Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Systematic Review Article

Recent Update on the Protective Potentials of Resveratrol against Cisplatin-induced Ototoxicity: A Systematic Review

Author(s): Fahad Alsaikhan, Saade Abdalkareem Jasim, Ria Margiana, Maria Jade Catalan Opulencia, Ghulam Yasin, Ali Thaeer Hammid, Makhzuna Tahsinovna Nasretdinova, Ahmed B. Mahdi, Bagher Farhood*, Razzagh Abedi-Firouzjah, Tannaz Jamialahmadi and Amirhosein Sahebkar*

Volume 31, Issue 30, 2024

Published on: 07 August, 2023

Page: [4850 - 4866] Pages: 17

DOI: 10.2174/0929867331666230724124013

Price: $65

conference banner
Abstract

Introduction: Although cancer treatment with cisplatin is effective, dose-dependent adverse effects such as ototoxicity occurs often, which limits its clinical use. The use of resveratrol may alleviate the cisplatin-induced ototoxic effects. This study is aimed to review the potential otoprotective effects of resveratrol against cisplatin-induced ototoxicity.

Method: According to the PRISMA guideline, a systematic search was accomplished to identify all relevant scientific papers on “the role of resveratrol against cisplatin-induced ototoxicity” in different electronic databases up to May 2021. Fifty-five articles were screened based on a predefined set of inclusion and exclusion criteria. Eight eligible studies were finally included in the current systematic review. The in-vitro findings revealed that cisplatin administration significantly decreased the HEI-OC1 cell viability compared to the untreated cells; however, resveratrol co-treatment (in a dose-dependent manner) could protect HEI-OC1 cells against cisplatin-induced decrease in cell viability.

Results: Furthermore, the in-vivo finding showed a decreased value of DPOAE, and increased values of ABR threshold, ABR-I, ABR-IV, and ABR I-IV interval in cisplatin-treated animals; in contrast, resveratrol co-administration demonstrated an opposite pattern on these parameters.

Conclusion: Thus, it can be mentioned that resveratrol co-treatment alleviates cisplatin-induced ototoxicity. Mechanically, resveratrol exerts its otoprotective effects through various mechanisms such as anti-oxidant, anti-apoptosis, and anti-inflammatory.

Keywords: Neoplasms, cisplatin, ototoxicity, resveratrol, anti-oxidant, anti-inflammatory.

[1]
Mortezaee, K.; Narmani, A.; Salehi, M.; Bagheri, H.; Farhood, B.; Haghi-Aminjan, H.; Najafi, M. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci., 2021, 269, 119020.
[http://dx.doi.org/10.1016/j.lfs.2021.119020] [PMID: 33450258]
[2]
Sheikholeslami, S.; Khodaverdian, S.; Dorri-Giv, M.; Mohammad Hosseini, S.; Souri, S.; Abedi-Firouzjah, R.; Zamani, H.; Dastranj, L.; Farhood, B. The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: A systematic review. Int. Immunopharmacol., 2021, 96, 107741.
[http://dx.doi.org/10.1016/j.intimp.2021.107741] [PMID: 33989970]
[3]
Sheikholeslami, S.; Aryafar, T.; Abedi-Firouzjah, R.; Banaei, A.; Dorri-Giv, M.; Zamani, H.; Ataei, G.; Majdaeen, M.; Farhood, B. The role of melatonin on radiation-induced pneumonitis and lung fibrosis: A systematic review. Life Sci., 2021, 281, 119721.
[http://dx.doi.org/10.1016/j.lfs.2021.119721] [PMID: 34146555]
[4]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
Toossi, M.T.B.; Soleymanifard, S.; Farhood, B.; Mohebbi, S.; Davenport, D. Assessment of accuracy of out-of-field dose calculations by TiGRT treatment planning system in radiotherapy. J. Cancer Res. Ther., 2018, 14(3), 634-639.
[http://dx.doi.org/10.4103/0973-1482.176423] [PMID: 29893331]
[6]
Abdi, G.N.; Abedi, F.R.; Ebrahimnejad, G.K.; Khosravanipour, M.; Moradi, S.; Banaei, A. Estimation of radiation dose-reduction factor for cerium oxide nanoparticles in MRC-5 human lung fibroblastic cells and MCF-7 breast-cancer cells. Artif. Cells. Nanomed. Biotechnol., 2018, 46(S3), S1215-S1225.
[7]
Abdi Goushbolagh, N.; Keshavarz, M.; Zare, M.H.; Bahreyni-Toosi, M.H.; Kargar, M.; Farhood, B. Photosensitizer effects of MWCNTs-COOH particles on CT26 fibroblastic cells exposed to laser irradiation. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1326-1334.
[http://dx.doi.org/10.1080/21691401.2019.1593997] [PMID: 30964347]
[8]
Najafi, M.; Hooshangi Shayesteh, M.R.; Mortezaee, K.; Farhood, B.; Haghi-Aminjan, H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci., 2020, 241, 117173.
[http://dx.doi.org/10.1016/j.lfs.2019.117173] [PMID: 31843530]
[9]
Haghi-Aminjan, H.; Farhood, B.; Rahimifard, M.; Didari, T.; Baeeri, M.; Hassani, S.; Hosseini, R.; Abdollahi, M. The protective role of melatonin in chemotherapy-induced nephrotoxicity: A systematic review of non-clinical studies. Expert. Opin. Drug Metab. Toxicol., 2018, 14(9), 937-950.
[http://dx.doi.org/10.1080/17425255.2018.1513492] [PMID: 30118646]
[10]
Haghi-Aminjan, H.; Asghari, M.H.; Farhood, B.; Rahimifard, M.; Hashemi Goradel, N.; Abdollahi, M. The role of melatonin on chemotherapy-induced reproductive toxicity. J. Pharm. Pharmacol., 2018, 70(3), 291-306.
[http://dx.doi.org/10.1111/jphp.12855] [PMID: 29168173]
[11]
Hu, L.F.; Lan, H.R.; Li, X.M.; Jin, K.T. A systematic review of the potential chemoprotective effects of resveratrol on doxorubicin-induced cardiotoxicity: Focus on the antioxidant, antiapoptotic, and anti-inflammatory activities. Oxid. Med. Cell. Longev., 2021, 2021, 1-19.
[http://dx.doi.org/10.1155/2021/2951697] [PMID: 34471463]
[12]
Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4(4), 307-320.
[http://dx.doi.org/10.1038/nrd1691] [PMID: 15789122]
[13]
Cvitkovic, E. Cumulative toxicities from cisplatin therapy and current cytoprotective measures. Cancer Treat. Rev., 1998, 24(4), 265-281.
[http://dx.doi.org/10.1016/S0305-7372(98)90061-5] [PMID: 9805507]
[14]
Hanigan, M.H.; Devarajan, P. Cisplatin nephrotoxicity: Molecular mechanisms. Cancer Ther., 2003, 1, 47-61.
[PMID: 18185852]
[15]
Santos, N; Ferreira, RS; Santos, ACD Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food. Chem. Toxicol., 2020, 136, 111079.
[http://dx.doi.org/10.1016/j.fct.2019.111079]
[16]
van den Berg, J.H.; Beijnen, J.H.; Balm, A.J.M.; Schellens, J.H.M. Future opportunities in preventing cisplatin induced ototoxicity. Cancer Treat. Rev., 2006, 32(5), 390-397.
[http://dx.doi.org/10.1016/j.ctrv.2006.04.011] [PMID: 16781082]
[17]
Reddel, R.R.; Kefford, R.F.; Grant, J.M.; Coates, A.S.; Fox, R.M.; Tattersall, M.H. Ototoxicity in patients receiving cisplatin: Importance of dose and method of drug administration. Cancer Treat. Rep., 1982, 66(1), 19-23.
[PMID: 7198012]
[18]
Kaltenbach, J.A.; Rachel, J.D.; Mathog, T.A.; Zhang, J.; Falzarano, P.R.; Lewandowski, M. Cisplatin-induced hyperactivity in the dorsal cochlear nucleus and its relation to outer hair cell loss: Relevance to tinnitus. J. Neurophysiol., 2002, 88(2), 699-714.
[http://dx.doi.org/10.1152/jn.2002.88.2.699] [PMID: 12163523]
[19]
Waissbluth, S.; Peleva, E.; Daniel, S.J. Platinum-induced ototoxicity: A review of prevailing ototoxicity criteria. Eur. Arch. Otorhinolaryngol., 2017, 274(3), 1187-1196.
[20]
Schaefer, S.D.; Post, J.D.; Close, L.G.; Wright, C.G. Ototoxicity of low- and moderate-dose cisplatin. Cancer., 1985, 56(8), 1934-1939.
[http://dx.doi.org/10.1002/1097-0142(19851015)56:8<1934::AID-CNCR2820560807>3.0.CO;2-F] [PMID: 4040801]
[21]
Sheth, S.; Mukherjea, D.; Rybak, L.P.; Ramkumar, V. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front. Cell. Neurosci., 2017, 11, 338.
[http://dx.doi.org/10.3389/fncel.2017.00338] [PMID: 29163050]
[22]
Breglio, A.M.; Rusheen, A.E.; Shide, E.D.; Fernandez, K.A.; Spielbauer, K.K.; McLachlin, K.M.; Hall, M.D.; Amable, L.; Cunningham, L.L. Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat. Commun., 2017, 8(1), 1654.
[http://dx.doi.org/10.1038/s41467-017-01837-1] [PMID: 29162831]
[23]
Gentilin, E.; Simoni, E.; Candito, M.; Cazzador, D.; Astolfi, L. Cisplatin-induced ototoxicity: Updates on molecular targets. Trends. Mol. Med., 2019, 25(12), 1123-1132.
[http://dx.doi.org/10.1016/j.molmed.2019.08.002] [PMID: 31473143]
[24]
Arabzadeh, A.; Mortezazadeh, T.; Aryafar, T.; Gharepapagh, E.; Majdaeen, M.; Farhood, B. Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: A mechanistic review. Cancer. Cell. Int., 2021, 21(1), 391.
[http://dx.doi.org/10.1186/s12935-021-02099-0] [PMID: 34289841]
[25]
de la Lastra, C.A.; Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans., 2007, 35(5), 1156-1160.
[http://dx.doi.org/10.1042/BST0351156] [PMID: 17956300]
[26]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D.; Musa, A.E. Resveratrol as an adjuvant for normal tissues protection and tumor sensitization. Curr. Cancer Drug Targets, 2020, 20(2), 130-145.
[http://dx.doi.org/10.2174/1568009619666191019143539] [PMID: 31738153]
[27]
Kisková, T.; Kassayová, M. Resveratrol action on lipid metabolism in cancer. Int. J. Mol. Sci., 2019, 20(11), 2704.
[http://dx.doi.org/10.3390/ijms20112704] [PMID: 31159437]
[28]
Honari, M.; Shafabakhsh, R.; Reiter, R.J.; Mirzaei, H.; Asemi, Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: Focus on molecular mechanisms. Cancer. Cell. Int., 2019, 19(1), 180.
[http://dx.doi.org/10.1186/s12935-019-0906-y] [PMID: 31341423]
[29]
Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[30]
Xiao, Q.; Zhu, W.; Feng, W.; Lee, S.S.; Leung, A.W.; Shen, J.; Gao, L.; Xu, C. A review of resveratrol as a potent chemoprotective and synergistic agent in cancer chemotherapy. Front. Pharmacol., 2019, 9, 1534.
[http://dx.doi.org/10.3389/fphar.2018.01534] [PMID: 30687096]
[31]
Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer molecular mechanisms of resveratrol. Front. Nutr., 2016, 3, 8.
[http://dx.doi.org/10.3389/fnut.2016.00008] [PMID: 27148534]
[32]
van Ginkel, P.R.; Sareen, D.; Subramanian, L.; Walker, Q.; Darjatmoko, S.R.; Lindstrom, M.J.; Kulkarni, A.; Albert, D.M.; Polans, A.S. Resveratrol inhibits tumor growth of human neuroblastoma and mediates apoptosis by directly targeting mitochondria. Clin. Cancer Res., 2007, 13(17), 5162-5169.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0347] [PMID: 17785572]
[33]
Gorabi, A.M.; Aslani, S.; Imani, D.; Razi, B.; Sathyapalan, T.; Sahebkar, A. Effect of resveratrol on C-reactive protein: An updated meta-analysis of randomized controlled trials. Phytother. Res., 2021, 35(12), 6754-6767.
[http://dx.doi.org/10.1002/ptr.7262] [PMID: 34472150]
[34]
Omraninava, M.; Razi, B.; Aslani, S.; Imani, D.; Jamialahmadi, T.; Sahebkar, A. Effect of resveratrol on inflammatory cytokines: A meta-analysis of randomized controlled trials. Eur. J. Pharmacol., 2021, 908, 174380.
[http://dx.doi.org/10.1016/j.ejphar.2021.174380] [PMID: 34303665]
[35]
Gowd, V; Kang, Q; Wang, Q; Wang, Q; Chen, F; Cheng, KW Resveratrol: Evidence for its nephroprotective effect in diabetic nephropathy. Adv. Nutr., 2020, 11(6), 1555-1568.
[36]
Pervaiz, S.; Holme, A.L. Resveratrol: its biologic targets and functional activity. Antioxid. Redox Signal., 2009, 11(11), 2851-2897.
[http://dx.doi.org/10.1089/ars.2008.2412] [PMID: 19432534]
[37]
Xu N.; Wang L.; Fu S.; Jiang B.; Resveratrol is cytotoxic and acts synergistically with NF-κB inhibition in osteosarcoma MG-63 cells. Arch. Med. Sci.2020 Nov 13; 17(1):166-176.
[http://dx.doi.org/10.5114/aoms.2020.100777] [PMID: 33488869] [PMCID: PMC7811305]
[38]
Mirhadi, E.; Roufogalis, B.D.; Banach, M.; Barati, M.; Sahebkar, A. Resveratrol: Mechanistic and therapeutic perspectives in pulmonary arterial hypertension. Pharmacol. Res., 2021, 163, 105287.
[http://dx.doi.org/10.1016/j.phrs.2020.105287] [PMID: 33157235]
[39]
Parsamanesh, N.; Asghari, A.; Sardari, S.; Tasbandi, A.; Jamialahmadi, T.; Xu, S.; Sahebkar, A. Resveratrol and endothelial function: A literature review. Pharmacol. Res., 2021, 170, 105725.
[http://dx.doi.org/10.1016/j.phrs.2021.105725] [PMID: 34119624]
[40]
Sahebkar, A. Effects of resveratrol supplementation on plasma lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev., 2013, 71(12), 822-835.
[http://dx.doi.org/10.1111/nure.12081] [PMID: 24111838]
[41]
Sahebkar, A.; Serban, C.; Ursoniu, S.; Wong, N.D.; Muntner, P.; Graham, I.M.; Mikhailidis, D.P.; Rizzo, M.; Rysz, J.; Sperling, L.S.; Lip, G.Y.H.; Banach, M. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors - Results from a systematic review and meta-analysis of randomized controlled trials. Int. J. Cardiol., 2015, 189(1), 47-55.
[http://dx.doi.org/10.1016/j.ijcard.2015.04.008] [PMID: 25885871]
[42]
Moher, D; Liberati, A; Tetzlaff, J; Altman, DG Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ., 2009, 339, b2535.
[43]
Olgun, Y.; Altun, Z.; Aktas, S.; Ercetin, P.; Kirkim, G.; Kiray, M. Molecular mechanisms of protective effect of resveratrol against cisplatinium induced ototoxicity. J. Int. Adv. Otol., 2013, 9(2), 145.
[44]
Lee, S.H.; Kim, H.S.; An, Y.S.; Chang, J.; Choi, J.; Im, G.J. Protective effect of resveratrol against cisplatin-induced ototoxicity in HEI-OC1 auditory cells. Int. J. Pediatr. Otorhinolaryngol., 2015, 79(1), 58-62.
[http://dx.doi.org/10.1016/j.ijporl.2014.11.008] [PMID: 25434479]
[45]
Erdem, T.; Bayindir, T.; Filiz, A.; Iraz, M.; Selimoglu, E. The effect of resveratrol on the prevention of cisplatin ototoxicity. Eur. Arch. Otorhinolaryngol., 2012, 269(10), 2185-2188.
[46]
Yumusakhuylu, A.C.; Yazici, M.; Sari, M.; Binnetoglu, A.; Kosemihal, E.; Akdas, F.; Sirvanci, S.; Yuksel, M.; Uneri, C.; Tutkun, A. Protective role of resveratrol against cisplatin induced ototoxicity in guinea pigs. Int. J. Pediatr. Otorhinolaryngol., 2012, 76(3), 404-408.
[http://dx.doi.org/10.1016/j.ijporl.2011.12.021] [PMID: 22261612]
[47]
Simşek, G.; Tokgoz, S.A.; Vuralkan, E.; Caliskan, M.; Besalti, O.; Akin, I. Protective effects of resveratrol on cisplatin-dependent inner-ear damage in rats. Eur. Arch. Otorhinolaryngol., 2013, 270(6), 1789-1793.
[48]
Olgun, Y.; Kırkım, G.; Kolatan, E.; Kıray, M.; Bagrıyanık, A.; Olgun, A.; Kızmazoglu, D.C.; Ellıdokuz, H.; Serbetcıoglu, B.; Altun, Z.; Aktas, S.; Yılmaz, O.; Günerı, E.A. Friend or foe? Effect of oral resveratrol on cisplatin ototoxicity. Laryngoscope, 2014, 124(3), 760-766.
[http://dx.doi.org/10.1002/lary.24323] [PMID: 23900991]
[49]
Simsek, G.; Taş, B.M.; Muluk, N.B.; Azman, M.; Kılıç, R. Comparison of the protective efficacy between intratympanic dexamethasone and resveratrol treatments against cisplatin-induced ototoxicity: an experimental study. Eur. Arch. Otorhinolaryngol., 2019, 276(12), 3287-3293.
[50]
Lee, C.H.; Kim, K.W.; Lee, S.M.; Kim, S.Y. Dose-dependent effects of resveratrol on cisplatin-induced hearing loss. Int. J. Mol. Sci., 2020, 22(1), 113.
[http://dx.doi.org/10.3390/ijms22010113] [PMID: 33374326]
[51]
Florea, A.M.; Büsselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers, 2011, 3(1), 1351-1371.
[http://dx.doi.org/10.3390/cancers3011351] [PMID: 24212665]
[52]
Rezvanfar, M.A.; Rezvanfar, M.A.; Shahverdi, A.R.; Ahmadi, A.; Baeeri, M.; Mohammadirad, A.; Abdollahi, M. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles. Toxicol. Appl. Pharmacol., 2013, 266(3), 356-365.
[http://dx.doi.org/10.1016/j.taap.2012.11.025] [PMID: 23260366]
[53]
Galluzzi, L.; Senovilla, L.; Vitale, I.; Michels, J.; Martins, I.; Kepp, O.; Castedo, M.; Kroemer, G. Molecular mechanisms of cisplatin resistance. Oncogene, 2012, 31(15), 1869-1883.
[http://dx.doi.org/10.1038/onc.2011.384] [PMID: 21892204]
[54]
McKeage, M.J. Comparative adverse effect profiles of platinum drugs. Drug Saf., 1995, 13(4), 228-244.
[http://dx.doi.org/10.2165/00002018-199513040-00003] [PMID: 8573296]
[55]
Xiong, H.; Chen, S.; Lai, L.; Yang, H.; Xu, Y.; Pang, J.; Su, Z.; Lin, H.; Zheng, Y. Modulation of miR-34a/SIRT1 signaling protects cochlear hair cells against oxidative stress and delays age-related hearing loss through coordinated regulation of mitophagy and mitochondrial biogenesis. Neurobiol. Aging, 2019, 79, 30-42.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.03.013] [PMID: 31026620]
[56]
Xiong, H.; Pang, J.; Yang, H.; Dai, M.; Liu, Y.; Ou, Y.; Huang, Q.; Chen, S.; Zhang, Z.; Xu, Y.; Lai, L.; Zheng, Y. Activation of miR-34a/SIRT1/p53 signaling contributes to cochlear hair cell apoptosis: implications for age-related hearing loss. Neurobiol. Aging, 2015, 36(4), 1692-1701.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.12.034] [PMID: 25638533]
[57]
Xiong, H.; Ou, Y.; Xu, Y.; Huang, Q.; Pang, J.; Lai, L.; Zheng, Y. Resveratrol promotes recovery of hearing following intense noise exposure by enhancing cochlear SIRT1 activity. Audiol. Neurotol., 2017, 22(4-5), 303-310.
[http://dx.doi.org/10.1159/000485312] [PMID: 29393101]
[58]
Seidman, M.D.; Tang, W.; Bai, V.U.; Ahmad, N.; Jiang, H.; Media, J.; Patel, N.; Rubin, C.J.; Standring, R.T. Resveratrol decreases noise-induced cyclooxygenase-2 expression in the rat cochlea. Otolaryngol. Head Neck Surg., 2013, 148(5), 827-833.
[http://dx.doi.org/10.1177/0194599813475777] [PMID: 23380763]
[59]
Avci, D.; Erkan, M.; Sönmez, M.F.; Kökoğlu, K.; Güneş, M.S.; Gündoğdu, R.; Güleç, S.; Karabulut, D. A prospective experimental study on the protective effect of resveratrol against amikacin-induced ototoxicity in rats. J. Int. Adv. Otol., 2016, 12(3), 290-297.
[http://dx.doi.org/10.5152/iao.2016.2617] [PMID: 27810846]
[60]
García-Alcántara, F.; Murillo-Cuesta, S.; Pulido, S.; Bermúdez-Muñoz, J.M.; Martínez-Vega, R.; Milo, M.; Varela-Nieto, I.; Rivera, T. The expression of oxidative stress response genes is modulated by a combination of resveratrol and N-acetylcysteine to ameliorate ototoxicity in the rat cochlea. Hear. Res., 2018, 358, 10-21.
[http://dx.doi.org/10.1016/j.heares.2017.12.004] [PMID: 29304389]
[61]
Dasari, S.; Bernard, T.P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[62]
Astolfi, L.; Ghiselli, S.; Guaran, V.; Chicca, M.; Simoni, E.; Olivetto, E.; Lelli, G.; Martini, A. Correlation of adverse effects of cisplatin administration in patients affected by solid tumours: A retrospective evaluation. Oncol. Rep., 2013, 29(4), 1285-1292.
[http://dx.doi.org/10.3892/or.2013.2279] [PMID: 23404427]
[63]
Clerici, W.J.; DiMartino, D.L.; Prasad, M.R. Direct effects of reactive oxygen species on cochlear outer hair cell shape in vitro. Hear. Res., 1995, 84(1-2), 30-40.
[http://dx.doi.org/10.1016/0378-5955(95)00010-2] [PMID: 7642453]
[64]
Clerici, W.J.; Hensley, K.; DiMartino, D.L.; Butterfield, D.A. Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explants. Hear. Res., 1996, 98(1-2), 116-124.
[http://dx.doi.org/10.1016/0378-5955(96)00075-5] [PMID: 8880186]
[65]
Kopke, R.D.; Liu, W.; Gabaizadeh, R.; Jacono, A.; Feghali, J.; Spray, D.; Garcia, P.; Steinman, H.; Malgrange, B.; Ruben, R.J.; Rybak, L.; Van de Water, T.R. Use of organotypic cultures of Corti’s organ to study the protective effects of antioxidant molecules on cisplatin-induced damage of auditory hair cells. Am. J. Otol., 1997, 18(5), 559-571.
[PMID: 9303151]
[66]
Borse, V.; Al Aameri, R.F.H.; Sheehan, K.; Sheth, S.; Kaur, T.; Mukherjea, D.; Tupal, S.; Lowy, M.; Ghosh, S.; Dhukhwa, A.; Bhatta, P.; Rybak, L.P.; Ramkumar, V. Epigallocatechin-3-gallate, a prototypic chemopreventative agent for protection against cisplatin-based ototoxicity. Cell Death Dis., 2017, 8(7), e2921.
[http://dx.doi.org/10.1038/cddis.2017.314] [PMID: 28703809]
[67]
Mukherjea, D.; Jajoo, S.; Kaur, T.; Sheehan, K.E.; Ramkumar, V.; Rybak, L.P. Transtympanic administration of short interfering (si)RNA for the NOX3 isoform of NADPH oxidase protects against cisplatin-induced hearing loss in the rat. Antioxid. Redox Signal., 2010, 13(5), 589-598.
[http://dx.doi.org/10.1089/ars.2010.3110] [PMID: 20214492]
[68]
Kim, H.J.; Lee, J.H.; Kim, S.J.; Oh, G.S.; Moon, H.D.; Kwon, K.B.; Park, C.; Park, B.H.; Lee, H.K.; Chung, S.Y.; Park, R.; So, H.S. Roles of NADPH oxidases in cisplatin-induced reactive oxygen species generation and ototoxicity. J. Neurosci., 2010, 30(11), 3933-3946.
[http://dx.doi.org/10.1523/JNEUROSCI.6054-09.2010] [PMID: 20237264]
[69]
Mukherjea, D.; Jajoo, S.; Whitworth, C.; Bunch, J.R.; Turner, J.G.; Rybak, L.P.; Ramkumar, V. Short interfering RNA against transient receptor potential vanilloid 1 attenuates cisplatin-induced hearing loss in the rat. J. Neurosci., 2008, 28(49), 13056-13065.
[http://dx.doi.org/10.1523/JNEUROSCI.1307-08.2008] [PMID: 19052196]
[70]
Rybak, L.P.; Husain, K.; Morris, C.; Whitworth, C.; Somani, S. Effect of protective agents against cisplatin ototoxicity. Am. J. Otol., 2000, 21(4), 513-520.
[PMID: 10912697]
[71]
Ma, W.; Hu, J.; Cheng, Y.; Wang, J.; Zhang, X.; Xu, M. Ginkgolide B protects against cisplatin-induced ototoxicity: Enhancement of Akt–Nrf2–HO-1 signaling and reduction of NADPH oxidase. Cancer. Chemother. Pharmacol., 2015, 75(5), 949-959.
[http://dx.doi.org/10.1007/s00280-015-2716-9] [PMID: 25749575]
[72]
Lee, C.H.; Park, S.; Lee, D.; Lee, S.M.; Kim, M.Y.; Choi, B.Y.; Kim, S.Y. Tauroursodeoxycholic acid attenuates cisplatin-induced hearing loss in rats. Neurosci. Lett., 2020, 722, 134838.
[http://dx.doi.org/10.1016/j.neulet.2020.134838] [PMID: 32061715]
[73]
Safe, T.M.; Luebke, A.E. Prenatal low dosage dioxin (TCDD) exposure impairs cochlear function resulting in auditory neuropathy. Hear. Res., 2016, 331, 7-12.
[http://dx.doi.org/10.1016/j.heares.2015.09.015] [PMID: 26464051]
[74]
Fuyuno, Y.; Uchi, H.; Yasumatsu, M.; Morino-Koga, S.; Tanaka, Y.; Mitoma, C.; Furue, M. Perillaldehyde inhibits AHR signaling and activates NRF2 antioxidant pathway in human keratinocytes. Oxid. Med. Cell. Longev., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/9524657] [PMID: 29643980]
[75]
Costa, C.; Catania, S.; De Pasquale, R.; Stancanelli, R.; Scribano, G.M.; Melchini, A. Exposure of human skin to benzo[a]pyrene: Role of CYP1A1 and aryl hydrocarbon receptor in oxidative stress generation. Toxicology, 2010, 271(3), 83-86.
[http://dx.doi.org/10.1016/j.tox.2010.02.014] [PMID: 20307623]
[76]
Zhou, B.; Wang, X.; Li, F.; Wang, Y.; Yang, L.; Zhen, X.; Tan, W. Mitochondrial activity and oxidative stress functions are influenced by the activation of AhR-induced CYP1A1 overexpression in cardiomyocytes. Mol. Med. Rep., 2017, 16(1), 174-180.
[http://dx.doi.org/10.3892/mmr.2017.6580] [PMID: 28498411]
[77]
Moysa, A.; Steczkiewicz, K.; Niedzialek, D.; Hammerschmid, D.; Zhukova, L.; Sobott, F. A model of full-length RAGE in complex with S100B. Structure., 2021, 29(9), 989-1002.e6.
[78]
Derk, J.; MacLean, M.; Juranek, J.; Schmidt, A.M. The receptor for advanced glycation endproducts (RAGE) and mediation of inflammatory neurodegeneration. J. Alzheimers Dis. Parkinsonism., 2018, 8(1), 421.
[http://dx.doi.org/10.4172/2161-0460.1000421] [PMID: 30560011]
[79]
De Angelis, A.; Piegari, E.; Cappetta, D.; Russo, R.; Esposito, G.; Ciuffreda, L.P.; Ferraiolo, F.A.V.; Frati, C.; Fagnoni, F.; Berrino, L.; Quaini, F.; Rossi, F.; Urbanek, K. SIRT1 activation rescues doxorubicin-induced loss of functional competence of human cardiac progenitor cells. Int. J. Cardiol., 2015, 189, 30-44.
[http://dx.doi.org/10.1016/j.ijcard.2015.03.438] [PMID: 25889431]
[80]
Liu, M.H.; Shan, J.; Li, J.; Zhang, Y.; Lin, X.L. Resveratrol inhibits doxorubicin-induced cardiotoxicity via sirtuin 1 activation in H9c2 cardiomyocytes. Exp. Ther. Med., 2016, 12(2), 1113-1118.
[http://dx.doi.org/10.3892/etm.2016.3437] [PMID: 27446329]
[81]
Cappetta, D.; Esposito, G.; Piegari, E.; Russo, R.; Ciuffreda, L.P.; Rivellino, A.; Berrino, L.; Rossi, F.; De Angelis, A.; Urbanek, K. SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. Int. J. Cardiol., 2016, 205, 99-110.
[http://dx.doi.org/10.1016/j.ijcard.2015.12.008] [PMID: 26730840]
[82]
Tatlidede, E.; Şehirli, Ö.; Velioğlu-Öğünç, A.; Çetinel, Ş.; Yeğen, B.Ç.; Yarat, A.; Süleymanoğlu, S.; Şener, G. Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage. Free Radic. Res., 2009, 43(3), 195-205.
[http://dx.doi.org/10.1080/10715760802673008] [PMID: 19169920]
[83]
Arafa, M.H.; Mohammad, N.S.; Atteia, H.H.; Abd-Elaziz, H.R. Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. J. Physiol. Biochem., 2014, 70(3), 701-711.
[http://dx.doi.org/10.1007/s13105-014-0339-y] [PMID: 24939721]
[84]
Alanazi, A.M.; Fadda, L.; Alhusaini, A.; Ahmad, R.; Hasan, I.H.; Mahmoud, A.M. Liposomal resveratrol and/or carvedilol attenuate doxorubicin-induced cardiotoxicity by modulating inflammation, oxidative stress and S100A1 in rats. Antioxidants., 2020, 9(2), 159.
[85]
Al-Harthi, S.; Alarabi, O.M.; Ramadan, W.S.; Alaama, M.N.; Al-Kreathy, H.M.; Damanhouri, Z.A.; Khan, L.M.; Osman, A.M.M. Amelioration of doxorubicin-induced cardiotoxicity by resveratrol. Mol. Med. Rep., 2014, 10(3), 1455-1460.
[http://dx.doi.org/10.3892/mmr.2014.2384] [PMID: 25059399]
[86]
Wang, H.L.; Gao, J.P.; Han, Y.L.; Xu, X.; Wu, R.; Gao, Y.; Cui, X.H. Comparative studies of polydatin and resveratrol on mutual transformation and antioxidative effect in vivo. Phytomedicine., 2015, 22(5), 553-559.
[http://dx.doi.org/10.1016/j.phymed.2015.03.014] [PMID: 25981921]
[87]
Mukherjee, K.; Venkatesh, M.; Venkatesh, P.; Saha, B.P.; Mukherjee, P.K. Effect of soy phosphatidyl choline on the bioavailability and nutritional health benefits of resveratrol. Food Res. Int., 2011, 44(4), 1088-1093.
[http://dx.doi.org/10.1016/j.foodres.2011.03.034]
[88]
Rubiolo, J.A.; Mithieux, G.; Vega, F.V. Resveratrol protects primary rat hepatocytes against oxidative stress damage. Eur. J. Pharmacol., 2008, 591(1-3), 66-72.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.067] [PMID: 18616940]
[89]
Zheng, Y.; Liu, Y.; Ge, J.; Wang, X.; Liu, L.; Bu, Z.; Liu, P. Resveratrol protects human lens epithelial cells against H2O2-induced oxidative stress by increasing catalase, SOD-1, and HO-1 expression. Mol. Vis., 2010, 16, 1467-1474.
[PMID: 20806083]
[90]
Gu, J.; Song, Z.; Gui, D.; Hu, W.; Chen, Y.; Zhang, D. Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in lymphoma nude mice by heme oxygenase-1 induction. Cardiovasc. Toxicol., 2012, 12(4), 341-349.
[http://dx.doi.org/10.1007/s12012-012-9178-7] [PMID: 22763982]
[91]
Tian, W.; Yang, L.; Liu, Y.; He, J.; Yang, L.; Zhang, Q.; Liu, F.; Li, J.; Liu, J.; Sumi, S.; Shen, Y.; Qi, Z. Resveratrol attenuates doxorubicin-induced cardiotoxicity in rats by up-regulation of vascular endothelial growth factor B. J. Nutr. Biochem., 2020, 79, 108132.
[http://dx.doi.org/10.1016/j.jnutbio.2019.01.018] [PMID: 30857673]
[92]
Kim, E.N.; Lim, J.H.; Kim, M.Y.; Ban, T.H.; Jang, I.A.; Yoon, H.E.; Park, C.W.; Chang, Y.S.; Choi, B.S. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging., 2018, 10(1), 83-99.
[http://dx.doi.org/10.18632/aging.101361] [PMID: 29326403]
[93]
He, J.; Yu, J.J.; Xu, Q.; Wang, L.; Zheng, J.Z.; Liu, L.Z.; Jiang, B.H. Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy. Autophagy., 2015, 11(2), 373-384.
[http://dx.doi.org/10.1080/15548627.2015.1009781] [PMID: 25650716]
[94]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Potes, Y.; Shabeeb, D.; Musa, A.E. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life. Sci., 2019, 228, 228-241.
[http://dx.doi.org/10.1016/j.lfs.2019.05.009] [PMID: 31077716]
[95]
Sogwagwa, N.; Davison, G.; Khan, S.; Solomon, W. P9. Correlation of radiation induced apoptosis with Bax and Bcl-2 protein expression. Physica Medica. Eur. J. Med. Phys., 2016, 32, 163.
[96]
Huerta, S.; Gao, X.; Dineen, S.; Kapur, P.; Saha, D.; Meyer, J. Role of p53, Bax, p21, and DNA-PKcs in radiation sensitivity of HCT-116 cells and xenografts. Surgery., 2013, 154(2), 143-151.
[http://dx.doi.org/10.1016/j.surg.2013.03.012] [PMID: 23889944]
[97]
Werner, L.R.; Huang, S.; Francis, D.M.; Armstrong, E.A.; Ma, F.; Li, C.; Iyer, G.; Canon, J.; Harari, P.M. Small molecule inhibition of mdm2–p53 interaction augments radiation response in human tumors. Mol. Cancer Ther., 2015, 14(9), 1994-2003.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-1056-T] [PMID: 26162687]
[98]
Csuka, O.; RemenÁr, É.; Koronczay, K.; Doleschall, Z.; NÉmeth, G. Predictive value of p53, Bcl2 and bax in the radiotherapy of head and neck cancer. Pathol. Oncol. Res., 1997, 3(3), 204-210.
[http://dx.doi.org/10.1007/BF02899922] [PMID: 18470731]
[99]
Maebayashi, K.; Mitsuhashi, N.; Takahashi, T.; Sakurai, H.; Niibe, H. P53 mutation decreased radiosensitivity in rat yolk sac tumor cell lines. Int. J. Radiat. Oncol. Biol. Phys., 1999, 44(3), 677-682.
[http://dx.doi.org/10.1016/S0360-3016(99)00025-5] [PMID: 10348299]
[100]
Sugihara, T.; Murano, H.; Nakamura, M.; Ichinohe, K.; Tanaka, K. p53-Mediated gene activation in mice at high doses of chronic low-dose-rate γ radiation. Radiat. Res., 2010, 175(3), 328-335.
[http://dx.doi.org/10.1667/RR2446.1] [PMID: 21388276]
[101]
Punnoose, E.A.; Leverson, J.D.; Peale, F.; Boghaert, E.R.; Belmont, L.D.; Tan, N.; Young, A.; Mitten, M.; Ingalla, E.; Darbonne, W.C.; Oleksijew, A.; Tapang, P.; Yue, P.; Oeh, J.; Lee, L.; Maiga, S.; Fairbrother, W.J.; Amiot, M.; Souers, A.J.; Sampath, D. Expression profile of BCL-2, BCL-XL, and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models. Mol. Cancer. Ther., 2016, 15(5), 1132-1144.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0730] [PMID: 26939706]
[102]
Haimovitz-Friedman, A.; Kolesnick, R.N.; Fuks, Z. Ceramide signaling in apoptosis. Br. Med. Bull., 1997, 53(3), 539-553.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a011629] [PMID: 9374036]
[103]
Kim, H.; Yoo, W.S.; Jung, J.H.; Jeong, B.K.; Woo, S.H.; Kim, J.H.; Kim, S.J. Alpha-lipoic acid ameliorates radiation-induced lacrimal gland injury through NFAT5-dependent signaling. Int. J. Mol. Sci., 2019, 20(22), 5691.
[http://dx.doi.org/10.3390/ijms20225691] [PMID: 31766286]
[104]
Oben, K.Z.; Gachuki, B.W.; Alhakeem, S.S.; McKenna, M.K.; Liang, Y.; St Clair, D.K.; Rangnekar, V.M.; Bondada, S. Radiation induced apoptosis of murine bone marrow cells is independent of early growth response 1 (EGR1). PLoS. One., 2017, 12(1), e0169767.
[http://dx.doi.org/10.1371/journal.pone.0169767] [PMID: 28081176]
[105]
Komarova, E.A.; Kondratov, R.V.; Wang, K.; Christov, K.; Golovkina, T.V.; Goldblum, J.R.; Gudkov, A.V. Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene, 2004, 23(19), 3265-3271.
[http://dx.doi.org/10.1038/sj.onc.1207494] [PMID: 15064735]
[106]
Freitas, M.R.D.; Figueiredo, A.A.; Brito, G.A.C.; Leitao, R.F.C.; Carvalho Junior, J.V.; Gomes Junior, R.M.; Ribeiro, R.A. The role of apoptosis in cisplatin-induced ototoxicity in rats. Rev. Bras. Otorrinolaringol., 2009, 75(5), 745-752.
[http://dx.doi.org/10.1590/S1808-86942009000500022] [PMID: 19893946]
[107]
Xie, W.; Guo, Z.; Gao, F.; Gao, Q.; Wang, D.; Liaw, B.; Cai, Q.; Sun, X.; Wang, X.; Zhao, L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics, 2018, 8(12), 3284-3307.
[http://dx.doi.org/10.7150/thno.25220] [PMID: 29930730]
[108]
Rybak, L.P.; Whitworth, C.A.; Mukherjea, D.; Ramkumar, V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear. Res., 2007, 226(1-2), 157-167.
[http://dx.doi.org/10.1016/j.heares.2006.09.015] [PMID: 17113254]
[109]
Casares, C.; Ramírez-Camacho, R.; Trinidad, A.; Roldán, A.; Jorge, E.; García-Berrocal, J.R. Reactive oxygen species in apoptosis induced by cisplatin: Review of physiopathological mechanisms in animal models. Eur. Arch. Otorhinolaryngol., 2012, 269(12), 2455-2459.
[110]
Callejo, A.; Sedó-Cabezón, L.; Juan, I.; Llorens, J. Cisplatin-induced ototoxicity: Effects, mechanisms and protection strategies. Toxics., 2015, 3(3), 268-293.
[http://dx.doi.org/10.3390/toxics3030268] [PMID: 29051464]
[111]
Lin, H.Y.; Tang, H.Y.; Keating, T.; Wu, Y.H.; Shih, A.; Hammond, D.; Sun, M.; Hercbergs, A.; Davis, F.B.; Davis, P.J. Resveratrol is pro-apoptotic and thyroid hormone is anti-apoptotic in glioma cells: Both actions are integrin and ERK mediated. Carcinogenesis., 2007, 29(1), 62-69.
[http://dx.doi.org/10.1093/carcin/bgm239] [PMID: 17984113]
[112]
Lin, H.Y.; Shih, A.I.; Davis, F.B.; Tang, H.Y.; Martino, L.J.; Bennett, J.A.; Davis, P.J. Resveratrol induced serine phosphorylation of p53 causes apoptosis in a mutant p53 prostate cancer cell line. J. Urol., 2002, 168(2), 748-755.
[http://dx.doi.org/10.1016/S0022-5347(05)64739-8] [PMID: 12131363]
[113]
Wu, X.; Xu, Y.; Zhu, B.; Liu, Q.; Yao, Q.; Zhao, G. Resveratrol induces apoptosis in SGC-7901 gastric cancer cells. Oncol. Lett., 2018, 16(3), 2949-2956.
[http://dx.doi.org/10.3892/ol.2018.9045] [PMID: 30127883]
[114]
Zhang, S.; Cao, H.J.; Davis, F.B.; Tang, H-Y.; Davis, P.J.; Lin, H-Y. Oestrogen inhibits resveratrol-induced post- translational modification of p53 and apoptosis in breast cancer cells. Br. J. Cancer, 2004, 91(1), 178-185.
[http://dx.doi.org/10.1038/sj.bjc.6601902] [PMID: 15188005]
[115]
Lin, H.Y.; Sun, M.; Tang, H.Y.; Simone, T.M.; Wu, Y.H.; Grandis, J.R.; Cao, H.J.; Davis, P.J.; Davis, F.B. Resveratrol causes COX-2- and p53-dependent apoptosis in head and neck squamous cell cancer cells. J. Cell. Biochem., 2008, 104(6), 2131-2142.
[http://dx.doi.org/10.1002/jcb.21772] [PMID: 18446786]
[116]
Liu, Y.; Tong, L.; Luo, Y.; Li, X.; Chen, G.; Wang, Y. Resveratrol inhibits the proliferation and induces the apoptosis in ovarian cancer cells via inhibiting glycolysis and targeting AMPK/mTOR signaling pathway. J. Cell. Biochem., 2018, 119(7), 6162-6172.
[http://dx.doi.org/10.1002/jcb.26822] [PMID: 29663499]
[117]
Liu, M.H.; Lin, X.L.; Guo, D.M.; Zhang, Y.; Yuan, C.; Tan, T.P.; Chen, Y.D.; Wu, S.J.; Ye, Z.F.; He, J. Resveratrol protects cardiomyocytes from doxorubicin-induced apoptosis through the AMPK/P53 pathway. Mol. Med. Rep., 2016, 13(2), 1281-1286.
[http://dx.doi.org/10.3892/mmr.2015.4665] [PMID: 26675978]
[118]
Zhang, C.; Feng, Y.; Qu, S.; Wei, X.; Zhu, H.; Luo, Q.; Liu, M.; Chen, G.; Xiao, X. Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc. Res., 2011, 90(3), 538-545.
[http://dx.doi.org/10.1093/cvr/cvr022] [PMID: 21278141]
[119]
Zhou, X.M.; Zhou, M.L.; Zhang, X.S.; Zhuang, Z.; Li, T.; Shi, J.X.; Zhang, X. Resveratrol prevents neuronal apoptosis in an early brain injury model. J. Surg. Res., 2014, 189(1), 159-165.
[http://dx.doi.org/10.1016/j.jss.2014.01.062] [PMID: 24602480]
[120]
Zhang, L.; Guo, X.; Xie, W.; Li, Y.; Ma, M.; Yuan, T.; Luo, B. Resveratrol exerts an anti-apoptotic effect on human bronchial epithelial cells undergoing cigarette smoke exposure. Mol. Med. Rep., 2015, 11(3), 1752-1758.
[http://dx.doi.org/10.3892/mmr.2014.2925] [PMID: 25385506]
[121]
Shoukry, H.S.; Ammar, H.I.; Rashed, L.A.; Zikri, M.B.; Shamaa, A.A.; Abou elfadl, S.G.; Rub, E.A.A.; Saravanan, S.; Dhingra, S. Prophylactic supplementation of resveratrol is more effective than its therapeutic use against doxorubicin induced cardiotoxicity. PLoS One, 2017, 12(7), e0181535.
[http://dx.doi.org/10.1371/journal.pone.0181535] [PMID: 28727797]
[122]
Muderris, T.; Sağlam, A.; Unsal, D.; Mülazimoğlu, S.; Sevil, E.; Kayhan, H. Efficiency of resveratrol in the prevention and treatment of age-related hearing loss. Exp. Ther. Med., 2021, 23(1), 40.
[http://dx.doi.org/10.3892/etm.2021.10962] [PMID: 34849155]
[123]
Sin, T.K.; Tam, B.T.; Yung, B.Y.; Yip, S.P.; Chan, L.W.; Wong, C.S.; Ying, M.; Rudd, J.A.; Siu, P.M. Resveratrol protects against doxorubicin-induced cardiotoxicity in aged hearts through the SIRT1-USP7 axis. J. Physiol., 2015, 593(8), 1887-1899.
[http://dx.doi.org/10.1113/jphysiol.2014.270101] [PMID: 25665036]
[124]
Yang, W.; Park, I.J.; Yun, H.; Im, D.U.; Ock, S.; Kim, J.; Seo, S.M.; Shin, H.Y.; Viollet, B.; Kang, I.; Choe, W.; Kim, S.S.; Ha, J. AMP-activated protein kinase α2 and E2F1 transcription factor mediate doxorubicin-induced cytotoxicity by forming a positive signal loop in mouse embryonic fibroblasts and non-carcinoma cells. J. Biol. Chem., 2014, 289(8), 4839-4852.
[http://dx.doi.org/10.1074/jbc.M113.496315] [PMID: 24398673]
[125]
Gu, J.; Hu, W.; Song, Z.; Chen, Y.; Zhang, D.; Wang, C. Resveratrol-induced autophagy promotes survival and attenuates doxorubicin-induced cardiotoxicity. Int. Immunopharmacol., 2016, 32, 1-7.
[http://dx.doi.org/10.1016/j.intimp.2016.01.002] [PMID: 26774212]
[126]
Shati, A.A. Resveratrol improves sperm parameter and testicular apoptosis in cisplatin-treated rats: Effects on ERK1/2, JNK, and Akt pathways. Syst. Biol. Reprod. Med., 2019, 65(3), 236-249.
[http://dx.doi.org/10.1080/19396368.2018.1541114] [PMID: 30507263]
[127]
Vyas, D.; Laput, G.; Vyas, A. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. OncoTargets Ther., 2014, 7, 1015-1023.
[http://dx.doi.org/10.2147/OTT.S60114] [PMID: 24959088]
[128]
Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell. Physiol., 2019, 234(5), 5728-5740.
[http://dx.doi.org/10.1002/jcp.27442] [PMID: 30317564]
[129]
So, H.; Kim, H.; Lee, J.H.; Park, C.; Kim, Y.; Kim, E.; Kim, J.K.; Yun, K.J.; Lee, K.M.; Lee, H.Y.; Moon, S.K.; Lim, D.J.; Park, R. Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J. Assoc. Res. Otolaryngol., 2007, 8(3), 338-355.
[http://dx.doi.org/10.1007/s10162-007-0084-9] [PMID: 17516123]
[130]
Kim, S.J.; Kwak, H.J.; Kim, D.S.; Choi, H.M.; Sim, J.E.; Kim, S.H.; Um, J.Y.; Hong, S.H. Protective mechanism of Korean Red Ginseng in cisplatin-induced ototoxicity through attenuation of nuclear factor-κB and caspase-1 activation. Mol. Med. Rep., 2015, 12(1), 315-322.
[http://dx.doi.org/10.3892/mmr.2015.3396] [PMID: 25738645]
[131]
Levano, S.; Bodmer, D. Loss of STAT1 protects hair cells from ototoxicity through modulation of STAT3, c-Jun, Akt, and autophagy factors. Cell Death Dis., 2015, 6(12), e2019.
[http://dx.doi.org/10.1038/cddis.2015.362] [PMID: 26673664]
[132]
Sethi, G.; Tergaonkar, V. Potential pharmacological control of the NF-κB pathway. Trends Pharmacol. Sci., 2009, 30(6), 313-321.
[http://dx.doi.org/10.1016/j.tips.2009.03.004] [PMID: 19446347]
[133]
Nafees, S.; Rashid, S.; Ali, N.; Hasan, S.K.; Sultana, S. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: Role of NFκB/MAPK pathway. Chem. Biol. Interact., 2015, 231, 98-107.
[http://dx.doi.org/10.1016/j.cbi.2015.02.021] [PMID: 25753322]
[134]
Kandemir, F.M.; Kucukler, S.; Caglayan, C.; Gur, C.; Batil, A.A.; Gülçin, İ. Therapeutic effects of silymarin and naringin on methotrexate-induced nephrotoxicity in rats: Biochemical evaluation of anti-inflammatory, antiapoptotic, and antiautophagic properties. J. Food Biochem., 2017, 41(5), e12398.
[http://dx.doi.org/10.1111/jfbc.12398]
[135]
Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(11), 2563-2582.
[http://dx.doi.org/10.1016/j.bbamcr.2014.05.014] [PMID: 24892271]
[136]
Kaur, T.; Mukherjea, D.; Sheehan, K.; Jajoo, S.; Rybak, L.P.; Ramkumar, V. Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation. Cell Death Dis., 2011, 2(7), e180.
[http://dx.doi.org/10.1038/cddis.2011.63] [PMID: 21776018]
[137]
Previati, M.; Lanzoni, I.; Astolfi, L.; Fagioli, F.; Vecchiati, G.; Pagnoni, A.; Martini, A.; Capitani, S. Cisplatin cytotoxicity in organ of corti-derived immortalized cells. J. Cell. Biochem., 2007, 101(5), 1185-1197.
[http://dx.doi.org/10.1002/jcb.21239] [PMID: 17243113]
[138]
Donnelly, L.E.; Newton, R.; Kennedy, G.E.; Fenwick, P.S.; Leung, R.H.F.; Ito, K.; Russell, R.E.K.; Barnes, P.J. Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am. J. Physiol. Lung Cell. Mol. Physiol., 2004, 287(4), L774-L783.
[http://dx.doi.org/10.1152/ajplung.00110.2004] [PMID: 15180920]
[139]
Bereswill, S.; Muñoz, M.; Fischer, A.; Plickert, R.; Haag, L.M.; Otto, B.; Kühl, A.A.; Loddenkemper, C.; Göbel, U.B.; Heimesaat, M.M. Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PLoS. One., 2010, 5(12), e15099.
[http://dx.doi.org/10.1371/journal.pone.0015099] [PMID: 21151942]
[140]
Azmoonfar, R.; Amini, P.; Yahyapour, R.; Rezaeyan, A.; Tavassoli, A.; Motevaseli, E.; Khodamoradi, E.; Shabeeb, D.; Musa, A.E.; Najafi, M. Mitigation of radiation-induced pneumonitis and lung fibrosis using alpha-lipoic acid and resveratrol. Antiinflamm. Antiallergy Agents Med. Chem., 2020, 19(2), 149-157.
[http://dx.doi.org/10.2174/1871523018666190319144020] [PMID: 30892165]
[141]
Buhrmann, C.; Yazdi, M.; Popper, B.; Shayan, P.; Goel, A.; Aggarwal, B.; Shakibaei, M. Resveratrol chemosensitizes TNF-β-induced survival of 5-FU-treated colorectal cancer cells. Nutrients, 2018, 10(7), 888.
[http://dx.doi.org/10.3390/nu10070888] [PMID: 30002278]
[142]
Said, R.S.; Mantawy, E.M.; El-Demerdash, E. Mechanistic perspective of protective effects of resveratrol against cisplatin-induced ovarian injury in rats: Emphasis on anti-inflammatory and anti-apoptotic effects. Naunyn. Schmiedebergs. Arch. Pharmacol., 2019, 392(10), 1225-1238.
[http://dx.doi.org/10.1007/s00210-019-01662-x] [PMID: 31129703]
[143]
Alarcón de la Lastra, C.; Villegas, I. Resveratrol as an anti-inflammatory and anti-aging agent: Mechanisms and clinical implications. Mol. Nutr. Food Res., 2005, 49(5), 405-430.
[http://dx.doi.org/10.1002/mnfr.200500022] [PMID: 15832402]
[144]
Udenigwe, C.C.; Ramprasath, V.R.; Aluko, R.E.; Jones, P.J.H. Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr. Rev., 2008, 66(8), 445-454.
[http://dx.doi.org/10.1111/j.1753-4887.2008.00076.x] [PMID: 18667005]
[145]
de Sá Coutinho, D.; Pacheco, M.; Frozza, R.; Bernardi, A. Anti-inflammatory effects of resveratrol: Mechanistic insights. Int. J. Mol. Sci., 2018, 19(6), 1812.
[http://dx.doi.org/10.3390/ijms19061812] [PMID: 29925765]
[146]
Das, S.; Das, D. Anti-inflammatory responses of resveratrol. Inflamm. Allergy. Drug. Targets., 2007, 6(3), 168-173.
[http://dx.doi.org/10.2174/187152807781696464] [PMID: 17897053]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy