Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Current Trends in the Development of Electrochemical Biosensor for Detecting Analytes from Sweat

Author(s): Anoop Singh, Asha Sharma, Aman Dubey and Sandeep Arya*

Volume 31, Issue 25, 2024

Published on: 22 September, 2023

Page: [3882 - 3898] Pages: 17

DOI: 10.2174/0929867331666230807143639

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

The need for wearable bioelectronics continues to grow, and this technology might significantly alter the medical field. In order to diagnose and treat a patient, conventional medicine takes a “reactive” approach and waits for symptoms to appear first. Therefore, it is preferable to progress toward continuous non-invasive wearable biomonitoring, a preventative strategy that may assist individuals in diagnosing or treating illnesses at the earliest stages, sometimes before any outward symptoms have appeared. Wearable physiological sensors, such as the Apple Watch and FitBit, have arrived on the market as a result of technology advances and have quickly become commonplace. However, few devices currently exist that can report directly on these biomarkers of relevance. This is mostly due to the challenges involved in real-time fluid sampling and generating correct readouts utilising extremely selective and sensitive sensors. Sweat is an excretory fluid that is only allowed to be used in order to reduce invasiveness, but this restriction places additional strain on sensors owing to the diluted concentration of the relevant biomarkers and the changes in pH, salinity, and other biophysical parameters that directly influence the read-out of real-time biosensors. Sweat is favoured amid slightly invasive biofluids due to its low concentration of interfering chemicals and the fact that it may be collected without touching the mucosal layers. This review offers a concise outline of the latest advances in sweat-based wearable sensors, their promise in healthcare monitoring, and the problems faced in analysis based on sweat.

Keywords: Sweat, electrochemical biosensor, wearable, non-invasive, amperometry, bioelectronics.

[1]
Huang, X.; Liu, Y.; Chen, K.; Shin, W.J.; Lu, C.J.; Kong, G.W.; Patnaik, D.; Lee, S.H.; Cortes, J.F.; Rogers, J.A. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small., 2014, 10(15), 3083-3090.
[2]
Heikenfeld, J.; Jajack, A.; Feldman, B.; Granger, S.W.; Gaitonde, S.; Begtrup, G.; Katchman, B.A. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol., 2019, 37(4), 407-419.
[http://dx.doi.org/10.1038/s41587-019-0040-3] [PMID: 30804536]
[3]
Kim, E.H.; Han, H.; Yu, S.; Park, C.; Kim, G.; Jeong, B.; Lee, S.W.; Kim, J.S.; Lee, S.; Kim, J.; Park, J.U.; Shim, W.; Park, C. Interactive skin display with epidermal stimuli electrode. Adv. Sci., 2019, 6(13), 1802351.
[http://dx.doi.org/10.1002/advs.201802351] [PMID: 31380180]
[4]
Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O.S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H.; Hsiai, T.K.; Li, Z.; Gao, W. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol., 2020, 38(2), 217-224.
[http://dx.doi.org/10.1038/s41587-019-0321-x] [PMID: 31768044]
[5]
Cheng, X.; Wang, B.; Zhao, Y.; Hojaiji, H.; Lin, S.; Shih, R.; Lin, H.; Tamayosa, S.; Ham, B.; Stout, P.; Salahi, K.; Wang, Z.; Zhao, C.; Tan, J.; Emaminejad, S. A mediator-free electroenzymatic sensing methodology to mitigate ionic and electroactive interferents’ effects for reliable wearable metabolite and nutrient monitoring. Adv. Funct. Mater., 2020, 30(10), 1908507.
[http://dx.doi.org/10.1002/adfm.201908507]
[6]
Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol., 2014, 32(7), 363-371.
[http://dx.doi.org/10.1016/j.tibtech.2014.04.005] [PMID: 24853270]
[7]
Schmidt, P.; Reiss, A.; Dürichen, R.; Laerhoven, K.V. Wearable-based affect recognition-A review. Sensors., 2019, 19(19), 4079.
[http://dx.doi.org/10.3390/s19194079] [PMID: 31547220]
[8]
Lee, E.K.; Kim, M.K.; Lee, C.H. Skin-mountable biosensors and therapeutics: A review. Annu. Rev. Biomed. Eng., 2019, 21(1), 299-323.
[http://dx.doi.org/10.1146/annurev-bioeng-060418-052315] [PMID: 30883212]
[9]
Sonner, Z.; Wilder, E.; Heikenfeld, J.; Kasting, G.; Beyette, F.; Swaile, D.; Sherman, F.; Joyce, J.; Hagen, J.; Kelley-Loughnane, N.; Naik, R. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics., 2015, 9(3), 031301.
[http://dx.doi.org/10.1063/1.4921039] [PMID: 26045728]
[10]
Guk, K.; Han, G.; Lim, J.; Jeong, K.; Kang, T.; Lim, E.K.; Jung, J. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials., 2019, 9(6), 813.
[http://dx.doi.org/10.3390/nano9060813] [PMID: 31146479]
[11]
Hwang, I.; Kim, H.N.; Seong, M.; Lee, S.H.; Kang, M.; Yi, H.; Bae, W.G.; Kwak, M.K.; Jeong, H.E. Multifunctional smart skin adhesive patches for advanced health care. Adv. Healthc. Mater., 2018, 7(15), 1800275.
[http://dx.doi.org/10.1002/adhm.201800275] [PMID: 29757494]
[12]
Yao, H.; Shum, A.J.; Cowan, M.; Lähdesmäki, I.; Parviz, B.A. A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron., 2011, 26(7), 3290-3296.
[http://dx.doi.org/10.1016/j.bios.2010.12.042] [PMID: 21257302]
[13]
Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater., 2016, 28(22), 4373-4395.
[http://dx.doi.org/10.1002/adma.201504366] [PMID: 26867696]
[14]
Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D.H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater., 2016, 28(22), 4203-4218.
[http://dx.doi.org/10.1002/adma.201504150] [PMID: 26779680]
[15]
Turner, A. Biosensors: Then and now. Trends Biotechnol., 2013, 31(3), 119-120.
[http://dx.doi.org/10.1016/j.tibtech.2012.10.002] [PMID: 23122617]
[16]
Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev., 2010, 39(5), 1747-1763.
[http://dx.doi.org/10.1039/b714449k] [PMID: 20419217]
[17]
Kim, D.H.; Lu, N.; Ghaffari, R.; Rogers, J.A. Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. NPG Asia Mater., 2012, 4(4), e15-e15.
[http://dx.doi.org/10.1038/am.2012.27]
[18]
Windmiller, J.R.; Wang, J. Wearable electrochemical sensors and biosensors: A review. Electroanalysis, 2013, 25(1), 29-46.
[http://dx.doi.org/10.1002/elan.201200349]
[19]
Bandodkar, A.J.; Molinnus, D.; Mirza, O.; Guinovart, T.; Windmiller, J.R.; Valdés-Ramírez, G.; Andrade, F.J.; Schöning, M.J.; Wang, J. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron., 2014, 54, 603-609.
[http://dx.doi.org/10.1016/j.bios.2013.11.039] [PMID: 24333582]
[20]
Martín, A.; Kim, J.; Kurniawan, J.F.; Sempionatto, J.R.; Moreto, J.R.; Tang, G.; Campbell, A.S.; Shin, A.; Lee, M.Y.; Liu, X.; Wang, J. Epidermal microfluidic electrochemical detection system: Enhanced sweat sampling and metabolite detection. ACS Sens., 2017, 2(12), 1860-1868.
[http://dx.doi.org/10.1021/acssensors.7b00729] [PMID: 29152973]
[21]
Xuan, X.; Yoon, H.S.; Park, J.Y. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron., 2018, 109, 75-82.
[http://dx.doi.org/10.1016/j.bios.2018.02.054] [PMID: 29529511]
[22]
Kang, B.C.; Park, B.S.; Ha, T.J. Highly sensitive wearable glucose sensor systems based on functionalized single-wall carbon nanotubes with glucose oxidase-nafion composites. Appl. Surf. Sci., 2019, 470, 13-18.
[http://dx.doi.org/10.1016/j.apsusc.2018.11.101]
[23]
Lee, H.; Choi, T.K.; Lee, Y.B.; Cho, H.R.; Ghaffari, R.; Wang, L.; Choi, H.J.; Chung, T.D.; Lu, N.; Hyeon, T.; Choi, S.H.; Kim, D.H. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol., 2016, 11(6), 566-572.
[http://dx.doi.org/10.1038/nnano.2016.38] [PMID: 26999482]
[24]
Sempionatto, J.R.; Khorshed, A.A.; Ahmed, A.; De Loyola e Silva, A.N.; Barfidokht, A.; Yin, L.; Goud, K.Y.; Mohamed, M.A.; Bailey, E.; May, J.; Aebischer, C.; Chatelle, C.; Wang, J. Epidermal enzymatic biosensors for sweat vitamin C: Toward personalized nutrition. ACS Sens., 2020, 5(6), 1804-1813.
[http://dx.doi.org/10.1021/acssensors.0c00604] [PMID: 32366089]
[25]
Liu, M.; Wen, Y.; Li, D.; Yue, R.; Xu, J.; He, H. A stable sandwich-type amperometric biosensor based on poly(3,4-ethylenedioxythiophene)–single walled carbon nanotubes/ascorbate oxidase/nafion films for detection of L-ascorbic acid. Sens. Actuators B Chem., 2011, 159(1), 277-285.
[http://dx.doi.org/10.1016/j.snb.2011.07.005]
[26]
Ibarlucea, B.; Pérez Roig, A.; Belyaev, D.; Baraban, L.; Cuniberti, G. Electrochemical detection of ascorbic acid in artificial sweat using a flexible alginate/CuO-modified electrode. Mikrochim. Acta, 2020, 187(9), 520.
[http://dx.doi.org/10.1007/s00604-020-04510-5] [PMID: 32856149]
[27]
Kim, J.; Imani, S.; de Araujo, W.R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T.R.L.C.; Mercier, P.P.; Wang, J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron., 2015, 74, 1061-1068.
[http://dx.doi.org/10.1016/j.bios.2015.07.039] [PMID: 26276541]
[28]
Liu, Y.L.; Liu, R.; Qin, Y.; Qiu, Q.F.; Chen, Z.; Cheng, S.B.; Huang, W.H. Flexible electrochemical urea sensor based on surface molecularly imprinted nanotubes for detection of human sweat. Anal. Chem., 2018, 90(21), 13081-13087.
[http://dx.doi.org/10.1021/acs.analchem.8b04223] [PMID: 30272442]
[29]
Kim, S.B.; Koo, J.; Yoon, J.; Hourlier-Fargette, A.; Lee, B.; Chen, S.; Jo, S.; Choi, J.; Oh, Y.S.; Lee, G.; Won, S.M.; Aranyosi, A.J.; Lee, S.P.; Model, J.B.; Braun, P.V.; Ghaffari, R.; Park, C.; Rogers, J.A. Soft, skin-interfaced microfluidic systems with integrated enzymatic assays for measuring the concentration of ammonia and ethanol in sweat. Lab Chip, 2020, 20(1), 84-92.
[http://dx.doi.org/10.1039/C9LC01045A] [PMID: 31776526]
[30]
Tai, L.C.; Gao, W.; Chao, M.; Bariya, M.; Ngo, Q.P.; Shahpar, Z.; Nyein, H.Y.Y.; Park, H.; Sun, J.; Jung, Y.; Wu, E.; Fahad, H.M.; Lien, D.H.; Ota, H.; Cho, G.; Javey, A. Methylxanthine drug monitoring with wearable sweat sensors. Adv. Mater., 2018, 30(23), 1707442.
[http://dx.doi.org/10.1002/adma.201707442] [PMID: 29663538]
[31]
Aryal, K.P.; Jeong, H.K. Functionalization of thermally reduced graphite oxide and carbon nanotubes by p-sulfonatocalix[4]arene and supramolecular recognition of tyrosine. Chem. Phys. Lett., 2019, 714, 69-73.
[http://dx.doi.org/10.1016/j.cplett.2018.10.074]
[32]
Beitollahi, H.; Garkani, N.F. Graphene oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode. Electroanalysis, 2016, 28(9), 2237-2244.
[http://dx.doi.org/10.1002/elan.201600143]
[33]
Kinnamon, D.; Ghanta, R.; Lin, K.C.; Muthukumar, S.; Prasad, S. Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci. Rep., 2017, 7(1), 13312.
[http://dx.doi.org/10.1038/s41598-017-13684-7] [PMID: 29042582]
[34]
Kaushik, A.; Vasudev, A.; Arya, S.K.; Pasha, S.K.; Bhansali, S. Recent advances in cortisol sensing technologies for point-of-care application. Biosens. Bioelectron., 2014, 53, 499-512.
[http://dx.doi.org/10.1016/j.bios.2013.09.060] [PMID: 24212052]
[35]
Tai, L.C.; Ahn, C.H.; Nyein, H.Y.Y.; Ji, W.; Bariya, M.; Lin, Y.; Li, L.; Javey, A. Nicotine monitoring with a wearable sweat band. ACS Sens., 2020, 5(6), 1831-1837.
[http://dx.doi.org/10.1021/acssensors.0c00791] [PMID: 32429661]
[36]
Csősz, É.; Emri, G.; Kalló, G.; Tsaprailis, G.; Tőzsér, J. Highly abundant defense proteins in human sweat as revealed by targeted proteomics and label-free quantification mass spectrometry. J. Eur. Acad. Dermatol. Venereol., 2015, 29(10), 2024-2031.
[http://dx.doi.org/10.1111/jdv.13221] [PMID: 26307449]
[37]
Wilson, M. Microbial inhabitants of humans: their ecology and role in health and disease; Cambridge University Press, 2005.
[38]
Okada, T.; Konishi, H.; Ito, M.; Nagura, H.; Asai, J. Identification of secretory immunoglobulin A in human sweat and sweat glands. J. Invest. Dermatol., 1988, 90(5), 648-651.
[http://dx.doi.org/10.1111/1523-1747.ep12560807] [PMID: 3283249]
[39]
Marques-Deak, A.; Cizza, G.; Eskandari, F.; Torvik, S.; Christie, I.C.; Sternberg, E.M.; Phillips, T.M. Measurement of cytokines in sweat patches and plasma in healthy women: Validation in a controlled study. J. Immunol. Methods, 2006, 315(1-2), 99-109.
[http://dx.doi.org/10.1016/j.jim.2006.07.011] [PMID: 16942779]
[40]
Choi, D.H.; Kim, J.S.; Cutting, G.R.; Searson, P.C. Wearable potentiometric chloride sweat sensor: The critical role of the salt bridge. Anal. Chem., 2016, 88(24), 12241-12247.
[http://dx.doi.org/10.1021/acs.analchem.6b03391] [PMID: 28193033]
[41]
Gonzalo-Ruiz, J.; Mas, R.; de Haro, C.; Cabruja, E.; Camero, R.; Alonso-Lomillo, M.A.; Muñoz, F.J. Early determination of cystic fibrosis by electrochemical chloride quantification in sweat. Biosens. Bioelectron., 2009, 24(6), 1788-1791.
[http://dx.doi.org/10.1016/j.bios.2008.07.051] [PMID: 18823769]
[42]
Glennon, T.; O’Quigley, C.; McCaul, M.; Matzeu, G.; Beirne, S.; Wallace, G.G.; Stroiescu, F.; O’Mahoney, N.; White, P.; Diamond, D. ‘SWEATCH’: A wearable platform for harvesting and analysing sweat sodium content. Electroanalysis, 2016, 28(6), 1283-1289.
[http://dx.doi.org/10.1002/elan.201600106]
[43]
McCaul, M.; Porter, A.; Barrett, R.; White, P.; Stroiescu, F.; Wallace, G.; Diamond, D. Wearable platform for real-time monitoring of sodium in sweat. ChemPhysChem, 2018, 19(12), 1531-1536.
[http://dx.doi.org/10.1002/cphc.201701312] [PMID: 29573322]
[44]
Nyein, H.Y.Y.; Tai, L.C.; Ngo, Q.P.; Chao, M.; Zhang, G.B.; Gao, W.; Bariya, M.; Bullock, J.; Kim, H.; Fahad, H.M.; Javey, A. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens., 2018, 3(5), 944-952.
[http://dx.doi.org/10.1021/acssensors.7b00961] [PMID: 29741360]
[45]
Nyein, H.Y.Y.; Gao, W.; Shahpar, Z.; Emaminejad, S.; Challa, S.; Chen, K.; Fahad, H.M.; Tai, L.C.; Ota, H.; Davis, R.W.; Javey, A. A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano, 2016, 10(7), 7216-7224.
[http://dx.doi.org/10.1021/acsnano.6b04005] [PMID: 27380446]
[46]
Guinovart, T.; Bandodkar, A.J.; Windmiller, J.R.; Andrade, F.J.; Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst., 2013, 138(22), 7031-7038.
[http://dx.doi.org/10.1039/c3an01672b] [PMID: 24098883]
[47]
Gao, W.; Nyein, H.Y.Y.; Shahpar, Z.; Fahad, H.M.; Chen, K.; Emaminejad, S.; Gao, Y.; Tai, L.C.; Ota, H.; Wu, E.; Bullock, J.; Zeng, Y.; Lien, D-H.; Javey, A. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens., 2016, 1(7), 866-874.
[http://dx.doi.org/10.1021/acssensors.6b00287]
[48]
Bariya, M.; Nyein, H.Y.Y.; Javey, A. Wearable sweat sensors. Nat. Electron., 2018, 1(3), 160-171.
[http://dx.doi.org/10.1038/s41928-018-0043-y]
[49]
Bandodkar, A.J.; Hung, V.W.S.; Jia, W.; Valdés-Ramírez, G.; Windmiller, J.R.; Martinez, A.G.; Ramírez, J.; Chan, G.; Kerman, K.; Wang, J. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst., 2013, 138(1), 123-128.
[http://dx.doi.org/10.1039/C2AN36422K] [PMID: 23113321]
[50]
Choi, J.; Bandodkar, A.J.; Reeder, J.T.; Ray, T.R.; Turnquist, A.; Kim, S.B.; Nyberg, N.; Hourlier-Fargette, A.; Model, J.B.; Aranyosi, A.J.; Xu, S.; Ghaffari, R.; Rogers, J.A. Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature. ACS Sens., 2019, 4(2), 379-388.
[http://dx.doi.org/10.1021/acssensors.8b01218] [PMID: 30707572]
[51]
Holmes, N.; Bates, G.; Zhao, Y.; Sherriff, J.; Miller, V. The effect of exercise intensity on sweat rate and sweat sodium and potassium losses in trained endurance athletes. Annals. Sports Med. Res., 2016, 3(2), 1-4.
[52]
O’Reilly, J.; Cheng, H.L.; Poon, E.T.C. New insights in professional horse racing; “in-race” heart rate data, elevated fracture risk, hydration, nutritional and lifestyle analysis of elite professional jockeys. J. Sports Sci., 2017, 35(5), 441-448.
[http://dx.doi.org/10.1080/02640414.2016.1171890] [PMID: 27070776]
[53]
Moyer, J.; Wilson, D.; Finkelshtein, I.; Wong, B.; Potts, R. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther., 2012, 14(5), 398-402.
[http://dx.doi.org/10.1089/dia.2011.0262] [PMID: 22376082]
[54]
Marvelli, A.; Campi, B.; Mergni, G.; Di Cicco, M.E.; Turini, P.; Scardina, P.; Zucchi, R.; Pifferi, M.; Taccetti, G.; Paolicchi, A.; la Marca, G.; Saba, A. Sweat chloride assay by inductively coupled plasma mass spectrometry: A confirmation test for cystic fibrosis diagnosis. Anal. Bioanal. Chem., 2020, 412(25), 6909-6916.
[http://dx.doi.org/10.1007/s00216-020-02821-3] [PMID: 32691087]
[55]
Raiszadeh, M.M.; Ross, M.M.; Russo, P.S.; Schaepper, M.A.; Zhou, W.; Deng, J.; Ng, D.; Dickson, A.; Dickson, C.; Strom, M.; Osorio, C.; Soeprono, T.; Wulfkuhle, J.D.; Petricoin, E.F.; Liotta, L.A.; Kirsch, W.M. Proteomic analysis of eccrine sweat: Implications for the discovery of schizophrenia biomarker proteins. J. Proteome Res., 2012, 11(4), 2127-2139.
[http://dx.doi.org/10.1021/pr2007957] [PMID: 22256890]
[56]
Peterson, R.A.; Gueniche, A.; Adam de Beaumais, S.; Breton, L.; Dalko-Csiba, M.; Packer, N.H. Sweating the small stuff: Glycoproteins in human sweat and their unexplored potential for microbial adhesion. Glycobiology., 2016, 26(3), 218-229.
[PMID: 26582610]
[57]
Vairo, D.; Bruzzese, L.; Marlinge, M.; Fuster, L.; Adjriou, N.; Kipson, N.; Brunet, P.; Cautela, J.; Jammes, Y.; Mottola, G.; Burtey, S.; Ruf, J.; Guieu, R.; Fenouillet, E. Towards addressing the body electrolyte environment via sweat analysis: Pilocarpine iontophoresis supports assessment of plasma potassium concentration. Sci. Rep., 2017, 7(1), 11801.
[http://dx.doi.org/10.1038/s41598-017-12211-y] [PMID: 28924220]
[58]
Kim, J.; Sempionatto, J.R.; Imani, S.; Hartel, M.C.; Barfidokht, A.; Tang, G.; Campbell, A.S.; Mercier, P.P.; Wang, J. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv. Sci., 2018, 5(10), 1800880.
[http://dx.doi.org/10.1002/advs.201800880] [PMID: 30356971]
[59]
Sempionatto, J.R.; Lin, M.; Yin, L.; De la paz, E.; Pei, K.; Sonsa-ard, T.; de Loyola Silva, A.N.; Khorshed, A.A.; Zhang, F.; Tostado, N.; Xu, S.; Wang, J. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng., 2021, 5(7), 737-748.
[http://dx.doi.org/10.1038/s41551-021-00685-1] [PMID: 33589782]
[60]
Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; Kim, J. Wearable sensors: Modalities, challenges, and prospects. Lab. Chip., 2018, 18(2), 217-248.
[http://dx.doi.org/10.1039/C7LC00914C] [PMID: 29182185]
[61]
Bandodkar, A.J.; Jeerapan, I.; Wang, J. Wearable chemical sensors: Present challenges and future prospects. ACS Sens., 2016, 1(5), 464-482.
[http://dx.doi.org/10.1021/acssensors.6b00250]
[62]
Lee, Y.H.; Jang, M.; Lee, M.Y.; Kweon, O.Y.; Oh, J.H. Flexible field-effect transistor-type sensors based on conjugated molecules. Chem, 2017, 3(5), 724-763.
[http://dx.doi.org/10.1016/j.chempr.2017.10.005]
[63]
Li, M.Z.; Han, S.T.; Zhou, Y. Recent advances in flexible field-effect transistors toward wearable sensors. Adv. Intell. Syst., 2020, 2(11), 2000113.
[http://dx.doi.org/10.1002/aisy.202000113]
[64]
Zheng, Z.; Zhang, H.; Zhai, T.; Xia, F. Overcome debye length limitations for biomolecule sensing based on field effective transistors. Chin. J. Chem., 2021, 39(4), 999-1008.
[http://dx.doi.org/10.1002/cjoc.202000584]
[65]
Nagamine, K.; Mano, T.; Nomura, A.; Ichimura, Y.; Izawa, R.; Furusawa, H.; Matsui, H.; Kumaki, D.; Tokito, S. Noninvasive sweat-lactate biosensor emplsoying a hydrogel-based touch pad. Sci. Rep., 2019, 9(1), 10102.
[http://dx.doi.org/10.1038/s41598-019-46611-z] [PMID: 31300711]
[66]
Lin, S.; Wang, B.; Zhao, Y.; Shih, R.; Cheng, X.; Yu, W.; Hojaiji, H.; Lin, H.; Hoffman, C.; Ly, D.; Tan, J.; Chen, Y.; Di Carlo, D.; Milla, C.; Emaminejad, S. Natural perspiration sampling and in situ electrochemical analysis with hydrogel micropatches for user-identifiable and wireless chemo/biosensing. ACS Sens., 2020, 5(1), 93-102.
[http://dx.doi.org/10.1021/acssensors.9b01727] [PMID: 31786928]
[67]
Yu, H.; Sun, J. Sweat detection theory and fluid driven methods: A review. Nanotechnol. Precis. Eng.,, 2020, 3(3), 126-140.
[http://dx.doi.org/10.1016/j.npe.2020.08.003]
[68]
Xing, S.; Jiang, J.; Pan, T. Interfacial microfluidic transport on micropatterned superhydrophobic textile. Lab Chip, 2013, 13(10), 1937-1947.
[http://dx.doi.org/10.1039/c3lc41255e] [PMID: 23536189]
[69]
Mitsubayashi, K.; Suzuki, M.; Tamiya, E.; Karube, I. Analysis of metabolites in sweat as a measure of physical condition. Anal. Chim. Acta, 1994, 289(1), 27-34.
[http://dx.doi.org/10.1016/0003-2670(94)80004-9]
[70]
Bergeron, M.F. Heat cramps: Fluid and electrolyte challenges during tennis in the heat. J. Sci. Med. Sport, 2003, 6(1), 19-27.
[http://dx.doi.org/10.1016/S1440-2440(03)80005-1] [PMID: 12801207]
[71]
Stern, R.C. The diagnosis of cystic fibrosis. N. Engl. J. Med., 1997, 336(7), 487-491.
[http://dx.doi.org/10.1056/NEJM199702133360707] [PMID: 9017943]
[72]
Pilardeau, P.; Vaysse, J.; Garnier, M.; Joublin, M.; Valeri, L. Secretion of eccrine sweat glands during exercise. Br. J. Sports Med., 1979, 13(3), 118-121.
[http://dx.doi.org/10.1136/bjsm.13.3.118] [PMID: 486883]
[73]
Heaney, R.P. Calcium in the prevention and treatment of osteoporosis. J. Intern. Med., 1992, 231(2), 169-180.
[http://dx.doi.org/10.1111/j.1365-2796.1992.tb00520.x] [PMID: 1541941]
[74]
Klesges, R.C.; Ward, K.D.; Shelton, M.L.; Applegate, W.B.; Cantler, E.D.; Palmieri, G.M.; Harmon, K.; Davis, J. Changes in bone mineral content in male athletes. Mechanisms of action and intervention effects. JAMA, 1996, 276(3), 226-230.
[http://dx.doi.org/10.1001/jama.1996.03540030060033] [PMID: 8667568]
[75]
Gamella, M.; Campuzano, S.; Manso, J.; Rivera, G.G.; López-Colino, F.; Reviejo, A.J.; Pingarrón, J.M. A novel non-invasive electrochemical biosensing device for in situ determination of the alcohol content in blood by monitoring ethanol in sweat. Anal. Chim. Acta, 2014, 806, 1-7.
[http://dx.doi.org/10.1016/j.aca.2013.09.020] [PMID: 24331037]
[76]
Burns, M.; Baselt, R.C. Monitoring drug use with a sweat patch: An experiment with cocaine. J. Anal. Toxicol., 1995, 19(1), 41-48.
[http://dx.doi.org/10.1093/jat/19.1.41] [PMID: 7723301]
[77]
Nemiroski, A.; Christodouleas, D.C.; Hennek, J.W.; Kumar, A.A.; Maxwell, E.J.; Fernández-Abedul, M.T.; Whitesides, G.M. Universal mobile electrochemical detector designed for use in resource-limited applications. Proc. Natl. Acad. Sci., 2014, 111(33), 11984-11989.
[http://dx.doi.org/10.1073/pnas.1405679111] [PMID: 25092346]
[78]
Yang, Y.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev., 2019, 48(6), 1465-1491.
[http://dx.doi.org/10.1039/C7CS00730B] [PMID: 29611861]
[79]
Patterson, M.J.; Galloway, S.D.R.; Nimmo, M.A. Variations in regional sweat composition in normal human males. Exp. Physiol., 2000, 85(6), 869-875.
[http://dx.doi.org/10.1111/j.1469-445X.2000.02058.x] [PMID: 11187982]
[80]
Song, Y.; Min, J.; Yu, Y.; Wang, H.; Yang, Y.; Zhang, H.; Gao, W. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv., 2020, 6(40), eaay9842.
[http://dx.doi.org/10.1126/sciadv.aay9842] [PMID: 32998888]
[81]
Peng, Z.; Song, J.; Gao, Y.; Liu, J.; Lee, C.; Chen, G.; Wang, Z.; Chen, J.; Leung, M.K.H. A fluorinated polymer sponge with superhydrophobicity for high-performance biomechanical energy harvesting. Nano Energy, 2021, 85, 106021.
[http://dx.doi.org/10.1016/j.nanoen.2021.106021]
[82]
Zou, Y.; Xu, J.; Chen, K.; Chen, J. Advances in nanostructures for high-performance triboelectric nanogenerators. Adv. Mater. Technol., 2021, 6(3), 2000916.
[http://dx.doi.org/10.1002/admt.202000916]
[83]
Xu, J.; Fang, Y.; Chen, J. Wearable biosensors for non-invasive sweat diagnostics. Biosensors., 2021, 11(8), 245.
[http://dx.doi.org/10.3390/bios11080245] [PMID: 34436047]
[84]
Zhu, X.; Zhai, Q.; Gu, W.; Li, J.; Wang, E. High-sensitivity electrochemiluminescence probe with molybdenum carbides as nanocarriers for α-fetoprotein sensing. Anal. Chem., 2017, 89(22), 12108-12114.
[http://dx.doi.org/10.1021/acs.analchem.7b02701] [PMID: 29072070]
[85]
Tang, Y.; Ng, K.C.; Chen, Y.; Cheng, W. Lightweight, flexible, nanorod electrode with high electrocatalytic activity. Electrochem. Commun., 2013, 27, 120-123.
[http://dx.doi.org/10.1016/j.elecom.2012.11.016]
[86]
Gong, S.; Schwalb, W.; Wang, Y.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun., 2014, 5(1), 3132.
[http://dx.doi.org/10.1038/ncomms4132] [PMID: 24495897]
[87]
Jason, N.N.; Ho, M.D.; Cheng, W. Resistive electronic skin. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5(24), 5845-5866.
[http://dx.doi.org/10.1039/C7TC01169E]
[88]
Ho, M.D.; Ling, Y.; Yap, L.W.; Wang, Y.; Dong, D.; Zhao, Y.; Cheng, W. Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv. Funct. Mater., 2017, 27(25), 1700845.
[http://dx.doi.org/10.1002/adfm.201700845]
[89]
Mohan, A.M.V.; Kim, N.; Gu, Y.; Bandodkar, A.J.; You, J.M.; Kumar, R.; Kurniawan, J.F.; Xu, S.; Wang, J. Merging of thin- and thick-film fabrication technologies: Toward soft stretchable “island–bridge” devices. Adv. Mater. Technol., 2017, 2(4), 1600284.
[http://dx.doi.org/10.1002/admt.201600284]
[90]
Gong, S.; Cheng, W. Toward soft skin-like wearable and implantable energy devices. Adv. Energy Mater., 2017, 7(23), 1700648.
[http://dx.doi.org/10.1002/aenm.201700648]
[91]
Jeerapan, I.; Sempionatto, J.R.; Pavinatto, A.; You, J.M.; Wang, J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(47), 18342-18353.
[http://dx.doi.org/10.1039/C6TA08358G] [PMID: 28439415]
[92]
Bandodkar, A.J.; Nuñez-Flores, R.; Jia, W.; Wang, J. All-printed stretchable electrochemical devices. Adv. Mater., 2015, 27(19), 3060-3065.
[http://dx.doi.org/10.1002/adma.201500768] [PMID: 25856153]
[93]
Parrilla, M.; Cánovas, R.; Jeerapan, I.; Andrade, F.J.; Wang, J. A textile-based stretchable multi-ion potentiometric sensor. Adv. Healthc. Mater., 2016, 5(9), 996-1001.
[http://dx.doi.org/10.1002/adhm.201600092] [PMID: 26959998]
[94]
Sempionatto, J.R.; Nakagawa, T.; Pavinatto, A.; Mensah, S.T.; Imani, S.; Mercier, P.; Wang, J. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip, 2017, 17(10), 1834-1842.
[http://dx.doi.org/10.1039/C7LC00192D] [PMID: 28470263]
[95]
Nyein, H.Y.Y.; Bariya, M.; Kivimäki, L.; Uusitalo, S.; Liaw, T.S.; Jansson, E.; Ahn, C.H.; Hangasky, J.A.; Zhao, J.; Lin, Y.; Happonen, T.; Chao, M.; Liedert, C.; Zhao, Y.; Tai, L.C.; Hiltunen, J.; Javey, A. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv., 2019, 5(8), eaaw9906.
[http://dx.doi.org/10.1126/sciadv.aaw9906] [PMID: 31453333]
[96]
Imani, S.; Bandodkar, A.J.; Mohan, A.M.V.; Kumar, R.; Yu, S.; Wang, J.; Mercier, P.P. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun., 2016, 7(1), 11650.
[http://dx.doi.org/10.1038/ncomms11650] [PMID: 27212140]
[97]
Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; Lien, D.H.; Brooks, G.A.; Davis, R.W.; Javey, A. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016, 529(7587), 509-514.
[http://dx.doi.org/10.1038/nature16521] [PMID: 26819044]
[98]
Lee, H.; Song, C.; Baik, S.; Kim, D.; Hyeon, T.; Kim, D.H. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev., 2018, 127, 35-45.
[http://dx.doi.org/10.1016/j.addr.2017.08.009] [PMID: 28867296]
[99]
Bariya, M.; Shahpar, Z.; Park, H.; Sun, J.; Jung, Y.; Gao, W.; Nyein, H.Y.Y.; Liaw, T.S.; Tai, L.C.; Ngo, Q.P.; Chao, M.; Zhao, Y.; Hettick, M.; Cho, G.; Javey, A. Roll- to-roll gravure printed electrochemical sensors for wearable and medical devices. ACS. Nano., 2018, 12(7), 6978-6987.
[http://dx.doi.org/10.1021/acsnano.8b02505] [PMID: 29924589]
[100]
Anastasova, S.; Crewther, B.; Bembnowicz, P.; Curto, V.; Ip, H.M.D.; Rosa, B.; Yang, G.Z. A wearable multisensing patch for continuous sweat monitoring. Biosens. Bioelectron., 2017, 93, 139-145.
[http://dx.doi.org/10.1016/j.bios.2016.09.038] [PMID: 27743863]
[101]
Kim, J.; Jeerapan, I.; Imani, S.; Cho, T.N.; Bandodkar, A.; Cinti, S.; Mercier, P.P.; Wang, J. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens., 2016, 1(8), 1011-1019.
[http://dx.doi.org/10.1021/acssensors.6b00356]
[102]
Raza, T.; Qu, L.; Khokhar, W.A.; Andrews, B.; Ali, A.; Tian, M. Progress of wearable and flexible electrochemical biosensors with the aid of conductive nanomaterials. Front. Bioeng. Biotechnol., 2021, 9, 761020.
[http://dx.doi.org/10.3389/fbioe.2021.761020] [PMID: 34881233]
[103]
Cao, Q.; Liang, B.; Tu, T.; Wei, J.; Fang, L.; Ye, X. Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection. RSC. Adv., 2019, 9(10), 5674-5681.
[http://dx.doi.org/10.1039/C8RA09157A] [PMID: 35515907]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy