Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Case Report

Behavioural Variant Frontotemporal Dementia due to CCNF Gene Mutation: A Case Report

Author(s): Feng-Ling You, Gao-Fu Xia and Jing Cai*

Volume 20, Issue 5, 2023

Published on: 22 September, 2023

Page: [371 - 378] Pages: 8

DOI: 10.2174/1567205020666230811092906

Price: $65

conference banner
Abstract

Background: Frontal, temporal lobe dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative diseases. Studies have found that CCNF mutations have been found in patients with familial and sporadic ALS and FTD. Behavioural variant frontotemporal dementia (bvFTD) is a clinical syndrome characterized by progressive deterioration of personality, social behaviour, and cognitive function, which is most closely related to genetic factors. As the early symptoms of bvFTD are highly heterogeneous, the condition is often misdiagnosed as Alzheimer's disease or psychiatric disorders. In this study, a bvFTD patient had a CCNF gene mutation, which led to ubiquitinated protein accumulation and ultimately caused neurodegenerative disease. Genetic detection should be improved urgently for bvFTD patients and family members to provide a clinical reference for early diagnosis of frontotemporal dementia.

Case Presentation: In this case, the patient was 65 years old with an insidious onset, early-onset memory loss, a significant decline in the episodic memory, an early AD diagnosis, and oral treatment with donepezil hydrochloride for 3 years with poor efficacy, followed by a change to oral memantine hydrochloride tablets, which controlled the condition for several months. His medication was switched to sodium oligomannate capsules, and his condition was gradually controlled, but no significant improvement was observed. After spontaneous drug withdrawal, the patient’s condition progressed rapidly; therefore, he visited our hospital and underwent neuropsychological tests for moderate to severe cognitive impairment. AD cerebrospinal fluid markers showed no significant abnormalities, and cranial MRI revealed frontotemporal lobe atrophy and decreased hippocampal volume. Genetic testing for the presence of the CCNF gene revealed a c.1532C > A (p. T511N) heterozygous variant, which might be a diagnostic criterion for bvFTD. Therefore, the patient's symptoms recurred after transient improvement with the combination of donepezil, oral memantine hydrochloride tablets, and sodium oligomannate, but his overall condition was improved compared to that before, and this treatment regimen was continued to observe changes during the follow-up.

Conclusion: The early clinical manifestations of bvFTD are complex and variable, and the condition is easily misdiagnosed, thus delaying treatment. Therefore, for patients with a high clinical suspicion of FTD, in addition to a detailed understanding of their medical history and family history and improvement of relevant examinations, genetic testing should be performed as early as possible to help confirm the diagnosis. For diseases closely related to genes, genetic testing of other family members should be optimised as much as possible to allow early diagnosis and intervention and guide fertility in the next generation.

Keywords: Behavioural variant, frontotemporal dementia, amyotrophic lateral sclerosis, CCNF gene, case report, FTD.

« Previous
[1]
Devenney, E.M.; Ahmed, R.M.; Hodges, J.R. Frontotemporal dementia. Handb. Clin. Neurol., 2019, 167, 279-299.
[http://dx.doi.org/10.1016/B978-0-12-804766-8.00015-7] [PMID: 31753137]
[2]
China Dementia and Cognitive Impairment Guide Writing Group,Professional Committee on Cognitive Disorders of Neurology Branch of Chinese Medical Doctor Association.. Chinese Guidelines for the Diagnosis and treatment of dementia and cognitive disorders(I): Dementia and its classification criteria. Chin J Med, 2018, 98(13), 965-970.
[3]
Greaves, C.V.; Rohrer, J.D. An update on genetic frontotemporal dementia. J. Neurol., 2019, 266(8), 2075-2086.
[http://dx.doi.org/10.1007/s00415-019-09363-4] [PMID: 31119452]
[4]
Wood, E.M.; Falcone, D.; Suh, E.; Irwin, D.J.; Chen-Plotkin, A.S.; Lee, E.B.; Xie, S.X.; Van Deerlin, V.M.; Grossman, M. Development and validation of pedigree classification criteria for frontotemporal lobar degeneration. JAMA Neurol., 2013, 70(11), 1411-1417.
[http://dx.doi.org/10.1001/jamaneurol.2013.3956] [PMID: 24081456]
[5]
Klein, D.K.; Hoffmann, S.; Ahlskog, J.K.; O’Hanlon, K.; Quaas, M.; Larsen, B.D.; Rolland, B.; Rösner, H.I.; Walter, D.; Kousholt, A.N.; Menzel, T.; Lees, M.; Johansen, J.V.; Rappsilber, J.; Engeland, K.; Sørensen, C.S. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control. Nat. Commun., 2015, 6(1), 5800.
[http://dx.doi.org/10.1038/ncomms6800] [PMID: 25557911]
[6]
D’Angiolella, V.; Esencay, M.; Pagano, M. A cyclin without cyclin-dependent kinases: Cyclin F controls genome stability through ubiquitin-mediated proteolysis. Trends Cell Biol., 2013, 23(3), 135-140.
[http://dx.doi.org/10.1016/j.tcb.2012.10.011] [PMID: 23182110]
[7]
Lee, A.; Rayner, S.L.; Gwee, S.S.L.; De Luca, A.; Shahheydari, H.; Sundaramoorthy, V.; Ragagnin, A.; Morsch, M.; Radford, R.; Galper, J.; Freckleton, S.; Shi, B.; Walker, A.K.; Don, E.K.; Cole, N.J.; Yang, S.; Williams, K.L.; Yerbury, J.J.; Blair, I.P.; Atkin, J.D.; Molloy, M.P.; Chung, R.S. Pathogenic mutation in the ALS/FTD gene, CCNF, causes elevated Lys48-linked ubiquitylation and defective autophagy. Cell. Mol. Life Sci., 2018, 75(2), 335-354.
[http://dx.doi.org/10.1007/s00018-017-2632-8] [PMID: 28852778]
[8]
Williams, K.L.; Topp, S.; Yang, S.; Smith, B.; Fifita, J.A.; Warraich, S.T.; Zhang, K.Y.; Farrawell, N.; Vance, C.; Hu, X.; Chesi, A.; Leblond, C.S.; Lee, A.; Rayner, S.L.; Sundaramoorthy, V.; Dobson-Stone, C.; Molloy, M.P.; van Blitterswijk, M.; Dickson, D.W.; Petersen, R.C.; Graff-Radford, N.R.; Boeve, B.F.; Murray, M.E.; Pottier, C.; Don, E.; Winnick, C.; McCann, E.P.; Hogan, A.; Daoud, H.; Levert, A.; Dion, P.A.; Mitsui, J.; Ishiura, H.; Takahashi, Y.; Goto, J.; Kost, J.; Gellera, C.; Gkazi, A.S.; Miller, J.; Stockton, J.; Brooks, W.S.; Boundy, K.; Polak, M.; Muñoz-Blanco, J.L.; Esteban-Pérez, J.; Rábano, A.; Hardiman, O.; Morrison, K.E.; Ticozzi, N.; Silani, V.; de Belleroche, J.; Glass, J.D.; Kwok, J.B.J.; Guillemin, G.J.; Chung, R.S.; Tsuji, S.; Brown, R.H., Jr; García-Redondo, A.; Rademakers, R.; Landers, J.E.; Gitler, A.D.; Rouleau, G.A.; Cole, N.J.; Yerbury, J.J.; Atkin, J.D.; Shaw, C.E.; Nicholson, G.A.; Blair, I.P. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat. Commun., 2016, 7(1), 11253.
[http://dx.doi.org/10.1038/ncomms11253] [PMID: 27080313]
[9]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[10]
Mann, D.M.A.; Snowden, J.S. Frontotemporal lobar degeneration: Pathogenesis, pathology and pathways to phenotype. Brain Pathol., 2017, 27(6), 723-736.
[http://dx.doi.org/10.1111/bpa.12486] [PMID: 28100023]
[11]
Olszewska, D.A.; Lonergan, R.; Fallon, E.M.; Lynch, T. Genetics of frontotemporal dementia. Curr. Neurol. Neurosci. Rep., 2016, 16(12), 107.
[http://dx.doi.org/10.1007/s11910-016-0707-9] [PMID: 27878525]
[12]
Goldman, J.S.; Farmer, J.M.; Wood, E.M.; Johnson, J.K.; Boxer, A.; Neuhaus, J.; Lomen-Hoerth, C.; Wilhelmsen, K.C.; Lee, V.M.Y.; Grossman, M.; Miller, B.L. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology, 2005, 65(11), 1817-1819.
[http://dx.doi.org/10.1212/01.wnl.0000187068.92184.63] [PMID: 16344531]
[13]
Lillo, P.; Mioshi, E.; Zoing, M.C.; Kiernan, M.C.; Hodges, J.R. How common are behavioural changes in amyotrophic lateral sclerosis? Amyotroph. Lateral Scler., 2011, 12(1), 45-51.
[http://dx.doi.org/10.3109/17482968.2010.520718] [PMID: 20849323]
[14]
Burrell, J.R.; Halliday, G.M.; Kril, J.J.; Ittner, L.M.; Götz, J.; Kiernan, M.C.; Hodges, J.R. The frontotemporal dementia-motor neuron disease continuum. Lancet, 2016, 388(10047), 919-931.
[http://dx.doi.org/10.1016/S0140-6736(16)00737-6] [PMID: 26987909]
[15]
Burrell, J.R.; Kiernan, M.C.; Vucic, S.; Hodges, J.R. Motor Neuron dysfunction in frontotemporal dementia. Brain, 2011, 134(9), 2582-2594.
[http://dx.doi.org/10.1093/brain/awr195] [PMID: 21840887]
[16]
Van Langenhove, T.; Piguet, O.; Burrell, J.R.; Leyton, C.; Foxe, D.; Abela, M.; Bartley, L.; Kim, W.S.; Jary, E.; Huang, Y.; Dobson-Stone, C.; Kwok, J.B.; Halliday, G.M.; Hodges, J.R. Predicting development of amyotrophic lateral sclerosis in frontotemporal dementia. J. Alzheimers Dis., 2017, 58(1), 163-170.
[http://dx.doi.org/10.3233/JAD-161272] [PMID: 28387671]
[17]
Robberecht, W.; Philips, T. The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci., 2013, 14(4), 248-264.
[http://dx.doi.org/10.1038/nrn3430] [PMID: 23463272]
[18]
Wheaton, M.W.; Salamone, A.R.; Mosnik, D.M.; McDonald, R.O.; Appel, S.H.; Schmolck, H.I.; Ringholz, G.M.; Schulz, P.E. Cognitive impairment in familial ALS. Neurology, 2007, 69(14), 1411-1417.
[http://dx.doi.org/10.1212/01.wnl.0000277422.11236.2c] [PMID: 17909153]
[19]
Umoh, M.E.; Dammer, E.B.; Dai, J.; Duong, D.M.; Lah, J.J.; Levey, A.I.; Gearing, M.; Glass, J.D.; Seyfried, N.T. A proteomic network approach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain. EMBO Mol. Med., 2018, 10(1), 48-62.
[http://dx.doi.org/10.15252/emmm.201708202] [PMID: 29191947]
[20]
Nguyen, H.P.; Van Broeckhoven, C.; van der Zee, J. ALS genes in the genomic era and their implications for FTD. Trends Genet., 2018, 34(6), 404-423.
[http://dx.doi.org/10.1016/j.tig.2018.03.001] [PMID: 29605155]
[21]
Pan, C.; Jiao, B.; Xiao, T.; Hou, L.; Zhang, W.; Liu, X.; Xu, J.; Tang, B.; Shen, L. Mutations of CCNF gene is rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia from Mainland China. Amyotroph. Lateral Scler. Frontotemporal Degener., 2017, 18(3-4), 265-268.
[http://dx.doi.org/10.1080/21678421.2017.1293111] [PMID: 28281833]
[22]
Hebron, M.L.; Lonskaya, I.; Sharpe, K.; Weerasinghe, P.P.K.; Algarzae, N.K.; Shekoyan, A.R.; Moussa, C.E.H. Parkin ubiquitinates Tar-DNA binding protein-43 (TDP-43) and promotes its cytosolic accumulation via interaction with histone deacetylase 6 (HDAC6). J. Biol. Chem., 2013, 288(6), 4103-4115.
[http://dx.doi.org/10.1074/jbc.M112.419945] [PMID: 23258539]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy