Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

An Insight on Skin Cancer About Different Targets With Update on Clinical Trials and Investigational Drugs

Author(s): Suraj Vishwas, Swarnali Das Paul* and Deepika Singh

Volume 21, Issue 6, 2024

Published on: 06 September, 2023

Page: [852 - 869] Pages: 18

DOI: 10.2174/1567201820666230726150642

Price: $65

conference banner
Abstract

Cancer is a diverse disease caused by transcriptional changes involving genetic and epigenetic features that influence a huge variety of genes and proteins. Skin cancer is a potentially fatal disease that affects equally men and women globally and is characterized by many molecular changes. Despite the availability of various improved approaches for detecting and treating skin cancer, it continues to be the leading cause of death throughout society. This review highlights a general overview of skin cancer, with an emphasis on epidemiology, types, risk factors, pathological and targeted facets, biomarkers and molecular markers, immunotherapy, and clinical updates of investigational drugs associated with skin cancer.

The skin cancer challenges are acknowledged throughout this study, and the potential application of novel biomarkers of skin cancer formation, progression, metastasis, and prognosis is explored. Although the mechanism of skin carcinogenesis is currently poorly understood, multiple articles have shown that genetic and molecular changes are involved. Furthermore, several skin cancer risk factors are now recognized, allowing for efficient skin cancer prevention. There have been considerable improvements in the field of targeted treatment, and future research into additional targets will expand patients’ therapeutic choices. In comparison to earlier articles on the same issue, this review focused on molecular and genetic factors and examined various skin cancer-related factors in depth.

Keywords: Skin cancer, risk factors, molecular facets, targeted therapy, inflammatory skin cancer, metastasis, investigational drugs.

Graphical Abstract
[1]
Dildar, M.; Akram, S.; Irfan, M.; Khan, H.U.; Ramzan, M.; Mahmood, A.R.; Alsaiari, S.A.; Saeed, A.H.M.; Alraddadi, M.O.; Mahnashi, M.H. Skin cancer detection: A review using deep learning techniques. Int. J. Environ. Res. Public Health, 2021, 18(10), 5479.
[http://dx.doi.org/10.3390/ijerph18105479] [PMID: 34065430]
[2]
Globocan. 2020. Available from: http://gco.iarc.fr/
[3]
National Cancer Institute Melanoma of the Skin-Cancer Stat Facts. Available from: https://seer.cancer.gov/statfacts/html/melan.html [accessed on 10 May 2021]
[4]
Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Barsouk, A. Epidemiology of melanoma. Med. Sci., 2021, 9(4), 63.
[http://dx.doi.org/10.3390/medsci9040063] [PMID: 34698235]
[5]
Berk-Krauss, J.; Stein, J.A.; Weber, J.; Polsky, D.; Geller, A.C. New systematic therapies and trends in cutaneous melanoma deaths among US whites, 1986-2016. Am. J. Public Health, 2020, 110(5), 731-733.
[http://dx.doi.org/10.2105/AJPH.2020.305567] [PMID: 32191523]
[6]
Shalhout, S.Z.; Kaufman, H.L.; Emerick, K.S.; Miller, D.M. Immunotherapy for nonmelanoma skin cancer: Facts and hopes. Clin. Cancer Res., 2022, 28(11), 2211-2220.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-2971] [PMID: 35121622]
[7]
Zambrano-Román, M.; Padilla-Gutiérrez, J.R.; Valle, Y.; Muñoz-Valle, J.F.; Valdés-Alvarado, E. Non-melanoma skin cancer: A genetic update and future perspectives. Cancers, 2022, 14(10), 2371.
[http://dx.doi.org/10.3390/cancers14102371] [PMID: 35625975]
[8]
Available from: www.cancer.net
[9]
Khan, N.H.; Mir, M.; Qian, L.; Baloch, M.; Ali Khan, M.F.; Rehman, A.; Ngowi, E.E.; Wu, D.D.; Ji, X.Y. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J. Adv. Res., 2022, 36, 223-247.
[http://dx.doi.org/10.1016/j.jare.2021.06.014] [PMID: 35127174]
[10]
Dorrell, D.N.; Strowd, L.C. Skin cancer detection technology. Dermatol. Clin., 2019, 37(4), 527-536.
[http://dx.doi.org/10.1016/j.det.2019.05.010] [PMID: 31466592]
[11]
Jain, R.; Sarode, I.; Singhvi, G.; Dubey, S.K. Nanocarrier based topical drug delivery- a promising strategy for treatment of skin cancer. Curr. Pharm. Des., 2020, 26(36), 4615-4623.
[http://dx.doi.org/10.2174/1381612826666200826140448] [PMID: 32851954]
[12]
Levine, D.; Fisher, D.E. Current status of diagnostic and prognostic markers in melanoma. Methods Mol. Biol., 2014, 1102, 177-197.
[http://dx.doi.org/10.1007/978-1-62703-727-3_11] [PMID: 24258980]
[13]
Singh, A. Nimisha, Novel nanolipoidal systems for the management of skin cancer. Recent Pat. Drug Deliv. Formul., 2020, 14(2), 108-125.
[http://dx.doi.org/10.2174/1872211314666200817115700] [PMID: 32807069]
[14]
Krishnan, V.; Mitragotri, S. Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Adv. Drug Deliv. Rev., 2020, 153, 87-108.
[http://dx.doi.org/10.1016/j.addr.2020.05.011] [PMID: 32497707]
[15]
Germolec, D.R.; Shipkowski, K.A.; Frawley, R.P.; Evans, E. Markers of inflammation. Methods Mol. Biol., 2018, 1803, 57-79.
[http://dx.doi.org/10.1007/978-1-4939-8549-4_5] [PMID: 29882133]
[16]
Tang, L.; Wang, K. Chronic inflammation in skin malignancies. J. Mol. Signal., 2016, 11, 2.
[http://dx.doi.org/10.5334/1750-2187-11-2] [PMID: 31051015]
[17]
Mueller, M.M. Inflammation in epithelial skin tumours: Old stories and new ideas. Eur. J. Cancer, 2006, 42(6), 735-744.
[http://dx.doi.org/10.1016/j.ejca.2006.01.014] [PMID: 16527478]
[18]
Hensler, S.; Mueller, M.M. Inflammation and skin cancer: Old pals telling new stories. Cancer J., 2013, 19(6), 517-524.
[http://dx.doi.org/10.1097/PPO.0000000000000010] [PMID: 24270351]
[19]
Neagu, M.; Constantin, C.; Caruntu, C.; Dumitru, C.; Surcel, M.; Zurac, S. Inflammation: A key process in skin tumorigenesis. Oncol. Lett., 2019, 17(5), 4068-4084.
[PMID: 30944600]
[20]
Lund, A.W.; Medler, T.R.; Leachman, S.A.; Coussens, L.M. Lymphatic vessels, inflammation, and immunity in skin cancer. Cancer Discov., 2016, 6(1), 22-35.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0023] [PMID: 26552413]
[21]
Maru, G.B.; Gandhi, K.; Ramchandani, A.; Kumar, G. The role of inflammation in skin cancer. Adv. Exp. Med. Biol., 2014, 816, 437-469.
[http://dx.doi.org/10.1007/978-3-0348-0837-8_17] [PMID: 24818733]
[22]
Singh, N.; Baby, D.; Rajguru, J.; Patil, P.; Thakkannavar, S.; Pujari, V. Inflammation and cancer. Ann. Afr. Med., 2019, 18(3), 121-126.
[http://dx.doi.org/10.4103/aam.aam_56_18] [PMID: 31417011]
[23]
Gordon, R. Skin cancer: An overview of epidemiology and risk factors. Semin. Oncol. Nurs., 2013, 29(3), 160-169.
[http://dx.doi.org/10.1016/j.soncn.2013.06.002] [PMID: 23958214]
[24]
D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci., 2013, 14(6), 12222-12248.
[http://dx.doi.org/10.3390/ijms140612222] [PMID: 23749111]
[25]
Linares, M.A.; Zakaria, A.; Nizran, P. Skin cancer. Prim. Care, 2015, 42(4), 645-659.
[http://dx.doi.org/10.1016/j.pop.2015.07.006] [PMID: 26612377]
[26]
Saladi, R.N.; Persaud, A.N. The causes of skin cancer: A comprehensive review. Med. Actual., 2005, 41(1), 37-53.
[http://dx.doi.org/10.1358/dot.2005.41.1.875777] [PMID: 15753968]
[27]
Wheless, L.; Jacks, S.; Mooneyham, P.K.A.; Leach, B.C.; Cook, J. Skin cancer in organ transplant recipients: More than the immune system. J. Am. Acad. Dermatol., 2014, 71(2), 359-365.
[http://dx.doi.org/10.1016/j.jaad.2014.02.039] [PMID: 24725477]
[28]
Paver, E.C.; Currie, A.M.; Gupta, R.; Dahlstrom, J.E. Human papilloma virus related squamous cell carcinomas of the head and neck: diagnosis, clinical implications and detection of HPV. Pathology, 2020, 52(2), 179-191.
[http://dx.doi.org/10.1016/j.pathol.2019.10.008] [PMID: 31889547]
[29]
Li, C.; Athar, M. Ionizing radiation exposure and basal cell carcinoma pathogenesis. Radiat. Res., 2016, 185(3), 217-228.
[http://dx.doi.org/10.1667/RR4284.S1] [PMID: 26930381]
[30]
Doré, J.F.; Chignol, M.C. Tanning salons and skin cancer. Photochem. Photobiol. Sci., 2012, 11(1), 30-37.
[http://dx.doi.org/10.1039/c1pp05186e] [PMID: 21845253]
[31]
Gutzmer, R.; Wiegand, S.; Kölbl, O.; Wermker, K.; Heppt, M.; Berking, C. Actinic keratosis and cutaneous squamous cell carcinoma. Dtsch. Arztebl. Int., 2019, 116(37), 616-626.
[http://dx.doi.org/10.3238/arztebl.2019.0616] [PMID: 32048593]
[32]
Friedl, P.; Wolf, K. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat. Rev. Cancer, 2003, 3(5), 362-374.
[http://dx.doi.org/10.1038/nrc1075] [PMID: 12724734]
[33]
Veiseh, O.; Kievit, F.M.; Ellenbogen, R.G.; Zhang, M. Cancer cell invasion: Treatment and monitoring opportunities in nanomedicine. Adv. Drug Deliv. Rev., 2011, 63(8), 582-596.
[http://dx.doi.org/10.1016/j.addr.2011.01.010] [PMID: 21295093]
[34]
Harlozinska, A. Progress in molecular mechanisms of tumor metastasis and angiogenesis. Anticancer Res., 2005, 25(5), 3327-3333.
[PMID: 16101146]
[35]
Entschladen, F.; Drell, T.L., IV; Lang, K.; Joseph, J.; Zaenker, K.S. Tumour-cell migration, invasion, and metastasis: navigation by neurotransmitters. Lancet Oncol., 2004, 5(4), 254-258.
[http://dx.doi.org/10.1016/S1470-2045(04)01431-7] [PMID: 15050959]
[36]
Chou, Y.P.; Lin, Y.K.; Chen, C.H.; Fang, J.Y. Recent advances in polymeric nanosystems for treating cutaneous melanoma and its metastasis. Curr. Pharm. Des., 2017, 23(35), 5301-5314.
[PMID: 28699537]
[37]
Bobos, M. Histopathologic classification and prognostic factors of melanoma: A 2021 update. Ital. J. Dermatol. Venereol., 2021, 156(3), 300-321.
[http://dx.doi.org/10.23736/S2784-8671.21.06958-3] [PMID: 33982546]
[38]
Elder, D.E.; Bastian, B.C.; Cree, I.A.; Massi, D.; Scolyer, R.A. The 2018 world health organization classification of cutaneous, mucosal, and uveal melanoma: Detailed analysis of 9 distinct subtypes defined by their evolutionary pathway. Arch. Pathol. Lab. Med., 2020, 144(4), 500-522.
[http://dx.doi.org/10.5858/arpa.2019-0561-RA] [PMID: 32057276]
[39]
Yeh, I.; Bastian, B.C. Melanoma pathology: New approaches and classification. Br. J. Dermatol., 2021, 185(2), 282-293.
[http://dx.doi.org/10.1111/bjd.20427] [PMID: 34060071]
[40]
Rebecca, V.W.; Sondak, V.K.; Smalley, K.S.M. A brief history of melanoma. Melanoma Res., 2012, 22(2), 114-122.
[http://dx.doi.org/10.1097/CMR.0b013e328351fa4d] [PMID: 22395415]
[41]
Savoia, P.; Fava, P.; Casoni, F.; Cremona, O. Targeting the ERK signaling pathway in melanoma. Int. J. Mol. Sci., 2019, 20(6), 1483.
[http://dx.doi.org/10.3390/ijms20061483] [PMID: 30934534]
[42]
Mehnert, J.M.; Kluger, H.M. Driver mutations in melanoma: Lessons learned from bench-to-bedside studies. Curr. Oncol. Rep., 2012, 14(5), 449-457.
[http://dx.doi.org/10.1007/s11912-012-0249-5] [PMID: 22723080]
[43]
Jager, M.J.; Shields, C.L.; Cebulla, C.M.; Abdel-Rahman, M.H.; Grossniklaus, H.E.; Stern, M.H.; Carvajal, R.D.; Belfort, R.N.; Jia, R.; Shields, J.A.; Damato, B.E. Uveal melanoma. Nat. Rev. Dis. Primers, 2020, 6(1), 24.
[http://dx.doi.org/10.1038/s41572-020-0158-0] [PMID: 32273508]
[44]
Cleaver, J. Common pathways for ultraviolet skin carcinogenesis in the repair and replication defective groups of xeroderma pigmentosum. J. Dermatol. Sci., 2000, 23(1), 1-11.
[http://dx.doi.org/10.1016/S0923-1811(99)00088-2] [PMID: 10699759]
[45]
Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther., 2019, 20(11), 1366-1379.
[http://dx.doi.org/10.1080/15384047.2019.1640032] [PMID: 31366280]
[46]
Valko-Rokytovska, M.; Bruchata, K.; Simkova, J.; Milkovicova, M.; Kostecka, Z. Current trends in the treatment of malignant melanoma. Neoplasma, 2016, 63(3), 333-341.
[http://dx.doi.org/10.4149/301_151015N533] [PMID: 26925781]
[47]
Bradish, J.R.; Cheng, L. Molecular pathology of malignant melanoma: Changing the clinical practice paradigm toward a personalized approach. Hum. Pathol., 2014, 45(7), 1315-1326.
[http://dx.doi.org/10.1016/j.humpath.2014.04.001] [PMID: 24856851]
[48]
Mackiewicz, J.; Mackiewicz, A. BRAF and MEK inhibitors in the era of immunotherapy in melanoma patients. Contemp. Oncol., 2018, 2018(1), 68-72.
[http://dx.doi.org/10.5114/wo.2018.73890] [PMID: 29628797]
[49]
Ascierto, P.A.; Kirkwood, J.M.; Grob, J.J.; Simeone, E.; Grimaldi, A.M.; Maio, M.; Palmieri, G.; Testori, A.; Marincola, F.M.; Mozzillo, N. The role of BRAF V600 mutation in melanoma. J. Transl. Med., 2012, 10(1), 85.
[http://dx.doi.org/10.1186/1479-5876-10-85] [PMID: 22554099]
[50]
Menzies, A.M.; Long, G.V. Dabrafenib and trametinib, alone and in combination for BRAF-mutant metastatic melanoma. Clin. Cancer Res., 2014, 20(8), 2035-2043.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2054] [PMID: 24583796]
[51]
Shirley, M. Encorafenib and binimetinib: First global approvals. Drugs, 2018, 78(12), 1277-1284.
[http://dx.doi.org/10.1007/s40265-018-0963-x] [PMID: 30117021]
[52]
Chopra, N.; Nathan, P.D. Trametinib in metastatic melanoma. Expert Rev. Anticancer Ther., 2015, 15(7), 749-760.
[http://dx.doi.org/10.1586/14737140.2015.1060127] [PMID: 26107021]
[53]
Signorelli, J.; Shah Gandhi, A. Cobimetinib. Ann. Pharmacother., 2017, 51(2), 146-153.
[http://dx.doi.org/10.1177/1060028016672037] [PMID: 27701080]
[54]
Attwa, M.W.; Darwish, H.W.; Al-Shakliah, N.S.; Kadi, A.A. A validated LC–MS/MS assay for the simultaneous quantification of the FDA-approved anticancer mixture (Encorafenib and Binimetinib): Metabolic stability estimation. Molecules, 2021, 26(9), 2717.
[http://dx.doi.org/10.3390/molecules26092717] [PMID: 34063139]
[55]
Patel, H.; Yacoub, N.; Mishra, R.; White, A.; Yuan, L.; Alanazi, S.; Garrett, J.T. Current advances in the treatment of BRAF-mutant melanoma. Cancers, 2020, 12(2), 482.
[http://dx.doi.org/10.3390/cancers12020482] [PMID: 32092958]
[56]
Patrinely, J.R., Jr; Baker, L.X.; Davis, E.J.; Song, H.; Ye, F.; Johnson, D.B. Outcomes after progression of disease with anti–PD1/PD‐L1 therapy for patients with advanced melanoma. Cancer, 2020, 126(15), 3448-3455.
[http://dx.doi.org/10.1002/cncr.32984] [PMID: 32463489]
[57]
Namikawa, K.; Yamazaki, N. Targeted therapy and immunotherapy for melanoma in Japan. Curr. Treat. Options Oncol., 2019, 20(1), 7.
[http://dx.doi.org/10.1007/s11864-019-0607-8] [PMID: 30675668]
[58]
Lopez, A. Molecular mechanisms and biomarkers of skin photocarcinogenesis. Human Skin Cancers; Miroslav, B., Ed.; , 2018.
[http://dx.doi.org/10.5772/intechopen.70879]
[59]
Trager, M.H.; Geskin, L.J.; Samie, F.H.; Liu, L. Biomarkers in melanoma and non-melanoma skin cancer prevention and risk stratification. Exp. Dermatol., 2022, 31(1), 4-12.
[http://dx.doi.org/10.1111/exd.14114] [PMID: 32415889]
[60]
Krauthammer, M.; Kong, Y.; Ha, B.H.; Evans, P.; Bacchiocchi, A.; McCusker, J.P.; Cheng, E.; Davis, M.J.; Goh, G.; Choi, M.; Ariyan, S.; Narayan, D.; Dutton-Regester, K.; Capatana, A.; Holman, E.C.; Bosenberg, M.; Sznol, M.; Kluger, H.M.; Brash, D.E.; Stern, D.F.; Materin, M.A.; Lo, R.S.; Mane, S.; Ma, S.; Kidd, K.K.; Hayward, N.K.; Lifton, R.P.; Schlessinger, J.; Boggon, T.J.; Halaban, R. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat. Genet., 2012, 44(9), 1006-1014.
[http://dx.doi.org/10.1038/ng.2359] [PMID: 22842228]
[61]
Akbani, R.; Akdemir, K.C.; Aksoy, B.A.; Albert, M.; Ally, A.; Amin, S.B.; Arachchi, H.; Arora, A.; Auman, J.T.; Ayala, B.; Baboud, J.; Balasundaram, M.; Balu, S.; Barnabas, N.; Bartlett, J.; Bartlett, P.; Bastian, B.C.; Baylin, S.B.; Behera, M.; Belyaev, D.; Benz, C.; Bernard, B.; Beroukhim, R.; Bir, N.; Black, A.D.; Bodenheimer, T.; Boice, L.; Boland, G.M.; Bono, R.; Bootwalla, M.S.; Bosenberg, M.; Bowen, J.; Bowlby, R.; Bristow, C.A.; Brockway-Lunardi, L.; Brooks, D.; Brzezinski, J.; Bshara, W.; Buda, E.; Burns, W.R.; Butterfield, Y.S.N.; Button, M.; Calderone, T.; Cappellini, G.A.; Carter, C.; Carter, S.L.; Cherney, L.; Cherniack, A.D.; Chevalier, A.; Chin, L.; Cho, J.; Cho, R.J.; Choi, Y-L.; Chu, A.; Chudamani, S.; Cibulskis, K.; Ciriello, G.; Clarke, A.; Coons, S.; Cope, L.; Crain, D.; Curley, E.; Danilova, L.; D’Atri, S.; Davidsen, T.; Davies, M.A.; Delman, K.A.; Demchok, J.A.; Deng, Q.A.; Deribe, Y.L.; Dhalla, N.; Dhir, R.; DiCara, D.; Dinikin, M.; Dubina, M.; Ebrom, J.S.; Egea, S.; Eley, G.; Engel, J.; Eschbacher, J.M.; Fedosenko, K.V.; Felau, I.; Fennell, T.; Ferguson, M.L.; Fisher, S.; Flaherty, K.T.; Frazer, S.; Frick, J.; Fulidou, V.; Gabriel, S.B.; Gao, J.; Gardner, J.; Garraway, L.A.; Gastier-Foster, J.M.; Gaudioso, C.; Gehlenborg, N.; Genovese, G.; Gerken, M.; Gershenwald, J.E.; Getz, G.; Gomez-Fernandez, C.; Gribbin, T.; Grimsby, J.; Gross, B.; Guin, R.; Gutschner, T.; Hadjipanayis, A.; Halaban, R.; Hanf, B.; Haussler, D.; Haydu, L.E.; Hayes, D.N.; Hayward, N.K.; Heiman, D.I.; Herbert, L.; Herman, J.G.; Hersey, P.; Hoadley, K.A.; Hodis, E.; Holt, R.A.; Hoon, D.S.B.; Hoppough, S.; Hoyle, A.P.; Huang, F.W.; Huang, M.; Huang, S.; Hutter, C.M.; Ibbs, M.; Iype, L.; Jacobsen, A.; Jakrot, V.; Janning, A.; Jeck, W.R.; Jefferys, S.R.; Jensen, M.A.; Jones, C.D.; Jones, S.J.M.; Ju, Z.; Kakavand, H.; Kang, H.; Kefford, R.F.; Khuri, F.R.; Kim, J.; Kirkwood, J.M.; Klode, J.; Korkut, A.; Korski, K.; Krauthammer, M.; Kucherlapati, R.; Kwong, L.N.; Kycler, W.; Ladanyi, M.; Lai, P.H.; Laird, P.W.; Lander, E.; Lawrence, M.S.; Lazar, A.J.; Łaźniak, R.; Lee, D.; Lee, J.E.; Lee, J.; Lee, K.; Lee, S.; Lee, W.; Leporowska, E.; Leraas, K.M.; Li, H.I.; Lichtenberg, T.M.; Lichtenstein, L.; Lin, P.; Ling, S.; Liu, J.; Liu, O.; Liu, W.; Long, G.V.; Lu, Y.; Ma, S.; Ma, Y.; Mackiewicz, A.; Mahadeshwar, H.S.; Malke, J.; Mallery, D.; Manikhas, G.M.; Mann, G.J.; Marra, M.A.; Matejka, B.; Mayo, M.; Mehrabi, S.; Meng, S.; Meyerson, M.; Mieczkowski, P.A.; Miller, J.P.; Miller, M.L.; Mills, G.B.; Moiseenko, F.; Moore, R.A.; Morris, S.; Morrison, C.; Morton, D.; Moschos, S.; Mose, L.E.; Muller, F.L.; Mungall, A.J.; Murawa, D.; Murawa, P.; Murray, B.A.; Nezi, L.; Ng, S.; Nicholson, D.; Noble, M.S.; Osunkoya, A.; Owonikoko, T.K.; Ozenberger, B.A.; Pagani, E.; Paklina, O.V.; Pantazi, A.; Parfenov, M.; Parfitt, J.; Park, P.J.; Park, W-Y.; Parker, J.S.; Passarelli, F.; Penny, R.; Perou, C.M.; Pihl, T.D.; Potapova, O.; Prieto, V.G.; Protopopov, A.; Quinn, M.J.; Radenbaugh, A.; Rai, K.; Ramalingam, S.S.; Raman, A.T.; Ramirez, N.C.; Ramirez, R.; Rao, U.; Rathmell, W.K.; Ren, X.; Reynolds, S.M.; Roach, J.; Robertson, A.G.; Ross, M.I.; Roszik, J.; Russo, G.; Saksena, G.; Saller, C.; Samuels, Y.; Sander, C.; Sander, C.; Sandusky, G.; Santoso, N.; Saul, M.; Saw, R.P.M.; Schadendorf, D.; Schein, J.E.; Schultz, N.; Schumacher, S.E.; Schwallier, C.; Scolyer, R.A.; Seidman, J.; Sekhar, P.C.; Sekhon, H.S.; Senbabaoglu, Y.; Seth, S.; Shannon, K.F.; Sharpe, S.; Sharpless, N.E.; Shaw, K.R.M.; Shelton, C.; Shelton, T.; Shen, R.; Sheth, M.; Shi, Y.; Shiau, C.J.; Shmulevich, I.; Sica, G.L.; Simons, J.V.; Sinha, R.; Sipahimalani, P.; Sofia, H.J.; Soloway, M.G.; Song, X.; Sougnez, C.; Spillane, A.J.; Spychała, A.; Stretch, J.R.; Stuart, J.; Suchorska, W.M.; Sucker, A.; Sumer, S.O.; Sun, Y.; Synott, M.; Tabak, B.; Tabler, T.R.; Tam, A.; Tan, D.; Tang, J.; Tarnuzzer, R.; Tarvin, K.; Tatka, H.; Taylor, B.S.; Teresiak, M.; Thiessen, N.; Thompson, J.F.; Thorne, L.; Thorsson, V.; Trent, J.M.; Triche, T.; J., Jr; Tsai, K.Y.; Tsou, P.; Van Den Berg, D.J.; Van Allen, E.M.; Veluvolu, U.; Verhaak, R.G.; Voet, D.; Voronina, O.; Walter, V.; Walton, J.S.; Wan, Y.; Wang, Y.; Wang, Z.; Waring, S.; Watson, I.R.; Weinhold, N.; Weinstein, J.N.; Weisenberger, D.J.; White, P.; Wilkerson, M.D.; Wilmott, J.S.; Wise, L.; Wiznerowicz, M.; Woodman, S.E.; Wu, C-J.; Wu, C-C.; Wu, J.; Wu, Y.; Xi, R.; Xu, A.W.; Yang, D.; Yang, L.; Yang, L.; Zack, T.I.; Zenklusen, J.C.; Zhang, H.; Zhang, J.; Zhang, W.; Zhao, X.; Zhu, J.; Zhu, K.; Zimmer, L.; Zmuda, E.; Zou, L. Genomic classification of cutaneous melanoma. Cell, 2015, 161(7), 1681-1696.
[http://dx.doi.org/10.1016/j.cell.2015.05.044] [PMID: 26091043]
[62]
Fitzpatrick, T.B. The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol., 1988, 124(6), 869-871.
[http://dx.doi.org/10.1001/archderm.1988.01670060015008] [PMID: 3377516]
[63]
Kefford, R.F.; Newton Bishop, J.A.; Bergman, W.; Tucker, M.A. Counseling and DNA testing for individuals perceived to be genetically predisposed to melanoma: A consensus statement of the Melanoma Genetics Consortium. J. Clin. Oncol., 1999, 17(10), 3245-3251.
[http://dx.doi.org/10.1200/JCO.1999.17.10.3245] [PMID: 10506626]
[64]
Sun, X.; Kim, A.; Nakatani, M.; Shen, Y.; Liu, L. Distinctive molecular responses to ultraviolet radiation between keratinocytes and melanocytes. Exp. Dermatol., 2016, 25(9), 708-713.
[http://dx.doi.org/10.1111/exd.13057] [PMID: 27119462]
[65]
Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Picconi, O.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur. J. Cancer, 2005, 41(1), 45-60.
[http://dx.doi.org/10.1016/j.ejca.2004.10.016] [PMID: 15617990]
[66]
Filosa, A.; Filosa, G. Actinic keratosis and squamous cell carcinoma: clinical and pathological features. G. Ital. Dermatol. Venereol., 2015, 150(4), 379-384.
[PMID: 26099352]
[67]
Bakshi, A.; Shafi, R.; Nelson, J.; Cantrell, W.C.; Subhadarshani, S.; Andea, A.; Athar, M.; Elmets, C.A. The clinical course of actinic keratosis correlates with underlying molecular mechanisms. Br. J. Dermatol., 2020, 182(4), 995-1002.
[http://dx.doi.org/10.1111/bjd.18338] [PMID: 31299087]
[68]
Javor, S.; Gasparini, G.; Biatta, C.M.; Cozzani, E.; Cabiddu, F.; Ravetti, J.L.; Vellone, V.G.; Parodi, A. P53 staining index and zonal staining patterns in actinic keratoses. Arch. Dermatol. Res., 2021, 313(4), 275-279.
[http://dx.doi.org/10.1007/s00403-020-02104-y] [PMID: 32642809]
[69]
Wang, W.; Edington, H.D.; Rao, U.N.M.; Jukic, D.M.; Wang, H.; Shipe-Spotloe, J.M.; Kirkwood, J.M. STAT3 as a biomarker of progression in atypical nevi of patients with melanoma: dose-response effects of systemic IFNalpha therapy. J. Invest. Dermatol., 2008, 128(8), 1997-2002.
[http://dx.doi.org/10.1038/jid.2008.26] [PMID: 18305569]
[70]
Bosserhoff, A.K. Melanoma inhibitory activity (MIA): An important molecule in melanoma development and progression. Pigment Cell Res., 2005, 0(0)
[http://dx.doi.org/10.1111/j.1600-0749.2005.00274.x] [PMID: 16280006]
[71]
Carpi, S.; Polini, B.; Fogli, S.; Podestà, A.; Ylösmäki, E.; Cerullo, V.; Romanini, A.; Nieri, P. Circulating microRNAs as biomarkers for early diagnosis of cutaneous melanoma. Expert Rev. Mol. Diagn., 2020, 20(1), 19-30.
[http://dx.doi.org/10.1080/14737159.2020.1696194] [PMID: 31747311]
[72]
Kelly, G.; Paulson, M.C.; Lahman, A.G. Chapuis; Isaac, B. Immunotherapy for skin cancer. Int. Immunol., 2019, 31, 465-475.
[73]
Bassiony, M.; Aluko, A.V.; Radosevich, J.A. Immunotherapy and Cancer. Preccision Medicine in Oncology, 2021, 1, 133-187.
[74]
Feng, X. Novel target therapy and immunotherapy for skin cancer. US Pharm., 2012, 37(11), 7-11.
[75]
Bridge, J.A.; Lee, J.C.; Daud, A.; Wells, J.W.; Bluestone, J.A. Cytokines, chemokines, and other biomarkers of response for checkpoint inhibitor therapy in skin cancer. Front. Med., 2018, 5, 351.
[http://dx.doi.org/10.3389/fmed.2018.00351] [PMID: 30631766]
[76]
Emens, L.A.; Ascierto, P.A.; Darcy, P.K.; Demaria, S.; Eggermont, A.M.M.; Redmond, W.L.; Seliger, B.; Marincola, F.M. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur. J. Cancer, 2017, 81, 116-129.
[http://dx.doi.org/10.1016/j.ejca.2017.01.035] [PMID: 28623775]
[77]
Lim, S.; Park, J.; Shim, M.K.; Um, W.; Yoon, H.Y.; Ryu, J.H.; Lim, D.K.; Kim, K. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics, 2019, 9(25), 7906-7923.
[http://dx.doi.org/10.7150/thno.38425] [PMID: 31695807]
[78]
Martin, J.D.; Cabral, H.; Stylianopoulos, T.; Jain, R.K. Improving cancer immunotherapy using nanomedicines: Progress, opportunities and challenges. Nat. Rev. Clin. Oncol., 2020, 17(4), 251-266.
[http://dx.doi.org/10.1038/s41571-019-0308-z] [PMID: 32034288]
[79]
Wilken, R.; Criscito, M.; Pavlick, A.C.; Stevenson, M.L.; Carucci, J.A. Current research in melanoma and aggressive nonmelanoma skin cancer. Facial Plast. Surg., 2020, 36(2), 200-210.
[http://dx.doi.org/10.1055/s-0040-1709118] [PMID: 32413929]
[80]
Twomey, J.D.; Zhang, B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J., 2021, 23(2), 39.
[http://dx.doi.org/10.1208/s12248-021-00574-0] [PMID: 33677681]
[81]
Shalhout, S.Z.; Emerick, K.S.; Kaufman, H.L.; Miller, D.M. Immunotherapy for non-melanoma skin cancer. Curr. Oncol. Rep., 2021, 23(11), 125.
[http://dx.doi.org/10.1007/s11912-021-01120-z] [PMID: 34448958]
[82]
Esfahani, K.; Roudaia, L.; Buhlaiga, N.; Del Rincon, S.V.; Papneja, N.; Miller, W.H. Jr A review of cancer immunotherapy: From the past, to the present, to the future. Curr. Oncol., 2020, 27(S12), 87-97.
[http://dx.doi.org/10.3747/co.27.5223] [PMID: 32368178]
[83]
Simões, M.C.F.; Sousa, J.J.S.; Pais, A.A.C.C. Skin cancer and new treatment perspectives: A review. Cancer Lett., 2015, 357(1), 8-42.
[http://dx.doi.org/10.1016/j.canlet.2014.11.001] [PMID: 25444899]
[84]
Ghahartars, M.; Sedaghat, F.; Khajavi, E.; Nejat, A.A.; Malekzadeh, M.; Ghaderi, A.; Fattahi, M.J. Investigation of IL-17A serum levels in patients with nonmelanoma skin cancer. Dermatol. Res. Pract., 2021, 2021, 1-5.
[http://dx.doi.org/10.1155/2021/5540163] [PMID: 34239554]
[85]
Wong, A.N.M.; McArthur, G.A.; Hofman, M.S.; Hicks, R.J. The Advantages and challenges of using FDG PET/CT for response assessment in melanoma in the era of targeted agents and immunotherapy. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(S1), 67-77.
[http://dx.doi.org/10.1007/s00259-017-3691-7] [PMID: 28389693]
[86]
Brown, C. Difficult skin cancers: Clinicopathologic features and management. Proc. Bayl. Univ. Med. Cent., 1993, 6(2), 9-12.
[http://dx.doi.org/10.1080/08998280.1993.11929814]
[87]
Pizzimenti, S.; Dianzani, C.; Zara, G.P.; Ferretti, C.; Rossi, F.; Gigliotti, C.L.; Daga, M.; Ciamporcero, E.S.; Maina, G.; Barrera, G. Challenges and opportunities of nanoparticle-based theranostics in skin cancer. Nanoscience in dermatology, 2016, 177-188.
[http://dx.doi.org/10.1016/B978-0-12-802926-8.00014-8]
[88]
Apalla, Z.; Nashan, D.; Weller, R.B.; Castellsagué, X. Skin cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol. Ther., 2017, 7(S1), 5-19.
[http://dx.doi.org/10.1007/s13555-016-0165-y] [PMID: 28150105]
[89]
Nguyen, K.; Geller, A.; Lin, J.Y. Improvements and continued challenges in the early detection of skin cancers. Expert. Rev. Dermatol., 2012, 7(5), 459-471.
[http://dx.doi.org/10.1586/edm.12.46]
[90]
Harwansh, R.K.; Deshmukh, R. Breast cancer: An insight into its inflammatory, molecular, pathological and targeted facets with update on investigational drugs. Crit. Rev. Oncol. Hematol., 2020, 154, 103070.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103070] [PMID: 32871325]
[91]
Borgheti-Cardoso, L.N.; Viegas, J.S.R.; Silvestrini, A.V.P.; Caron, A.L.; Praça, F.G.; Kravicz, M.; Bentley, M.V.L.B. Nanotechnology approaches in the current therapy of skin cancer. Adv. Drug Deliv. Rev., 2020, 153, 109-136.
[http://dx.doi.org/10.1016/j.addr.2020.02.005] [PMID: 32113956]
[92]
Gunturi, A.; McDermott, D.F. Nivolumab for the treatment of cancer. Expert Opin. Investig. Drugs, 2015, 24(2), 253-260.
[http://dx.doi.org/10.1517/13543784.2015.991819] [PMID: 25494679]
[93]
Huang, P.W.; Chang, J.W.C. Immune checkpoint inhibitors win the 2018 Nobel Prize. Biomed. J., 2019, 42(5), 299-306.
[http://dx.doi.org/10.1016/j.bj.2019.09.002] [PMID: 31783990]
[94]
Albittar, A.A.; Alhalabi, O.; Glitza Oliva, I.C. Immunotherapy for melanoma. Adv. Exp. Med. Biol., 2020, 1244, 51-68.
[http://dx.doi.org/10.1007/978-3-030-41008-7_3] [PMID: 32301010]
[95]
Dhupal, M.; Chowdhury, D. Phytochemical-based nanomedicine for advanced cancer theranostics: Perspectives on clinical trials to clinical use. Int. J. Nanomedicine, 2020, 15(15), 9125-9157.
[http://dx.doi.org/10.2147/IJN.S259628] [PMID: 33244231]
[96]
Anassi, E.; Ndefo, U.A. Sipuleucel-T (provenge) injection: The first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. PT., 2011, 36(4), 197-202.
[PMID: 21572775]
[97]
Kang, A.; Zhao, D.; Yeh, J.J.; Lee, D.J. Updates on immunotherapy for the treatment of skin cancer. Curr. Dermatol. Rep., 2018, 7(4), 311-320.
[http://dx.doi.org/10.1007/s13671-018-0246-5]
[98]
Benmebarek, M.R.; Karches, C.; Cadilha, B.; Lesch, S.; Endres, S.; Kobold, S. Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int. J. Mol. Sci., 2019, 20(6), 1283.
[http://dx.doi.org/10.3390/ijms20061283] [PMID: 30875739]
[99]
Smith, Aaron J.; Oertle, John; Warren, Dan Prato, Dino Chimeric antigen receptor (CAR) T cell therapy for malignant cancers: Summary and perspective. J. Cell. Immunother, 2016, 2(2), 59-68.
[http://dx.doi.org/10.1016/j.jocit.2016.08.001]
[100]
Zugmaier, G.; Klinger, M.; Schmidt, M.; Subklewe, M. Clinical overview of anti-CD19 BiTE(®) and ex vivo data from anti-CD33 BiTE(®) as examples for retargeting T cells in hematologic malignancies. Mol Immunol, 2015, 67(2PtA), 58-66.
[http://dx.doi.org/10.1016/j.molimm.2015.02.033] [PMID: 25883042]
[101]
Registrar Corp. Available from: https://www.fda.gov
[102]
Available from: https://www.cdsc.gov

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy