Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

Intranasal Delivery of Lipid Nanoparticles: A Ground-breaking Approach for Brain Targeting

Author(s): Devashish Jena, Nimisha Srivastava*, Mohd Yasir and Deblina Dan

Volume 9, Issue 3, 2024

Published on: 05 October, 2023

Page: [209 - 223] Pages: 15

DOI: 10.2174/2405461508666230804103023

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

In the present scenario, various novel delivery systems are available for drug delivery to systemic circulation. So, to accomplish a greater therapeutic effect, the nature of the drug delivery is very important. This delivery is one of the innovative approaches where the drug is targeted to the brain through the nasal cavity. As we know, the human brain is the most crucial part of the body that controls various functions of our system. So, safely reaching the targeted site of the brain is necessary to achieve brain specificity. This delivery system helps us to tackle the problems that may arise in the other delivery system and helps the drug reach the brain without any difficulties. The major obstacles we faced during this delivery were the blood-brain barrier (BBB) and the brain-cerebrospinal fluid barrier. So, if we target the drug to the brain, then we have to overcome these challenges, and before that, we must have a clear understanding of the targeted site and the mechanism behind the drug targeting. Advancements in science and technology have helped discover many recent strategies and formulations available for intranasal delivery. The development of lipid nanoparticles is one of the primitive approaches for targeting any type of drug(hydrophilic/lipophilic) in the brain. So, the aim of this review mainly focused on the mechanism of intranasal delivery, the devices used, and some recent strategies like the development of lipid nanoparticles, surface-modified lipid nanocarriers, and noseto- brain patches. This review article also includes a few FDA-approved formulations for nose-to-brain delivery and their regulatory aspects related to clinical trials and future perspectives.

Keywords: Nasal cavity, brain, blood-brain barrier, blood-cerebrospinal fluid, lipid nanoparticles, nose-to-brain patch, FDAapproved formulation.

Graphical Abstract
[1]
Tan MSA, Parekh HS, Pandey P, Siskind DJ, Falconer JR. Nose-to-brain delivery of antipsychotics using nanotechnology: A review. Expert Opin Drug Deliv 2020; 17(6): 839-53.
[http://dx.doi.org/10.1080/17425247.2020.1762563] [PMID: 32343186]
[2]
Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 2009; 379(1): 146-57.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.019] [PMID: 19555750]
[3]
Battaglia L, Panciani PP, Muntoni E, et al. Lipid nanoparticles for intranasal administration: Application to nose-to-brain delivery. Expert Opin Drug Deliv 2018; 15(4): 369-78.
[http://dx.doi.org/10.1080/17425247.2018.1429401] [PMID: 29338427]
[4]
Naik A, Nair H. Formulation and evaluation of thermosensitive biogels for nose to brain delivery of doxepin. BioMed Res Int 2014; 2014: 847547.
[http://dx.doi.org/10.1155/2014/847547]
[5]
Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: An excellent platform for brain targeting. Expert Opin Drug Deliv 2013; 10(7): 957-72.
[http://dx.doi.org/10.1517/17425247.2013.790887] [PMID: 23586809]
[6]
Espinoza LC, Silva-Abreu M, Clares B, et al. Formulation strategies to improve nose-to-brain delivery of donepezil. Pharmaceutics 2019; 11(2): 64.
[http://dx.doi.org/10.3390/pharmaceutics11020064] [PMID: 30717264]
[7]
Wang Z, Xiong G, Tsang WC, Schätzlein AG, Uchegbu IF. Nose-to-brain delivery. J Pharmacol Exp Ther 2019; 370(3): 593-601.
[http://dx.doi.org/10.1124/jpet.119.258152] [PMID: 31126978]
[8]
Ong WY, Shalini SM, Costantino L. Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders. Curr Med Chem 2014; 21(37): 4247-56.
[http://dx.doi.org/10.2174/0929867321666140716103130] [PMID: 25039773]
[9]
Patel Z, Patel B, Patel S, Pardeshi C. Nose to brain targeted drug delivery bypassing the blood-brain barrier: An overview. Drug Invent Today 2012; 4(12): 2012.
[10]
Feng Y, He H, Li F, Lu Y, Qi J, Wu W. An update on the role of nanovehicles in nose-to-brain drug delivery. Drug Discov Today 2018; 23(5): 1079-88.
[http://dx.doi.org/10.1016/j.drudis.2018.01.005] [PMID: 29330120]
[11]
Agrawal M, Saraf S, Saraf S, et al. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 2018; 281: 139-77.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.011] [PMID: 29772289]
[12]
Froelich A. Osmałek T, Jadach B, Puri V, Michniak-Kohn B. Microemulsion-based media in nose-to-brain drug delivery. Pharmaceutics 2021; 13(2): 201.
[http://dx.doi.org/10.3390/pharmaceutics13020201] [PMID: 33540856]
[13]
Palhazi P, Daniel RK, Kosins AM. The osseocartilaginous vault of the nose: Anatomy and surgical observations. Aesthet Surg J 2015; 35(3): 242-51.
[http://dx.doi.org/10.1093/asj/sju079] [PMID: 25805276]
[14]
Van Cauwenberge P, Sys L, De Belder T, Watelet JB. Anatomy and physiology of the nose and the paranasal sinuses. Immunol Allergy Clin North Am 2004; 24(1): 1-17.
[http://dx.doi.org/10.1016/S0889-8561(03)00107-3] [PMID: 15062424]
[15]
Jankowski R. Revisiting human nose anatomy: Phylogenic and ontogenic perspectives. Laryngoscope 2011; 121(11): 2461-7.
[http://dx.doi.org/10.1002/lary.21368] [PMID: 22020897]
[16]
Oneal RM, Beil RJ Jr, Izenberg PH, Schlesinger J. Surgical anatomy of the nose. Oper Tech Plast Reconstr Surg 2000; 7(4): 158-67.
[http://dx.doi.org/10.1053/otpr.2000.22770]
[17]
Steele NP, Thomas JR. Surgical anatomy of the nose InRhinology and facial plastic surgery. Berlin, Heidelberg: Springer 2009; pp. 5-12.
[http://dx.doi.org/10.1007/978-3-540-74380-4_1]
[18]
Cheesman K, Burdett E. Anatomy of the nose and pharynx. Anaesth Intensive Care Med 2011; 12(7): 283-6.
[http://dx.doi.org/10.1016/j.mpaic.2011.04.013]
[19]
Parvathi M. Intranasal drug delivery to brain: An overview. Int J Res Pharm Chem 2012; 2(3): 889-95.
[20]
Salamon G, Huang YP. Radiologic anatomy of the brain. Singapore: Springer Science & Business Media 2012.
[21]
Jones LK. Anatomy and brain development. In: Neurocounseling: Brain‐Based Clinical Approaches. Wiley Online Library 2017; pp. 1-26.
[http://dx.doi.org/10.1002/9781119375487.ch1]
[22]
Friston K, Buzsáki G. The functional anatomy of time: what and when in the brain. Trends Cogn Sci 2016; 20(7): 500-11.
[http://dx.doi.org/10.1016/j.tics.2016.05.001] [PMID: 27261057]
[23]
Aderibigbe B. In situ-based gels for nose-to-brain delivery for the treatment of neurological diseases. Pharmaceutics 2018; 10(2): 40.
[http://dx.doi.org/10.3390/pharmaceutics10020040] [PMID: 29601486]
[24]
Nguyen TTL, Maeng HJ. Pharmacokinetics and pharmacodynamics of intranasal solid lipid nanoparticles and nanostructured lipid carriers for nose-to-brain delivery. Pharmaceutics 2022; 14(3): 572.
[http://dx.doi.org/10.3390/pharmaceutics14030572] [PMID: 35335948]
[25]
Yasir M, Vir Singh Sara U, Som I, Gaur P, Singh M. Nose to brain drug delivery: A novel approach through solid lipid nanoparticles. Curr Nanomed 2016; 6(2): 105-32.
[http://dx.doi.org/10.2174/2468187306666160603120318]
[26]
Schwarz B, Merkel OM. Nose-to-brain delivery of biologics. Ther Deliv 2019; 10(4): 207-10.
[http://dx.doi.org/10.4155/tde-2019-0013] [PMID: 30991920]
[27]
Patel HP, Gandhi PA, Chaudhari PS, et al. Clozapine loaded nanostructured lipid carriers engineered for brain targeting via nose-to-brain delivery: Optimization and in vivo pharmacokinetic studies. J Drug Deliv Sci Technol 2021; 64: 102533.
[http://dx.doi.org/10.1016/j.jddst.2021.102533]
[28]
Huang G, Xie J, Shuai S, et al. Nose-to-brain delivery of drug nanocrystals by using Ca2+ responsive deacetylated gellan gum based in situ-nanogel. Int J Pharm 2021; 594: 120182.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120182] [PMID: 33346126]
[29]
Nagaraja S, Basavarajappa GM, Karnati RK, Bakir EM, Pund S. Ion-triggered in situ gelling nanoemulgel as a platform for nose-to-brain delivery of small lipophilic molecules. Pharmaceutics 2021; 13(8): 1216.
[http://dx.doi.org/10.3390/pharmaceutics13081216] [PMID: 34452177]
[30]
Trapani A, Corbo F, Agrimi G, et al. Oxidized alginate dopamine conjugate: In vitro characterization for nose-to-brain delivery application. Materials 2021; 14(13): 3495.
[http://dx.doi.org/10.3390/ma14133495] [PMID: 34201634]
[31]
Sonvico F, Clementino A, Buttini F, et al. Surface-modified nanocarriers for nose-to-brain delivery: From bioadhesion to targeting. Pharmaceutics 2018; 10(1): 34.
[http://dx.doi.org/10.3390/pharmaceutics10010034] [PMID: 29543755]
[32]
Rinaldi F, Hanieh P, Chan L, et al. Chitosan glutamate-coated niosomes: A proposal for nose-to-brain delivery. Pharmaceutics 2018; 10(2): 38.
[http://dx.doi.org/10.3390/pharmaceutics10020038] [PMID: 29565809]
[33]
Dalpiaz A, Pavan B. Nose-to-brain delivery of antiviral drugs: A way to overcome their active efflux? Pharmaceutics 2018; 10(2): 39.
[http://dx.doi.org/10.3390/pharmaceutics10020039] [PMID: 29587409]
[34]
Ladel S, Flamm J, Zadeh AS, et al. Allogenic Fc domain-facilitated uptake of IgG in nasal lamina propria: Friend or foe for intranasal CNS delivery? Pharmaceutics 2018; 10(3): 107.
[http://dx.doi.org/10.3390/pharmaceutics10030107] [PMID: 30050027]
[35]
Gänger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018; 10(3): 116.
[http://dx.doi.org/10.3390/pharmaceutics10030116] [PMID: 30081536]
[36]
Teleanu D, Chircov C, Grumezescu A, Volceanov A, Teleanu R. Blood-brain delivery methods using nanotechnology. Pharmaceutics 2018; 10(4): 269.
[http://dx.doi.org/10.3390/pharmaceutics10040269] [PMID: 30544966]
[37]
Rassu G, Porcu E, Fancello S, et al. Intranasal delivery of genistein-loaded nanoparticles as a potential preventive system against neurodegenerative disorders. Pharmaceutics 2018; 11(1): 8.
[http://dx.doi.org/10.3390/pharmaceutics11010008] [PMID: 30597930]
[38]
Tzeyung A, Md S, Bhattamisra S, et al. Fabrication, optimization, and evaluation of rotigotine-loaded chitosan nanoparticles for nose-to-brain delivery. Pharmaceutics 2019; 11(1): 26.
[http://dx.doi.org/10.3390/pharmaceutics11010026] [PMID: 30634665]
[39]
Musumeci T, Bonaccorso A, Puglisi G. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: An overview. Pharmaceutics 2019; 11(3): 118.
[http://dx.doi.org/10.3390/pharmaceutics11030118] [PMID: 30871237]
[40]
Bonferoni M, Ferraro L, Pavan B, et al. Uptake in the central nervous system of geraniol oil encapsulated in chitosan oleate following nasal and oral administration. Pharmaceutics 2019; 11(3): 106.
[http://dx.doi.org/10.3390/pharmaceutics11030106] [PMID: 30832389]
[41]
Martins PP, Smyth HDC, Cui Z. Strategies to facilitate or block nose-to-brain drug delivery. Int J Pharm 2019; 570: 118635.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118635] [PMID: 31445062]
[42]
Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm 2018; 128: 337-62.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.009] [PMID: 29733950]
[43]
Md S, Mustafa G, Baboota S, Ali J. Nanoneurotherapeutics approach intended for direct nose to brain delivery. Drug Dev Ind Pharm 2015; 41(12): 1922-34.
[http://dx.doi.org/10.3109/03639045.2015.1052081] [PMID: 26057769]
[44]
Giunchedi P, Gavini E, Bonferoni MC. Nose-to-brain delivery. Pharmaceutics 2020; 12(2): 138.
[http://dx.doi.org/10.3390/pharmaceutics12020138] [PMID: 32041344]
[45]
Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers: Function and dysfunction. Semin Immunopathol 2009; 31(4): 497-511.
[http://dx.doi.org/10.1007/s00281-009-0177-0]
[46]
Gizurarson S. The effect of cilia and the mucociliary clearance on successful drug delivery. Biol Pharm Bull 2015; 38(4): 497-506.
[http://dx.doi.org/10.1248/bpb.b14-00398] [PMID: 25739664]
[47]
Illum L. Nasal drug delivery: New developments and strategies. Drug Discov Today 2002; 7(23): 1184-9.
[http://dx.doi.org/10.1016/S1359-6446(02)02529-1] [PMID: 12547019]
[48]
Fan Y, Chen M, Zhang J, Maincent P, Xia X, Wu W. Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases. Crit Rev Ther Drug Carrier Syst 2018; 35(5): 433-67.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018024697]
[49]
Warnken ZN, Smyth HDC, Watts AB, Weitman S, Kuhn JG, Williams RO III. Formulation and device design to increase nose to brain drug delivery. J Drug Deliv Sci Technol 2016; 35: 213-22.
[http://dx.doi.org/10.1016/j.jddst.2016.05.003]
[50]
Rassu G, Soddu E, Cossu M, Gavini E, Giunchedi P, Dalpiaz A. Particulate formulations based on chitosan for nose-to-brain delivery of drugs. A review. J Drug Deliv Sci Technol 2016; 32: 77-87.
[http://dx.doi.org/10.1016/j.jddst.2015.05.002]
[51]
Salade L, Wauthoz N, Vermeersch M, Amighi K, Goole J. Chitosan-coated liposome dry-powder formulations loaded with ghrelin for nose-to-brain delivery. Eur J Pharm Biopharm 2018; 129: 257-66.
[http://dx.doi.org/10.1016/j.ejpb.2018.06.011] [PMID: 29902517]
[52]
Wingrove J, Swedrowska M, Scherließ R, et al. Characterisation of nasal devices for delivery of insulin to the brain and evaluation in humans using functional magnetic resonance imaging. J Control Release 2019; 302: 140-7.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.032] [PMID: 30953665]
[53]
Mittal D, Ali A, Md S, Baboota S, Sahni JK, Ali J. Insights into direct nose to brain delivery: Current status and future perspective. Drug Deliv 2014; 21(2): 75-86.
[http://dx.doi.org/10.3109/10717544.2013.838713] [PMID: 24102636]
[54]
Pandey M, Choudhury H, Verma RK, et al. Nanoparticles based intranasal delivery of drug to treat Alzheimer’s disease: A recent update. CNS Neurol Disord 2020; 19(9): 648-62.
[http://dx.doi.org/10.2174/1871527319999200819095620]
[55]
Patel AA, Patel RJ, Patel SR. Nanomedicine for intranasal delivery to improve brain uptake. Curr Drug Deliv 2018; 15(4): 461-9.
[http://dx.doi.org/10.2174/1567201814666171013150534] [PMID: 29034836]
[56]
Lai F, Fadda AM, Sinico C. Liposomes for brain delivery. Expert Opin Drug Deliv 2013; 10(7): 1003-22.
[http://dx.doi.org/10.1517/17425247.2013.766714] [PMID: 23373728]
[57]
Hong SS, Oh KT, Choi HG, Lim SJ. Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics 2019; 11(10): 540.
[http://dx.doi.org/10.3390/pharmaceutics11100540] [PMID: 31627301]
[58]
Salade L, Wauthoz N, Deleu M, et al. Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia. Int J Nanomedicine 2017; 12: 8531-43.
[http://dx.doi.org/10.2147/IJN.S147650] [PMID: 29238190]
[59]
Hussain G, Zhang L, Rasul A, et al. Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and Parkinson’s diseases: An update of recent data. Molecules 2018; 23(4): 814.
[http://dx.doi.org/10.3390/molecules23040814] [PMID: 29614843]
[60]
Xu J, Tao J, Wang J. Design and application in delivery system of intranasal antidepressants. Front Bioeng Biotechnol 2020; 8: 626882.
[http://dx.doi.org/10.3389/fbioe.2020.626882] [PMID: 33409272]
[61]
Chatterjee B, Gorain B, Mohananaidu K, Sengupta P, Mandal UK, Choudhury H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int J Pharm 2019; 565: 258-68.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.032] [PMID: 31095983]
[62]
Bonferoni M, Rossi S, Sandri G, et al. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics 2019; 11(2): 84.
[http://dx.doi.org/10.3390/pharmaceutics11020084] [PMID: 30781585]
[63]
Pandey YR, Kumar S, Gupta BK, Ali J, Baboota S. Intranasal delivery of paroxetine nanoemulsion via the olfactory region for the management of depression: Formulation, behavioural and biochemical estimation. Nanotechnology 2016; 27(2): 025102.
[http://dx.doi.org/10.1088/0957-4484/27/2/025102] [PMID: 26629830]
[64]
Mohammadi-Samani S, Ghasemiyeh P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res Pharm Sci 2018; 13(4): 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[65]
Patel S, Chavhan S, Soni H, et al. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J Drug Target 2011; 19(6): 468-74.
[http://dx.doi.org/10.3109/1061186X.2010.523787] [PMID: 20958095]
[66]
Ahmad J, Rizwanullah M, Amin S, Warsi MH, Ahmad MZ, Barkat MA. Nanostructured lipid carriers (NLCs): Nose-to-brain delivery and theranostic application. Curr Drug Metab 2020; 21(14): 1136-43.
[http://dx.doi.org/10.2174/1389200221666200719003304] [PMID: 32682366]
[67]
Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi A. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier. Adv Pharmacol Sci 2018; 2018: 1-15.
[http://dx.doi.org/10.1155/2018/6847971] [PMID: 30651728]
[68]
Abbas H, Refai H, El Sayed N, Rashed LA, Mousa MR, Zewail M. Superparamagnetic iron oxide loaded chitosan coated bilosomes for magnetic nose to brain targeting of resveratrol. Int J Pharm 2021; 610: 121244.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121244] [PMID: 34737114]
[69]
Elsheikh MA, El-Feky YA, Al-Sawahli MM, Ali ME, Fayez AM, Abbas H. A brain-targeted approach to ameliorate memory disorders in a sporadic alzheimer’s disease mouse model via intranasal luteolin-loaded nanobilosomes. Pharmaceutics 2022; 14(3): 576.
[http://dx.doi.org/10.3390/pharmaceutics14030576] [PMID: 35335952]
[70]
El Taweel MM, Aboul-Einien MH, Kassem MA, Elkasabgy NA. Intranasal zolmitriptan-loaded bilosomes with extended nasal mucociliary transit time for direct nose to brain delivery. Pharmaceutics 2021; 13(11): 1828.
[http://dx.doi.org/10.3390/pharmaceutics13111828] [PMID: 34834242]
[71]
Al Asmari AK, Ullah Z, Tariq M, Fatani A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des Devel Ther 2016; 10: 205-15.
[PMID: 26834457]
[72]
Li W, Zhou Y, Zhao N, Hao B, Wang X, Kong P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ Toxicol Pharmacol 2012; 34(2): 272-9.
[http://dx.doi.org/10.1016/j.etap.2012.04.012] [PMID: 22613079]
[73]
Praveen A, Aqil M, Imam SS, Ahad A, Moolakkadath T, Ahmad FJ. Lamotrigine encapsulated intra-nasal nanoliposome formulation for epilepsy treatment: Formulation design, characterization and nasal toxicity study. Colloids Surf B Biointerfaces 2019; 174: 553-62.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.025] [PMID: 30502666]
[74]
Ahmad N, Ahmad R, Alam MA, Ahmad FJ, Amir M. Retracted Article: Impact of ultrasonication techniques on the preparation of novel Amiloride-nanoemulsion used for intranasal delivery in the treatment of epilepsy. Artif Cells Nanomed Biotechnol 2018; 46(sup3): S192-207.
[75]
Iqbal R, Ahmed S, Jain GK, Vohora D. Design and development of letrozole nanoemulsion: A comparative evaluation of brain targeted nanoemulsion with free letrozole against status epilepticus and neurodegeneration in mice. Int J Pharm 2019; 565: 20-32.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.076] [PMID: 31051232]
[76]
Kumar M, Misra A, Babbar AK, Mishra AK, Mishra P, Pathak K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm 2008; 358(1-2): 285-91.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.029] [PMID: 18455333]
[77]
Bhatt R, Singh D, Prakash A, Mishra N. Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntington’s disease. Drug Deliv 2015; 22(7): 931-9.
[http://dx.doi.org/10.3109/10717544.2014.880860] [PMID: 24512295]
[78]
Madane RG, Mahajan HS. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: Design, characterization, and in vivo study. Drug Deliv 2016; 23(4): 1326-34.
[http://dx.doi.org/10.3109/10717544.2014.975382] [PMID: 25367836]
[79]
Sita VG, Jadhav D, Vavia P. Niosomes for nose-to-brain delivery of bromocriptine: Formulation development, efficacy evaluation and toxicity profiling. J Drug Deliv Sci Technol 2020; 58: 101791.
[http://dx.doi.org/10.1016/j.jddst.2020.101791]
[80]
Alam Khan S, Jawaid Akhtar M. Structural modification and strategies for the enhanced doxorubicin drug delivery. Bioorg Chem 2022; 120: 105599.
[http://dx.doi.org/10.1016/j.bioorg.2022.105599] [PMID: 35030480]
[81]
Savale S, Mahajan H. Nose to brain: A versatile mode of drug delivery system. Asian J Biomater Res 2017; 3: 16-38.
[82]
Sarvaiya J, Agrawal YK. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int J Biol Macromol 2015; 72: 454-65.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.052] [PMID: 25199867]
[83]
Bi C, Wang A, Chu Y, et al. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int J Nanomedicine 2016; 11: 6547-59.
[http://dx.doi.org/10.2147/IJN.S120939] [PMID: 27994458]
[84]
Salama HA, Mahmoud AA, Kamel AO, Abdel Hady M, Awad GAS. Phospholipid based colloidal poloxamer–nanocubic vesicles for brain targeting via the nasal route. Colloids Surf B Biointerfaces 2012; 100: 146-54.
[http://dx.doi.org/10.1016/j.colsurfb.2012.05.010] [PMID: 22766291]
[85]
Tang S, Wang A, Yan X, et al. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv 2019; 26(1): 700-7.
[http://dx.doi.org/10.1080/10717544.2019.1636420] [PMID: 31290705]
[86]
Wen Z, Yan Z, Hu K, et al. Odorranalectin-conjugated nanoparticles: Preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J Control Release 2011; 151(2): 131-8.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.022] [PMID: 21362449]
[87]
Samia O, Hanan R, Kamal ET. Carbamazepine mucoadhesive nanoemulgel (MNEG) as brain targeting delivery system via the olfactory mucosa. Drug Deliv 2012; 19(1): 58-67.
[http://dx.doi.org/10.3109/10717544.2011.644349] [PMID: 22191715]
[88]
N2B-patch. Available From: http://www.n2b-patch.eu/18-08-22/
[89]
Choi YM, Kim K. Transnasal microemulsions containing diazepam. US10/869195, 2005.
[90]
Wermeling D. System and method for intranasal administration of lorazepam. WO2002089751A1, 2001.
[91]
Shantha TR. Alzheimer's disease treatment with multiple therapeutic agents delivered to the olfactory region through a special delivery catheter and iontophoresis. US13/945087, 2014.
[92]
Frey W. Method for administering brain-derived neurotrophic factor to the brain. US10/464398, 2003.
[93]
Hoekman JD, Ho RJ. Circumferential aerosol device for delivering drugs to olfactory epithelium and brain. US13/817614, 2013.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy