]
[21]
Pan, C.; Jiao, B.; Xiao, T.; Hou, L.; Zhang, W.; Liu, X.; Xu, J.; Tang, B.; Shen, L. Mutations of CCNF gene is rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia from Mainland China. Amyotroph. Lateral Scler. Frontotemporal Degener., 2017, 18(3-4), 265-268.
[http://dx.doi.org/10.1080/21678421.2017.1293111] [PMID: 28281833]
[22]
Hebron, M.L.; Lonskaya, I.; Sharpe, K.; Weerasinghe, P.P.K.; Algarzae, N.K.; Shekoyan, A.R.; Moussa, C.E.H. Parkin ubiquitinates Tar-DNA binding protein-43 (TDP-43) and promotes its cytosolic accumulation via interaction with histone deacetylase 6 (HDAC6). J. Biol. Chem., 2013, 288(6), 4103-4115.
[http://dx.doi.org/10.1074/jbc.M112.419945] [PMID: 23258539]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy