Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Neuroprotective Strategies for Stroke by Natural Products: Advances and Perspectives

Author(s): Aifen Liu, Jingyan Hu, Tzu-Shao Yeh, Chengniu Wang, Jilong Tang, Xiaohong Huang, Bin Chen, Liexiang Huangfu, Weili Yu and Lei Zhang*

Volume 21, Issue 11, 2023

Published on: 19 July, 2023

Page: [2283 - 2309] Pages: 27

DOI: 10.2174/1570159X21666230717144752

Price: $65

conference banner
Abstract

Cerebral ischemic stroke is a disease with high prevalence and incidence. Its management focuses on rapid reperfusion with intravenous thrombolysis and endovascular thrombectomy. Both therapeutic strategies reduce disability, but the therapy time window is short, and the risk of bleeding is high. Natural products (NPs) have played a key role in drug discovery, especially for cancer and infectious diseases. However, they have made little progress in clinical translation and pose challenges to the treatment of stroke. Recently, with the investigation of precise mechanisms in cerebral ischemic stroke and the technological development of NP-based drug discovery, NPs are addressing these challenges and opening up new opportunities in cerebral stroke. Thus, in this review, we first summarize the structure and function of diverse NPs, including flavonoids, phenols, terpenes, lactones, quinones, alkaloids, and glycosides. Then we propose the comprehensive neuroprotective mechanism of NPs in cerebral ischemic stroke, which involves complex cascade processes of oxidative stress, mitochondrial damage, apoptosis or ferroptosis-related cell death, inflammatory response, and disruption of the blood-brain barrier (BBB). Overall, we stress the neuroprotective effect of NPs and their mechanism on cerebral ischemic stroke for a better understanding of the advances and perspective in NPs application that may provide a rationale for the development of innovative therapeutic regimens in ischemic stroke.

Keywords: Ischemic stroke, natural products, neuroprotection, antioxidation, mitochondrial dysfunction, ER stress, apoptosis, inflammation.

Graphical Abstract
[1]
Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; Elkind, M.S.V.; Evenson, K.R.; Eze-Nliam, C.; Ferguson, J.F.; Generoso, G.; Ho, J.E.; Kalani, R.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Levine, D.A.; Lewis, T.T.; Liu, J.; Loop, M.S.; Ma, J.; Mussolino, M.E.; Navaneethan, S.D.; Perak, A.M.; Poudel, R.; Rezk-Hanna, M.; Roth, G.A.; Schroeder, E.B.; Shah, S.H.; Thacker, E.L.; VanWagner, L.B.; Virani, S.S.; Voecks, J.H.; Wang, N.Y.; Yaffe, K.; Martin, S.S. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation, 2022, 145(8), e153-e639.
[http://dx.doi.org/10.1161/CIR.0000000000001052] [PMID: 35078371]
[2]
Iadecola, C.; Anrather, J. Stroke research at a crossroad: asking the brain for directions. Nat. Neurosci., 2011, 14(11), 1363-1368.
[http://dx.doi.org/10.1038/nn.2953] [PMID: 22030546]
[3]
Sacco, R.L.; Kasner, S.E.; Broderick, J.P.; Caplan, L.R.; Connors, J.J.B.; Culebras, A.; Elkind, M.S.V.; George, M.G.; Hamdan, A.D.; Higashida, R.T.; Hoh, B.L.; Janis, L.S.; Kase, C.S.; Kleindorfer, D.O.; Lee, J.M.; Moseley, M.E.; Peterson, E.D.; Turan, T.N.; Valderrama, A.L.; Vinters, H.V. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 2013, 44(7), 2064-2089.
[http://dx.doi.org/10.1161/STR.0b013e318296aeca] [PMID: 23652265]
[4]
Campbell, B.C.V.; De Silva, D.A.; Macleod, M.R.; Coutts, S.B.; Schwamm, L.H.; Davis, S.M.; Donnan, G.A. Ischaemic stroke. Nat. Rev. Dis. Primers, 2019, 5(1), 70.
[http://dx.doi.org/10.1038/s41572-019-0118-8] [PMID: 31601801]
[5]
Emberson, J.; Lees, K.R.; Lyden, P.; Blackwell, L.; Albers, G.; Bluhmki, E.; Brott, T.; Cohen, G.; Davis, S.; Donnan, G.; Grotta, J.; Howard, G.; Kaste, M.; Koga, M.; von Kummer, R.; Lansberg, M.; Lindley, R.I.; Murray, G.; Olivot, J.M.; Parsons, M.; Tilley, B.; Toni, D.; Toyoda, K.; Wahlgren, N.; Wardlaw, J.; Whiteley, W.; del Zoppo, G.J.; Baigent, C.; Sandercock, P.; Hacke, W. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet, 2014, 384(9958), 1929-1935.
[http://dx.doi.org/10.1016/S0140-6736(14)60584-5] [PMID: 25106063]
[6]
Goyal, M.; Menon, B.K.; van Zwam, W.H.; Dippel, D.W.J.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.L.M.; van der Lugt, A.; de Miquel, M.A.; Donnan, G.A.; Roos, Y.B.W.E.M.; Bonafe, A.; Jahan, R.; Diener, H.C.; van den Berg, L.A.; Levy, E.I.; Berkhemer, O.A.; Pereira, V.M.; Rempel, J.; Millán, M.; Davis, S.M.; Roy, D.; Thornton, J.; Román, L.S.; Ribó, M.; Beumer, D.; Stouch, B.; Brown, S.; Campbell, B.C.V.; van Oostenbrugge, R.J.; Saver, J.L.; Hill, M.D.; Jovin, T.G. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet, 2016, 387(10029), 1723-1731.
[http://dx.doi.org/10.1016/S0140-6736(16)00163-X] [PMID: 26898852]
[7]
Tuo, Q.; Zhang, S.; Lei, P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev., 2022, 42(1), 259-305.
[http://dx.doi.org/10.1002/med.21817] [PMID: 33957000]
[8]
Lee, J.M.; Grabb, M.C.; Zipfel, G.J.; Choi, D.W. Brain tissue responses to ischemia. J. Clin. Invest., 2000, 106(6), 723-731.
[http://dx.doi.org/10.1172/JCI11003] [PMID: 10995780]
[9]
Neuhaus, A.A.; Rabie, T.; Sutherland, B.A.; Papadakis, M.; Hadley, G.; Cai, R.; Buchan, A.M. Importance of preclinical research in the development of neuroprotective strategies for ischemic stroke. JAMA Neurol., 2014, 71(5), 634-639.
[http://dx.doi.org/10.1001/jamaneurol.2013.6299] [PMID: 24590416]
[10]
Xiong, X.Y.; Liu, L.; Yang, Q.W. Refocusing Neuroprotection in Cerebral Reperfusion Era: New Challenges and Strategies. Front. Neurol., 2018, 9, 249.
[http://dx.doi.org/10.3389/fneur.2018.00249] [PMID: 29740385]
[11]
Liang, Z.; Currais, A.; Soriano-Castell, D.; Schubert, D.; Maher, P. Natural products targeting mitochondria: emerging therapeutics for age-associated neurological disorders. Pharmacol. Ther., 2021, 221, 107749.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107749] [PMID: 33227325]
[12]
Barnes, E.C.; Kumar, R.; Davis, R.A. The use of isolated natural products as scaffolds for the generation of chemically diverse screening libraries for drug discovery. Nat. Prod. Rep., 2016, 33(3), 372-381.
[http://dx.doi.org/10.1039/C5NP00121H] [PMID: 26739749]
[13]
Li, J.W.H.; Vederas, J.C. Drug discovery and natural products: end of an era or an endless frontier? Science, 2009, 325(5937), 161-165.
[http://dx.doi.org/10.1126/science.1168243] [PMID: 19589993]
[14]
Clardy, J.; Walsh, C. Lessons from natural molecules. Nature, 2004, 432(7019), 829-837.
[http://dx.doi.org/10.1038/nature03194] [PMID: 15602548]
[15]
Lawson, A.D.G.; MacCoss, M.; Heer, J.P. Importance of rigidity in designing small molecule drugs to tackle protein-protein interactions (PPIs) through stabilization of desired conformers. J. Med. Chem., 2018, 61(10), 4283-4289.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01120] [PMID: 29140691]
[16]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[17]
Lachance, H.; Wetzel, S.; Kumar, K.; Waldmann, H. Charting, navigating, and populating natural product chemical space for drug discovery. J. Med. Chem., 2012, 55(13), 5989-6001.
[http://dx.doi.org/10.1021/jm300288g] [PMID: 22537178]
[18]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[19]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[20]
Waltenberger, B.; Mocan, A.; Šmejkal, K.; Heiss, E.; Atanasov, A. Natural products to counteract the epidemic of cardiovascular and metabolic disorders. Molecules, 2016, 21(6), 807.
[http://dx.doi.org/10.3390/molecules21060807] [PMID: 27338339]
[21]
Tintore, M.; Vidal-Jordana, A.; Sastre-Garriga, J. Treatment of multiple sclerosis — success from bench to bedside. Nat. Rev. Neurol., 2019, 15(1), 53-58.
[http://dx.doi.org/10.1038/s41582-018-0082-z] [PMID: 30315270]
[22]
Widmann, C.; Gandin, C.; Petit-Paitel, A.; Lazdunski, M.; Heurteaux, C. The Traditional Chinese Medicine MLC901 inhibits inflammation processes after focal cerebral ischemia. Sci. Rep., 2018, 8(1), 18062.
[http://dx.doi.org/10.1038/s41598-018-36138-0] [PMID: 30584250]
[23]
Tao, T.; Liu, M.; Chen, M.; Luo, Y.; Wang, C.; Xu, T.; Jiang, Y.; Guo, Y.; Zhang, J.H. Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective. Pharmacol. Ther., 2020, 216, 107695.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107695] [PMID: 32998014]
[24]
Gong, X.; Sucher, N.J. Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. Phytomedicine, 2002, 9(5), 478-484.
[http://dx.doi.org/10.1078/09447110260571760] [PMID: 12222672]
[25]
Jayaraj, R.L.; Azimullah, S.; Beiram, R.; Jalal, F.Y.; Rosenberg, G.A. Neuroinflammation: friend and foe for ischemic stroke. J. Neuroinflammation, 2019, 16(1), 142.
[http://dx.doi.org/10.1186/s12974-019-1516-2] [PMID: 31291966]
[26]
Shi, K.; Tian, D.C.; Li, Z.G.; Ducruet, A.F.; Lawton, M.T.; Shi, F.D. Global brain inflammation in stroke. Lancet Neurol., 2019, 18(11), 1058-1066.
[http://dx.doi.org/10.1016/S1474-4422(19)30078-X] [PMID: 31296369]
[27]
Hu, X.; Li, P.; Guo, Y.; Wang, H.; Leak, R.K.; Chen, S.; Gao, Y.; Chen, J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke, 2012, 43(11), 3063-3070.
[http://dx.doi.org/10.1161/STROKEAHA.112.659656] [PMID: 22933588]
[28]
Hu, X.; Leak, R.K.; Shi, Y.; Suenaga, J.; Gao, Y.; Zheng, P.; Chen, J. Microglial and macrophage polarization—new prospects for brain repair. Nat. Rev. Neurol., 2015, 11(1), 56-64.
[http://dx.doi.org/10.1038/nrneurol.2014.207] [PMID: 25385337]
[29]
Jiang, C.T.; Wu, W.F.; Deng, Y.H.; Ge, J.W. Modulators of microglia activation and polarization in ischemic stroke (Review). Mol. Med. Rep., 2020, 21(5), 2006-2018.
[http://dx.doi.org/10.3892/mmr.2020.11003] [PMID: 32323760]
[30]
Woodruff, T.M.; Thundyil, J.; Tang, S.C.; Sobey, C.G.; Taylor, S.M.; Arumugam, T.V. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol. Neurodegener., 2011, 6(1), 11.
[http://dx.doi.org/10.1186/1750-1326-6-11] [PMID: 21266064]
[31]
Xu, P.; Marsafari, M.; Zha, J.; Koffas, M. Microbial Coculture for Flavonoid Synthesis. Trends Biotechnol., 2020, 38(7), 686-688.
[http://dx.doi.org/10.1016/j.tibtech.2020.01.008] [PMID: 32497514]
[32]
Pourcel, L.; Routaboul, J.; Cheynier, V.; Lepiniec, L.; Debeaujon, I. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci., 2007, 12(1), 29-36.
[http://dx.doi.org/10.1016/j.tplants.2006.11.006] [PMID: 17161643]
[33]
Peluso, I.; Miglio, C.; Morabito, G.; Ioannone, F.; Serafini, M. Flavonoids and immune function in human: a systematic review. Crit. Rev. Food Sci. Nutr., 2015, 55(3), 383-395.
[http://dx.doi.org/10.1080/10408398.2012.656770] [PMID: 24915384]
[34]
Tu, X.; Yang, W.; Shi, S.; Chen, Y.; Wang, C.; Chen, C.; Chen, Z. Baicalin inhibits TLR2/4 signaling pathway in rat brain following permanent cerebral ischemia. Inflammation, 2011, 34(5), 463-470.
[http://dx.doi.org/10.1007/s10753-010-9254-8] [PMID: 20859668]
[35]
Cao, Y.; Mao, X.; Sun, C.; Zheng, P.; Gao, J.; Wang, X.; Min, D.; Sun, H.; Xie, N.; Cai, J. Baicalin attenuates global cerebral ischemia/reperfusion injury in gerbils via anti-oxidative and anti-apoptotic pathways. Brain Res. Bull., 2011, 85(6), 396-402.
[http://dx.doi.org/10.1016/j.brainresbull.2011.05.002] [PMID: 21600966]
[36]
Cheng, O.; Li, Z.; Han, Y.; Jiang, Q.; Yan, Y.; Cheng, K. Baicalin improved the spatial learning ability of global ischemia/reperfusion rats by reducing hippocampal apoptosis. Brain Res., 2012, 1470, 111-118.
[http://dx.doi.org/10.1016/j.brainres.2012.06.026] [PMID: 22796597]
[37]
Cheng, F.; Lu, Y.; Zhong, X.; Song, W.; Wang, X.; Sun, X.; Qin, J.; Guo, S.; Wang, Q. Baicalin’s therapeutic time window of neuroprotection during transient focal cerebral ischemia and its antioxidative effects in vitro and in vivo. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/120261] [PMID: 23878589]
[38]
Lapchak, P.A.; Maher, P.; Schubert, D.; Zivin, J.A. Baicalein, an antioxidant 12/15-lipoxygenase inhibitor improves clinical rating scores following multiple infarct embolic strokes. Neuroscience, 2007, 150(3), 585-591.
[http://dx.doi.org/10.1016/j.neuroscience.2007.09.033] [PMID: 17942241]
[39]
Liu, C.; Wu, J.; Xu, K.; Cai, F.; Gu, J.; Ma, L.; Chen, J. Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway. J. Neurochem., 2010, 112(6), 1500-1512.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06561.x] [PMID: 20050973]
[40]
Wang, P.; Cao, Y.; Yu, J.; Liu, R.; Bai, B.; Qi, H.; Zhang, Q.; Guo, W.; Zhu, H.; Qu, L. Baicalin alleviates ischemia-induced memory impairment by inhibiting the phosphorylation of CaMKII in hippocampus. Brain Res., 2016, 1642, 95-103.
[http://dx.doi.org/10.1016/j.brainres.2016.03.019] [PMID: 27016057]
[41]
Liang, W.; Huang, X.; Chen, W. The effects of baicalin and baicalein on cerebral ischemia: A review. Aging Dis., 2017, 8(6), 850-867.
[http://dx.doi.org/10.14336/AD.2017.0829] [PMID: 29344420]
[42]
Long, Y.; Yang, Q.; Xiang, Y.; Zhang, Y.; Wan, J.; Liu, S.; Li, N.; Peng, W. Nose to brain drug delivery - A promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacol. Res., 2020, 159, 104795.
[http://dx.doi.org/10.1016/j.phrs.2020.104795] [PMID: 32278035]
[43]
Liu, D.M.; Wang, Z.H.; Liu, L.; Zhang, X.M.; Lou, F.L. Acetylpuerarin increases cell viability and reduces apoptosis in rat hippocampal neurons following oxygen-glucose deprivation/reperfusion. Mol. Med. Rep., 2013, 8(5), 1453-1459.
[http://dx.doi.org/10.3892/mmr.2013.1671] [PMID: 24026460]
[44]
Liu, Y.; Tang, Q.; Shao, S.; Chen, Y.; Chen, W.; Xu, X. Lyophilized Powder of Catalpol and Puerarin Protected Cerebral Vessels from Ischemia by Its Anti-apoptosis on Endothelial Cells. Int. J. Biol. Sci., 2017, 13(3), 327-338.
[http://dx.doi.org/10.7150/ijbs.17751] [PMID: 28367097]
[45]
Chang, Y.; Hsieh, C.Y.; Peng, Z.A.; Yen, T.L.; Hsiao, G.; Chou, D.S.; Chen, C.M.; Sheu, J.R. Neuroprotective mechanisms of puerarin in middle cerebral artery occlusion-induced brain infarction in rats. J. Biomed. Sci., 2009, 16(1), 9.
[http://dx.doi.org/10.1186/1423-0127-16-9] [PMID: 19272172]
[46]
Pengyue, Z.; Tao, G.; Hongyun, H.; Liqiang, Y.; Yihao, D. Breviscapine confers a neuroprotective efficacy against transient focal cerebral ischemia by attenuating neuronal and astrocytic autophagy in the penumbra. Biomed. Pharmacother., 2017, 90, 69-76.
[http://dx.doi.org/10.1016/j.biopha.2017.03.039] [PMID: 28343073]
[47]
Li, Y.; Li, S.; Li, D. Breviscapine alleviates cognitive impairments induced by transient cerebral ischemia/reperfusion through its anti-inflammatory and anti-oxidant properties in a rat model. ACS Chem. Neurosci., 2020, 11(24), 4489-4498.
[http://dx.doi.org/10.1021/acschemneuro.0c00697] [PMID: 33270442]
[48]
Guo, C.; Wang, W.J.; Liao, Y.C.; Zhao, C.; Yin, Y.; Yao, M.N.; Ding, Y.; Wang, J.W. Effect and Mechanisms of Quercetin for Experimental Focal Cerebral Ischemia: A Systematic Review and Meta-Analysis. Oxid. Med. Cell. Longev., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/9749461] [PMID: 35251482]
[49]
Kampa, R.P.; Sęk, A.; Szewczyk, A.; Bednarczyk, P. Cytoprotective effects of the flavonoid quercetin by activating mitochondrial BKCa channels in endothelial cells. Biomed. Pharmacother., 2021, 142, 112039.
[http://dx.doi.org/10.1016/j.biopha.2021.112039] [PMID: 34392086]
[50]
Yuan, Y.; Rangarajan, P.; Kan, E.M.; Wu, Y.; Wu, C.; Ling, E.A. Scutellarin regulates the Notch pathway and affects the migration and morphological transformation of activated microglia in experimentally induced cerebral ischemia in rats and in activated BV-2 microglia. J. Neuroinflammation, 2015, 12(1), 11.
[http://dx.doi.org/10.1186/s12974-014-0226-z] [PMID: 25600517]
[51]
Hu, X.; Zhou, M.; Hu, X.; Zeng, F. Neuroprotective effects of scutellarin on rat neuronal damage induced by cerebral ischemia/reperfusion. Acta Pharmacol. Sin., 2005, 26(12), 1454-1459.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00239.x] [PMID: 16297343]
[52]
Qian, L.; Shen, M.; Tang, H.; Tang, Y.; Zhang, L.; Fu, Y.; Shi, Q.; Li, N.G. Synthesis and protective effect of scutellarein on focal cerebral ischemia/reperfusion in rats. Molecules, 2012, 17(9), 10667-10674.
[http://dx.doi.org/10.3390/molecules170910667] [PMID: 22955455]
[53]
Pang, Q.; Zhao, Y.; Chen, X.; Zhao, K.; Zhai, Q.; Tu, F. Apigenin protects the brain against ischemia/reperfusion injury via caveolin-1/VEGF in vitro and in vivo. Oxid. Med. Cell. Longev., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/7017204] [PMID: 30622670]
[54]
Fu, C.; Zheng, Y.; Lin, K.; Wang, H.; Chen, T.; Li, L.; Huang, J.; Lin, W.; Zhu, J.; Li, P.; Fu, X.; Lin, Z. Neuroprotective effect of apigenin against hypoxic-ischemic brain injury in neonatal rats via activation of the PI3K/Akt/Nrf2 signaling pathway. Food Funct., 2021, 12(5), 2270-2281.
[http://dx.doi.org/10.1039/D0FO02555K] [PMID: 33599218]
[55]
Jiang, J.; Dai, J.; Cui, H. Vitexin reverses the autophagy dysfunction to attenuate MCAO-induced cerebral ischemic stroke via mTOR/Ulk1 pathway. Biomed. Pharmacother., 2018, 99, 583-590.
[http://dx.doi.org/10.1016/j.biopha.2018.01.067] [PMID: 29710456]
[56]
Wang, Y.; Zhen, Y.; Wu, X.; Jiang, Q.; Li, X.; Chen, Z.; Zhang, G.; Dong, L. Vitexin protects brain against ischemia/reperfusion injury via modulating mitogen-activated protein kinase and apoptosis signaling in mice. Phytomedicine, 2015, 22(3), 379-384.
[http://dx.doi.org/10.1016/j.phymed.2015.01.009] [PMID: 25837275]
[57]
Cheng, Y.C.; Sheen, J.M.; Hu, W.L.; Hung, Y.C. Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke. Oxid. Med. Cell. Longev., 2017, 2017, 1-16.
[http://dx.doi.org/10.1155/2017/8526438] [PMID: 29317985]
[58]
Campos-Esparza, M.R.; Sánchez-Gómez, M.V.; Matute, C. Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Cell Calcium, 2009, 45(4), 358-368.
[http://dx.doi.org/10.1016/j.ceca.2008.12.007] [PMID: 19201465]
[59]
Cheng, G.; Zhang, X.; Gao, D.; Jiang, X.; Dong, W. Resveratrol inhibits MMP-9 expression by up-regulating PPAR α expression in an oxygen glucose deprivation-exposed neuron model. Neurosci. Lett., 2009, 451(2), 105-108.
[http://dx.doi.org/10.1016/j.neulet.2008.12.045] [PMID: 19135132]
[60]
Panickar, K.S.; Anderson, R.A. Effect of polyphenols on oxidative stress and mitochondrial dysfunction in neuronal death and brain edema in cerebral ischemia. Int. J. Mol. Sci., 2011, 12(11), 8181-8207.
[http://dx.doi.org/10.3390/ijms12118181] [PMID: 22174658]
[61]
Guo, C.; Ma, Y.; Ma, S.; Mu, F.; Deng, J.; Duan, J.; Xiong, L.; Yin, Y.; Wang, Y.; Xi, M.; Wen, A. The role of TRPC6 in the neuroprotection of calycosin against cerebral ischemic injury. Sci. Rep., 2017, 7(1), 3039.
[http://dx.doi.org/10.1038/s41598-017-03404-6] [PMID: 28596571]
[62]
Narayanan, S.V.; Dave, K.R.; Saul, I.; Perez-Pinzon, M.A. Resveratrol preconditioning protects against cerebral ischemic injury via nuclear erythroid 2-related factor 2. Stroke, 2015, 46(6), 1626-1632.
[http://dx.doi.org/10.1161/STROKEAHA.115.008921] [PMID: 25908459]
[63]
Rahimifard, M.; Maqbool, F.; Moeini-Nodeh, S.; Niaz, K.; Abdollahi, M.; Braidy, N.; Nabavi, S.M.; Nabavi, S.F. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res. Rev., 2017, 36, 11-19.
[http://dx.doi.org/10.1016/j.arr.2017.02.004] [PMID: 28235660]
[64]
Koronowski, K.B.; Khoury, N.; Saul, I.; Loris, Z.B.; Cohan, C.H.; Stradecki-Cohan, H.M.; Dave, K.R.; Young, J.I.; Perez-Pinzon, M.A. Neuronal SIRT1 (silent information regulator 2 homologue 1) regulates glycolysis and mediates resveratrol-induced ischemic tolerance. Stroke, 2017, 48(11), 3117-3125.
[http://dx.doi.org/10.1161/STROKEAHA.117.018562] [PMID: 29018134]
[65]
Koronowski, K.B.; Dave, K.R.; Saul, I.; Camarena, V.; Thompson, J.W.; Neumann, J.T.; Young, J.I.; Perez-Pinzon, M.A. Resveratrol Preconditioning Induces a Novel Extended Window of Ischemic Tolerance in the Mouse Brain. Stroke, 2015, 46(8), 2293-2298.
[http://dx.doi.org/10.1161/STROKEAHA.115.009876] [PMID: 26159789]
[66]
Wang, Y.; Luo, J.; Li, S.Y. Nano-curcumin simultaneously protects the blood-brain barrier and reduces M1 microglial activation during cerebral ischemia-reperfusion injury. ACS Appl. Mater. Interfaces, 2019, 11(4), 3763-3770.
[http://dx.doi.org/10.1021/acsami.8b20594] [PMID: 30618231]
[67]
Ghoneim, A.; Abdel-Naim, A.B.; Khalifa, A.; El-Denshary, E.S. Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacol. Res., 2002, 46(3), 273-279.
[http://dx.doi.org/10.1016/S1043-6618(02)00123-8] [PMID: 12220971]
[68]
He, R.; Jiang, Y.; Shi, Y.; Liang, J.; Zhao, L. Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis. Mater. Sci. Eng. C, 2020, 117, 111314.
[http://dx.doi.org/10.1016/j.msec.2020.111314] [PMID: 32919674]
[69]
Ran, Y.; Su, W.; Gao, F.; Ding, Z.; Yang, S.; Ye, L.; Chen, X.; Tian, G.; Xi, J.; Liu, Z. Curcumin ameliorates white matter injury after ischemic stroke by inhibiting microglia/macrophage pyroptosis through NF-κB suppression and NLRP3 inflammasome inhibition. Oxid. Med. Cell. Longev., 2021, 2021, 1-25.
[http://dx.doi.org/10.1155/2021/1552127] [PMID: 34630845]
[70]
Zhu, T.; Wang, L.; Wang, L.; Wan, Q. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed. Pharmacother., 2022, 148, 112719.
[http://dx.doi.org/10.1016/j.biopha.2022.112719] [PMID: 35168073]
[71]
Chen, Y.H.; Du, G.H.; Zhang, J.T. Salvianolic acid B protects brain against injuries caused by ischemia-reperfusion in rats. Acta Pharmacol. Sin., 2000, 21(5), 463-466.
[PMID: 11324448]
[72]
Tian, J.; Fu, F.; Li, G.; Gao, Y.; Zhang, Y.; Meng, Q.; Li, C.; Liu, F. Protections of SMND-309, a novel derivate of salvianolic acid B, on brain mitochondria contribute to injury amelioration in cerebral ischemia rats. Phytomedicine, 2009, 16(8), 726-733.
[http://dx.doi.org/10.1016/j.phymed.2009.01.007] [PMID: 19481432]
[73]
Liu, X.; Ye, M.; An, C.; Pan, L.; Ji, L. The effect of cationic albumin-conjugated PEGylated tanshinone IIA nanoparticles on neuronal signal pathways and neuroprotection in cerebral ischemia. Biomaterials, 2013, 34(28), 6893-6905.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.021] [PMID: 23768781]
[74]
Ji, B.; Zhou, F.; Han, L.; Yang, J.; Fan, H.; Li, S.; Li, J.; Zhang, X.; Wang, X.; Chen, X.; Xu, Y. Sodium tanshinone IIA sulfonate enhances effectiveness Rt-PA treatment in acute ischemic stroke patients associated with ameliorating blood-brain barrier damage. Transl. Stroke Res., 2017, 8(4), 334-340.
[http://dx.doi.org/10.1007/s12975-017-0526-6] [PMID: 28243834]
[75]
Li, H.; Han, W.; Wang, H.; Ding, F.; Xiao, L.; Shi, R.; Ai, L.; Huang, Z. Tanshinone IIA inhibits glutamate-induced oxidative toxicity through prevention of mitochondrial dysfunction and suppression of MAPK activation in SH-SY5Y human neuroblastoma cells. Oxid. Med. Cell. Longev., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/4517486] [PMID: 28690763]
[76]
Song, J.; Zhang, W.; Wang, J.; Yang, H.; Zhou, Q.; Wang, H.; Li, L.; Du, G. Inhibition of FOXO3a/BIM signaling pathway contributes to the protective effect of salvianolic acid A against cerebral ischemia/reperfusion injury. Acta Pharm. Sin. B, 2019, 9(3), 505-515.
[http://dx.doi.org/10.1016/j.apsb.2019.01.010] [PMID: 31193821]
[77]
Yang, Y.; Song, J.; Liu, N.; Wei, G.; Liu, S.; Zhang, S.; Jiang, N.; Yang, H.; Du, G. Salvianolic acid A relieves cognitive disorder after chronic cerebral ischemia: Involvement of Drd2/Cryab/NF-κB pathway. Pharmacol. Res., 2022, 175, 105989.
[http://dx.doi.org/10.1016/j.phrs.2021.105989] [PMID: 34800628]
[78]
Chien, M.Y.; Chuang, C.H.; Chern, C.M.; Liou, K.T.; Liu, D.Z.; Hou, Y.C.; Shen, Y.C. Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice. Free Radic. Biol. Med., 2016, 99, 508-519.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.09.006] [PMID: 27609227]
[79]
Liu, C.; Liu, N.; Zhang, S.; Ma, G.; Yang, H.; Kong, L.; Du, G. Salvianolic acid A prevented cerebrovascular endothelial injury caused by acute ischemic stroke through inhibiting the Src signaling pathway. Acta Pharmacol. Sin., 2021, 42(3), 370-381.
[http://dx.doi.org/10.1038/s41401-020-00568-2] [PMID: 33303991]
[80]
Yang, Y.; He, B.; Zhang, X.; Yang, R.; Xia, X.; Chen, L.; Li, R.; Shen, Z.; Chen, P. Geraniin Protects against Cerebral Ischemia/Reperfusion Injury by Suppressing Oxidative Stress and Neuronal Apoptosis via Regulation of the Nrf2/HO-1 Pathway. Oxid. Med. Cell. Longev., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/2152746] [PMID: 35222793]
[81]
Liu, Q.; Deng, R.; Li, S.; Li, X.; Li, K.; Kebaituli, G.; Li, X.; Liu, R. Ellagic acid protects against neuron damage in ischemic stroke through regulating the ratio of Bcl-2/Bax expression. Appl. Physiol. Nutr. Metab., 2017, 42(8), 855-860.
[http://dx.doi.org/10.1139/apnm-2016-0651] [PMID: 28388366]
[82]
Ashrafizadeh, M.; Ahmadi, Z.; Mohammadinejad, R.; Kaviyani, N.; Tavakol, S. Monoterpenes modulating autophagy: A review study. Basic Clin. Pharmacol. Toxicol., 2019.
[http://dx.doi.org/10.1111/bcpt.13282] [PMID: 31237736]
[83]
El-Baba, C.; Baassiri, A.; Kiriako, G.; Dia, B.; Fadlallah, S.; Moodad, S.; Darwiche, N. Terpenoids’ anti-cancer effects: focus on autophagy. Apoptosis, 2021, 26(9-10), 491-511.
[http://dx.doi.org/10.1007/s10495-021-01684-y] [PMID: 34269920]
[84]
Yang, H.; Ping Dou, Q. Targeting apoptosis pathway with natural terpenoids: implications for treatment of breast and prostate cancer. Curr. Drug Targets, 2010, 11(6), 733-744.
[http://dx.doi.org/10.2174/138945010791170842] [PMID: 20298150]
[85]
Zhu, J.; Jin, Z.; Yang, L.; Zhao, C.; Hu, J.; Chen, J.; Han, Y.; Yu, P.; Luo, J.; Kong, L.; Zhang, C. Ginkgolide B targets and inhibits creatine kinase B to regulate the CCT/TRiC-SK1 axis and exerts pro-angiogenic activity in middle cerebral artery occlusion mice. Pharmacol. Res., 2022, 180, 106240.
[http://dx.doi.org/10.1016/j.phrs.2022.106240] [PMID: 35513225]
[86]
Oberpichler, H.; Sauer, D.; Roßberg, C.; Mennel, H.D.; Krieglstein, J. PAF antagonist ginkgolide B reduces postischemic neuronal damage in rat brain hippocampus. J. Cereb. Blood Flow Metab., 1990, 10(1), 133-135.
[http://dx.doi.org/10.1038/jcbfm.1990.17] [PMID: 2298830]
[87]
Yang, H.; Li, G.P.; Liu, Q.; Zong, S.B.; Li, L.; Xu, Z.L.; Zhou, J.; Cao, L.; Wang, Z.Z.; Zhang, Q.C.; Li, M.; Fan, Q.R.; Hu, H.F.; Xiao, W. Neuroprotective effects of Ginkgolide B in focal cerebral ischemia through selective activation of prostaglandin E2 receptor EP4 and the downstream transactivation of epidermal growth factor receptor. Phytother. Res., 2021, 35(5), 2727-2744.
[http://dx.doi.org/10.1002/ptr.7018] [PMID: 33452698]
[88]
Shu, Z.M.; Shu, X.D.; Li, H.Q.; Sun, Y.; Shan, H.; Sun, X.Y.; Du, R.H.; Lu, M.; Xiao, M.; Ding, J.H.; Hu, G.; Ginkgolide, B. Ginkgolide B protects against ischemic stroke via modulating microglia polarization in mice. CNS Neurosci. Ther., 2016, 22(9), 729-739.
[http://dx.doi.org/10.1111/cns.12577] [PMID: 27306494]
[89]
Zheng, J.S.; Zheng, P-D.; Mungur, R.; Zhou, H-J.; Hassan, M.; Jiang, S-N. Ginkgolide B promotes the proliferation and differentiation of neural stem cells following cerebral ischemia/reperfusion injury, both in vivo and in vitro. Neural Regen. Res., 2018, 13(7), 1204-1211.
[http://dx.doi.org/10.4103/1673-5374.232476] [PMID: 30028328]
[90]
Jia, Y.; Gong, N.; Li, T.F.; Zhu, B.; Wang, Y.X. Peptidic exenatide and herbal catalpol mediate neuroprotection via the hippocampal GLP-1 receptor/β-endorphin pathway. Pharmacol. Res., 2015, 102, 276-285.
[http://dx.doi.org/10.1016/j.phrs.2015.10.008] [PMID: 26546042]
[91]
Zhu, H.F.; Wan, D.; Luo, Y.; Zhou, J.L.; Chen, L.; Xu, X.Y. Catalpol increases brain angiogenesis and up-regulates VEGF and EPO in the rat after permanent middle cerebral artery occlusion. Int. J. Biol. Sci., 2010, 6(5), 443-453.
[http://dx.doi.org/10.7150/ijbs.6.443] [PMID: 20827397]
[92]
Zheng, X.; Yang, W.; Chen, S.; Xu, Q.; Shan, C.; Zheng, G.; Ruan, J. Neuroprotection of Catalpol for Experimental Acute Focal Ischemic Stroke: Preclinical Evidence and Possible Mechanisms of Antioxidation, Anti-Inflammation, and Antiapoptosis. Oxid. Med. Cell. Longev., 2017, 2017, 1-24.
[http://dx.doi.org/10.1155/2017/5058609] [PMID: 28785376]
[93]
Wang, H.; Xu, X.; Yin, Y.; Yu, S.; Ren, H.; Xue, Q.; Xu, X. Catalpol protects vascular structure and promotes angiogenesis in cerebral ischemic rats by targeting HIF-1α/VEGF. Phytomedicine, 2020, 78, 153300.
[http://dx.doi.org/10.1016/j.phymed.2020.153300] [PMID: 32866905]
[94]
Liu, D.D.; Luo, P.; Gu, L.; Zhang, Q.; Gao, P.; Zhu, Y.; Chen, X.; Guo, Q.; Zhang, J.; Ma, N.; Wang, J. Celastrol exerts a neuroprotective effect by directly binding to HMGB1 protein in cerebral ischemia–reperfusion. J. Neuroinflammation, 2021, 18(1), 174.
[http://dx.doi.org/10.1186/s12974-021-02216-w] [PMID: 34372857]
[95]
Jiang, M.; Liu, X.; Zhang, D.; Wang, Y.; Hu, X.; Xu, F.; Jin, M.; Cao, F.; Xu, L. Celastrol treatment protects against acute ischemic stroke-induced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization. J. Neuroinflammation, 2018, 15(1), 78.
[http://dx.doi.org/10.1186/s12974-018-1124-6] [PMID: 29540209]
[96]
Chen, M.; Liu, M.; Luo, Y.; Cao, J.; Zeng, F.; Yang, L.; Yang, J.; Tao, T.; Jiang, Y. Celastrol Protects against Cerebral Ischemia/Reperfusion Injury in Mice by Inhibiting Glycolysis through Targeting HIF-1α/PDK1 Axis. Oxid. Med. Cell. Longev., 2022, 2022, 1-14.
[http://dx.doi.org/10.1155/2022/7420507] [PMID: 35035665]
[97]
Zhang, B.; Zhong, Q.; Chen, X.; Wu, X.; Sha, R.; Song, G.; Zhang, C.; Chen, X. Neuroprotective Effects of Celastrol on Transient Global Cerebral Ischemia Rats via Regulating HMGB1/NF-κB Signaling Pathway. Front. Neurosci., 2020, 14, 847.
[http://dx.doi.org/10.3389/fnins.2020.00847] [PMID: 32848589]
[98]
Gao, Y.; Xu, X.; Chang, S.; Wang, Y.; Xu, Y.; Ran, S.; Huang, Z.; Li, P.; Li, J.; Zhang, L.; Saavedra, J.M.; Liao, H.; Pang, T. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction. Toxicol. Appl. Pharmacol., 2015, 289(2), 142-154.
[http://dx.doi.org/10.1016/j.taap.2015.10.001] [PMID: 26440581]
[99]
Wang, T.; Gu, J.; Wu, P.F.; Wang, F.; Xiong, Z.; Yang, Y.J.; Wu, W.N.; Dong, L.D.; Chen, J.G. Protection by tetrahydroxystilbene glucoside against cerebral ischemia: involvement of JNK, SIRT1, and NF-κB pathways and inhibition of intracellular ROS/RNS generation. Free Radic. Biol. Med., 2009, 47(3), 229-240.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.02.027] [PMID: 19272442]
[100]
Mu, Y.; Xu, Z.; Zhou, X.; Zhang, H.; Yang, Q.; Zhang, Y.; Xie, Y.; Kang, J.; Li, F.; Wang, S. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-Glucoside Attenuates Ischemia/Reperfusion-Induced Brain Injury in Rats by Promoting Angiogenesis. Planta Med., 2017, 83(8), 676-683.
[http://dx.doi.org/10.1055/s-0042-120544] [PMID: 27894149]
[101]
Yi, C.; Wang, J.; Wang, Y.; Wu, X. Neuroprotection by 2,3,5,4ʹ-tetrahydroxystilbene-2-O-β-D-glucoside extracts from Polygonum multiflorum against cerebral ischemia/reperfusion injury through the 5-hydroxytryptamine/5-hydroxytryptamine receptor pathway. Neuropsychiatr. Dis. Treat., 2019, 15, 1429-1438.
[http://dx.doi.org/10.2147/NDT.S179845] [PMID: 31213817]
[102]
Chen, X.; Hu, W.; Lu, X.; Jiang, B.; Wang, J.; Zhang, W.; Huang, C. Mechanism of 2,3,4′5-tetrahydroxystilbene 2-O-β-D-glucoside-induced upregulation of glutamate transporter 1 Protein expression in mouse primary astrocytes. Pharmacology, 2017, 99(3-4), 153-159.
[http://dx.doi.org/10.1159/000452672] [PMID: 28049198]
[103]
Schulz, S.; Hötling, S. The use of the lactone motif in chemical communication. Nat. Prod. Rep., 2015, 32(7), 1042-1066.
[http://dx.doi.org/10.1039/C5NP00006H] [PMID: 25976887]
[104]
Wu, G.; Zhu, L.; Yuan, X.; Chen, H.; Xiong, R.; Zhang, S.; Cheng, H.; Shen, Y.; An, H.; Li, T.; Li, H.; Zhang, W. Britanin ameliorates cerebral ischemia-reperfusion injury by inducing the Nrf2 protective pathway. Antioxid. Redox Signal., 2017, 27(11), 754-768.
[http://dx.doi.org/10.1089/ars.2016.6885] [PMID: 28186440]
[105]
Hossain, R.; Quispe, C.; Herrera-Bravo, J.; Beltrán, J.F.; Islam, M.T.; Shaheen, S.; Cruz-Martins, N.; Martorell, M.; Kumar, M.; Sharifi-Rad, J.; Ozdemir, F.A.; Setzer, W.N.; Alshehri, M.M.; Calina, D.; Cho, W.C. Neurobiological promises of the bitter diterpene lactone andrographolide. Oxid. Med. Cell. Longev., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/3079577] [PMID: 35154564]
[106]
He, Y.; Jiang, K.; Zhao, X. Taraxasterol protects hippocampal neurons from oxygen-glucose deprivation-induced injury through activation of Nrf2 signalling pathway. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 252-258.
[http://dx.doi.org/10.1080/21691401.2019.1699831] [PMID: 31851841]
[107]
Jiang, M.; Li, J.; Peng, Q.; Liu, Y.; Liu, W.; Luo, C.; Peng, J.; Li, J.; Yung, K.K.L.; Mo, Z. Neuroprotective effects of bilobalide on cerebral ischemia and reperfusion injury are associated with inhibition of pro-inflammatory mediator production and down-regulation of JNK1/2 and p38 MAPK activation. J. Neuroinflammation, 2014, 11(1), 167.
[http://dx.doi.org/10.1186/s12974-014-0167-6] [PMID: 25256700]
[108]
Chandrasekaran, K.; Mehrabian, Z.; Spinnewyn, B.; Chinopoulos, C.; Drieu, K.; Fiskum, G. Neuroprotective effects of bilobalide, a component of Ginkgo biloba extract (EGb 761) in global brain ischemia and in excitotoxicity-induced neuronal death. Pharmacopsychiatry, 2003, 36(Suppl 1), S89-S94.
[http://dx.doi.org/10.1055/s-2003-40447] [PMID: 13130395]
[109]
Mdzinarishvili, A.; Kiewert, C.; Kumar, V.; Hillert, M.; Klein, J. Bilobalide prevents ischemia-induced edema formation in vitro and in vivo. Neuroscience, 2007, 144(1), 217-222.
[http://dx.doi.org/10.1016/j.neuroscience.2006.08.037] [PMID: 17014966]
[110]
Kuang, X.; Wang, L.F.; Yu, L.; Li, Y.J.; Wang, Y.N.; He, Q.; Chen, C.; Du, J.R. Ligustilide ameliorates neuroinflammation and brain injury in focal cerebral ischemia/reperfusion rats: involvement of inhibition of TLR4/peroxiredoxin 6 signaling. Free Radic. Biol. Med., 2014, 71, 165-175.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.028] [PMID: 24681253]
[111]
Wu, Q.; Mao, Z.; Liu, J.; Huang, J.; Wang, N. Ligustilide Attenuates Ischemia Reperfusion-Induced Hippocampal Neuronal Apoptosis via Activating the PI3K/Akt Pathway. Front. Pharmacol., 2020, 11, 979.
[http://dx.doi.org/10.3389/fphar.2020.00979] [PMID: 32676033]
[112]
Mao, Z.; Tian, L.; Liu, J.; Wu, Q.; Wang, N.; Wang, G.; Wang, Y.; Seto, S. Ligustilide ameliorates hippocampal neuronal injury after cerebral ischemia reperfusion through activating PINK1/Parkin-dependent mitophagy. Phytomedicine, 2022, 101, 154111.
[http://dx.doi.org/10.1016/j.phymed.2022.154111] [PMID: 35512628]
[113]
Wu, Q.; Liu, J.; Mao, Z.; Tian, L.; Wang, N.; Wang, G.; Wang, Y.; Seto, S. Ligustilide attenuates ischemic stroke injury by promoting Drp1-mediated mitochondrial fission via activation of AMPK. Phytomedicine, 2022, 95, 153884.
[http://dx.doi.org/10.1016/j.phymed.2021.153884] [PMID: 34929562]
[114]
Li, J.; Yu, J.; Ma, H.; Yang, N.; Li, L.; Zheng, D.; Wu, M.; Zhao, Z.; Qi, H. Intranasal Pretreatment with Z -Ligustilide, the Main Volatile Component of Rhizoma Chuanxiong, Confers Prophylaxis against Cerebral Ischemia via Nrf2 and HSP70 Signaling Pathways. J. Agric. Food Chem., 2017, 65(8), 1533-1542.
[http://dx.doi.org/10.1021/acs.jafc.6b04979] [PMID: 28169530]
[115]
Wang, C.; Feng, Z.; Peng, B.; Zhu, L. Neuron protective effects of ligustilide on cortex region of cerebral hypoperfusion rats. Acad. J. Seco. Military Med. Univ., 2016, 37(2), 251-255.
[116]
Dias, G.G.; King, A.; de Moliner, F.; Vendrell, M.; da Silva Júnior, E.N. Quinone-based fluorophores for imaging biological processes. Chem. Soc. Rev., 2018, 47(1), 12-27.
[http://dx.doi.org/10.1039/C7CS00553A] [PMID: 29099127]
[117]
Sunassee, S.N.; Davies-Coleman, M.T. Cytotoxic and antioxidant marine prenylated quinones and hydroquinones. Nat. Prod. Rep., 2012, 29(5), 513-535.
[http://dx.doi.org/10.1039/c2np00086e] [PMID: 22382850]
[118]
Jänicke, P.; Lennicke, C.; Meister, A.; Seliger, B.; Wessjohann, L.A.; Kaluđerović, G.N. Fluorescent spherical mesoporous silica nanoparticles loaded with emodin: Synthesis, cellular uptake and anticancer activity. Mater. Sci. Eng. C, 2021, 119, 111619.
[http://dx.doi.org/10.1016/j.msec.2020.111619] [PMID: 33321661]
[119]
Leung, S.W.; Lai, J.H.; Wu, J.C.C.; Tsai, Y.R.; Chen, Y.H.; Kang, S.J.; Chiang, Y.H.; Chang, C.F.; Chen, K.Y. Neuroprotective effects of emodin against ischemia/reperfusion injury through activating ERK-1/2 signaling pathway. Int. J. Mol. Sci., 2020, 21(8), 2899.
[http://dx.doi.org/10.3390/ijms21082899] [PMID: 32326191]
[120]
Xian, M.; Cai, J.; Zheng, K.; Liu, Q.; Liu, Y.; Lin, H.; Liang, S.; Wang, S. Aloe-emodin prevents nerve injury and neuroinflammation caused by ischemic stroke via the PI3K/AKT/mTOR and NF-κB pathway. Food Funct., 2021, 12(17), 8056-8067.
[http://dx.doi.org/10.1039/D1FO01144H] [PMID: 34286782]
[121]
Guo, H.; Shen, X.; Xu, Y.; Yuan, J.; Zhao, D.; Hu, W. Emodin prevents hypoxic-ischemic neuronal injury: Involvement of the activin A pathway. Neural Regen. Res., 2013, 8(15), 1360-1367.
[http://dx.doi.org/10.3969/j.issn.1673-5374.2013.15.002] [PMID: 25206430]
[122]
Ziegler, J.; Facchini, P.J. Alkaloid biosynthesis: metabolism and trafficking. Annu. Rev. Plant Biol., 2008, 59(1), 735-769.
[http://dx.doi.org/10.1146/annurev.arplant.59.032607.092730] [PMID: 18251710]
[123]
Xiong, Y.X.; Huang, Z.S.; Tan, J.H. Targeting G-quadruplex nucleic acids with heterocyclic alkaloids and their derivatives. Eur. J. Med. Chem., 2015, 97, 538-551.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.021] [PMID: 25466923]
[124]
Zhang, C.L.; Huang, Q.L.; Zhu, Q.; He, J.; Chen, J.; Zhang, F.; Cao, Z.Y. Alkaloids from Corydalis decumbens modulate neuronal excitability. Bioorg. Chem., 2020, 99, 103795.
[http://dx.doi.org/10.1016/j.bioorg.2020.103795] [PMID: 32240871]
[125]
Zhang, G.; Zhang, T.; Li, N.; Wu, L.; Gu, J.; Li, C.; Zhao, C.; Liu, W.; Shan, L.; Yu, P.; Yang, X.; Tang, Y.; Yang, G.Y.; Wang, Y.; Sun, Y.; Zhang, Z. Tetramethylpyrazine nitrone activates the BDNF/Akt/CREB pathway to promote post-ischaemic neuroregeneration and recovery of neurological functions in rats. Br. J. Pharmacol., 2018, 175(3), 517-531.
[http://dx.doi.org/10.1111/bph.14102] [PMID: 29161771]
[126]
Chang, Y.; Hsiao, G.; Chen, S.; Chen, Y.; Lin, J.; Lin, K.; Chou, D.; Sheu, J. Tetramethylpyrazine suppresses HIF-1? TNF-? and activated caspase-3 expression in middle cerebral artery occlusion-induced brain ischemia in rats. Acta Pharmacol. Sin., 2007, 28(3), 327-333.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00514.x] [PMID: 17302993]
[127]
Jin, Z.; Liang, J.; Kolattukudy, P.E. Tetramethylpyrazine preserves the integrity of blood-brain barrier associated with upregulation of MCPIP1 in a murine model of focal ischemic stroke. Front. Pharmacol., 2021, 12, 710358.
[http://dx.doi.org/10.3389/fphar.2021.710358] [PMID: 34393790]
[128]
Gong, P.; Zhang, Z.; Zou, Y.; Tian, Q.; Han, S.; Xu, Z.; Liao, J.; Gao, L.; Chen, Q.; Li, M. Tetramethylpyrazine attenuates blood-brain barrier disruption in ischemia/reperfusion injury through the JAK/STAT signaling pathway. Eur. J. Pharmacol., 2019, 854, 289-297.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.028] [PMID: 31004602]
[129]
Loh, K.P.; Qi, J.; Tan, B.K.H.; Liu, X.H.; Wei, B.G.; Zhu, Y.Z. Leonurine protects middle cerebral artery occluded rats through antioxidant effect and regulation of mitochondrial function. Stroke, 2010, 41(11), 2661-2668.
[http://dx.doi.org/10.1161/STROKEAHA.110.589895] [PMID: 20947850]
[130]
Zhang, Q.Y.; Wang, Z.J.; Sun, D.M.; Wang, Y.; Xu, P.; Wu, W.J.; Liu, X.H.; Zhu, Y.Z. Novel therapeutic effects of leonurine on ischemic stroke: New mechanisms of BBB integrity. Oxid. Med. Cell. Longev., 2017, 2017, 1-17.
[http://dx.doi.org/10.1155/2017/7150376] [PMID: 28690765]
[131]
Xie, Y.Z.; Zhang, X.J.; Zhang, C.; Yang, Y.; He, J.N.; Chen, Y.X. Protective effects of leonurine against ischemic stroke in mice by activating nuclear factor erythroid 2-related factor 2 pathway. CNS Neurosci. Ther., 2019, 25(9), 1006-1017.
[http://dx.doi.org/10.1111/cns.13146] [PMID: 31087454]
[132]
Abdel-Rahman, R.F.; El Awdan, S.A.; Hegazy, R.R.; Mansour, D.F.; Ogaly, H.A.; Abdelbaset, M. Neuroprotective effect of Crocus sativus against cerebral ischemia in rats. Metab. Brain Dis., 2020, 35(3), 427-439.
[http://dx.doi.org/10.1007/s11011-019-00505-1] [PMID: 31728890]
[133]
Zhao, L.; Li, H.; Gao, Q.; Xu, J.; Zhu, Y.; Zhai, M.; Zhang, P.; Shen, N.; Di, Y.; Wang, J.; Chen, T.; Huang, M.; Sun, J.; Liu, C. Berberine attenuates cerebral ischemia-reperfusion injury induced neuronal apoptosis by down-regulating the CNPY2 signaling pathway. Front. Pharmacol., 2021, 12, 609693.
[http://dx.doi.org/10.3389/fphar.2021.609693] [PMID: 33995012]
[134]
Zhu, J.; Lu, H.; Guo, C.; Fang, W.; Zhao, H.; Zhou, J.; Wang, F.; Zhao, Y.; Li, Y.; Zhang, Y.; Yang, C.; Sun, J. Berberine attenuates ischemia–reperfusion injury through inhibiting HMGB1 release and NF-κB nuclear translocation. Acta Pharmacol. Sin., 2018, 39(11), 1706-1715.
[http://dx.doi.org/10.1038/s41401-018-0160-1] [PMID: 30266998]
[135]
Zhu, J.; Cao, D.; Guo, C.; Liu, M.; Tao, Y.; Zhou, J.; Wang, F.; Zhao, Y.; Wei, J.; Zhang, Y.; Fang, W.; Li, Y. Berberine facilitates angiogenesis against ischemic stroke through modulating microglial polarization via AMPK signaling. Cell. Mol. Neurobiol., 2019, 39(6), 751-768.
[http://dx.doi.org/10.1007/s10571-019-00675-7] [PMID: 31020571]
[136]
Yu, B.; Sun, J.; Yang, X. Assembly of naturally occurring glycosides, evolved tactics, and glycosylation methods. Acc. Chem. Res., 2012, 45(8), 1227-1236.
[http://dx.doi.org/10.1021/ar200296m] [PMID: 22493991]
[137]
Li, Y.; Yang, Y.; Zhao, Y.; Zhang, J.; Liu, B.; Jiao, S.; Zhang, X. Astragaloside IV reduces neuronal apoptosis and parthanatos in ischemic injury by preserving mitochondrial hexokinase-II. Free Radic. Biol. Med., 2019, 131, 251-263.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.11.033] [PMID: 30502455]
[138]
Zhang, Y.; Zhang, Y.; Jin, X.; Zhou, X.; Dong, X.; Yu, W.; Gao, W. The role of astragaloside IV against cerebral ischemia/reperfusion injury: suppression of apoptosis via promotion of P62-LC3-autophagy. Molecules, 2019, 24(9), 1838.
[http://dx.doi.org/10.3390/molecules24091838] [PMID: 31086091]
[139]
Du, S.J.; Zhang, Y.; Zhao, Y.M.; Dong, Y.J.; Tang, J.L.; Zhou, X.H.; Gao, W.J. Astragaloside IV attenuates cerebral ischemia-reperfusion injury in rats through the inhibition of calcium-sensing receptor-mediated apoptosis. Int. J. Mol. Med., 2020, 47(1), 302-314.
[http://dx.doi.org/10.3892/ijmm.2020.4777] [PMID: 33416112]
[140]
Xu, Z.; Liu, W.; Huang, H.; Astragaloside, I.V.; Astragaloside, IV Alleviates Cerebral Ischemia-Reperfusion Injury by Activating the Janus Kinase 2 and Signal Transducer and Activator of Transcription 3 Signaling Pathway. Pharmacology, 2020, 105(3-4), 181-189.
[http://dx.doi.org/10.1159/000503361] [PMID: 31825924]
[141]
Wang, H.L.; Zhou, Q.H.; Xu, M.B.; Zhou, X.L.; Zheng, G.Q. Astragaloside IV for Experimental Focal Cerebral Ischemia: Preclinical Evidence and Possible Mechanisms. Oxid. Med. Cell. Longev., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/8424326] [PMID: 28303172]
[142]
Min, Y.J.; Ling, E.A.; Li, F. Immunomodulatory mechanism and potential therapies for perinatal hypoxic-ischemic brain damage. Front. Pharmacol., 2020, 11, 580428.
[http://dx.doi.org/10.3389/fphar.2020.580428] [PMID: 33536907]
[143]
Xie, W.; Zhou, P.; Sun, Y.; Meng, X.; Dai, Z.; Sun, G.; Sun, X. Protective effects and target network analysis of ginsenoside Rg1 in cerebral ischemia and reperfusion injury: A comprehensive overview of experimental studies. Cells, 2018, 7(12), 270.
[http://dx.doi.org/10.3390/cells7120270] [PMID: 30545139]
[144]
Zhong, Z.; Han, J.; Zhang, J.; Xiao, Q.; Hu, J.; Chen, L. Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system. Drug Des. Devel. Ther., 2018, 12, 1479-1489.
[http://dx.doi.org/10.2147/DDDT.S160776] [PMID: 29872270]
[145]
Neelam; Khatkar, A.; Sharma, K.K. Phenylpropanoids and its derivatives: biological activities and its role in food, pharmaceutical and cosmetic industries. Crit. Rev. Food Sci. Nutr., 2020, 60(16), 2655-2675.
[http://dx.doi.org/10.1080/10408398.2019.1653822] [PMID: 31456411]
[146]
Ni, X.C.; Wang, H.F.; Cai, Y.Y.; Yang, D.; Alolga, R.N.; Liu, B.; Li, J.; Huang, F.Q. Ginsenoside Rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemic stroke. Redox Biol., 2022, 54, 102363.
[http://dx.doi.org/10.1016/j.redox.2022.102363] [PMID: 35696763]
[147]
Huang, Q.; Su, H.; Qi, B.; Wang, Y.; Yan, K.; Wang, X.; Li, X.; Zhao, D.A SIRT1 Activator, Ginsenoside Rc, Promotes Energy Metabolism in Cardiomyocytes and Neurons. J. Am. Chem. Soc., 2021, 143(3), 1416-1427.
[http://dx.doi.org/10.1021/jacs.0c10836] [PMID: 33439015]
[148]
Zhang, J.; Liu, M.; Huang, M.; Chen, M.; Zhang, D.; Luo, L.; Ye, G.; Deng, L.; Peng, Y.; Wu, X.; Liu, G.; Ye, W.; Zhang, D. Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway. Pharmacol. Res., 2019, 144, 292-305.
[http://dx.doi.org/10.1016/j.phrs.2019.04.021] [PMID: 31048033]
[149]
Ge, Y.; Zhen, F.; Liu, Z.; Feng, Z.; Wang, G.; Zhang, C.; Wang, X.; Sun, Y.; Zheng, X.; Bai, Y.; Yao, R. Alpha-Asaronol Alleviates Dysmyelination by Enhancing Glutamate Transport Through the Activation of PPARγ-GLT-1 Signaling in Hypoxia-Ischemia Neonatal Rats. Front. Pharmacol., 2022, 13, 766744.
[http://dx.doi.org/10.3389/fphar.2022.766744] [PMID: 35401225]
[150]
Zhang, K.; Liu, Q.; Luo, L.; Feng, X.; Hu, Q.; Fan, X.; Mao, S. Neuroprotective Effect of Alpha-asarone on the Rats Model of Cerebral Ischemia–Reperfusion Stroke via Ameliorating Glial Activation and Autophagy. Neuroscience, 2021, 473, 130-141.
[http://dx.doi.org/10.1016/j.neuroscience.2021.08.006] [PMID: 34416342]
[151]
Mo, Z.; Fang, Y.; He, Y.; Zhang, S. β-Asarone protects PC12 cells against OGD/R-induced injury via attenuating Beclin-1-dependent autophagy. Acta Pharmacol. Sin., 2012, 33(6), 737-742.
[http://dx.doi.org/10.1038/aps.2012.35] [PMID: 22543703]
[152]
Liu, L.; Fang, Y.Q.; Xue, Z.F.; He, Y.P.; Fang, R.M.; Li, L. Beta-asarone attenuates ischemia–reperfusion-induced autophagy in rat brains via modulating JNK, p-JNK, Bcl-2 and Beclin 1. Eur. J. Pharmacol., 2012, 680(1-3), 34-40.
[http://dx.doi.org/10.1016/j.ejphar.2012.01.016] [PMID: 22306244]
[153]
Yang, Y.X.; Chen, Y.T.; Zhou, X.J.; Hong, C.L.; Li, C.Y.; Guo, J.Y. Beta-asarone, a major component of Acorus tatarinowii Schott, attenuates focal cerebral ischemia induced by middle cerebral artery occlusion in rats. BMC Complement. Altern. Med., 2013, 13(1), 236.
[http://dx.doi.org/10.1186/1472-6882-13-236] [PMID: 24066702]
[154]
Cheng, C.; Su, S.; Tang, N.; Ho, T.; Lo, W.; Hsieh, C. Ferulic acid inhibits nitric oxide-induced apoptosis by enhancing GABAB1 receptor expression in transient focal cerebral ischemia in rats. Acta Pharmacol. Sin., 2010, 31(8), 889-899.
[http://dx.doi.org/10.1038/aps.2010.66] [PMID: 20644551]
[155]
Wei, X.; Zhao, L.; Ma, Z.; Holtzman, D.M.; Yan, C.; Dodel, R.C.; Hampel, H.; Oertel, W.; Farlow, M.R.; Du, Y. Caffeic acid phenethyl ester prevents neonatal hypoxic-ischaemic brain injury. Brain, 2004, 127(12), 2629-2635.
[http://dx.doi.org/10.1093/brain/awh316] [PMID: 15469948]
[156]
Yang, J.; Vitery, M.C.; Chen, J.; Osei-Owusu, J.; Chu, J.; Qiu, Z. Glutamate-Releasing SWELL1 Channel in Astrocytes Modulates Synaptic Transmission and Promotes Brain Damage in Stroke. Neuron, 2019, 102(4), 813-827.e6.
[http://dx.doi.org/10.1016/j.neuron.2019.03.029] [PMID: 30982627]
[157]
Caldeira, M.V.; Salazar, I.L.; Curcio, M.; Canzoniero, L.M.T.; Duarte, C.B. Role of the ubiquitin–proteasome system in brain ischemia: Friend or foe? Prog. Neurobiol., 2014, 112, 50-69.
[http://dx.doi.org/10.1016/j.pneurobio.2013.10.003] [PMID: 24157661]
[158]
Marshall, J.; Dolan, B.M.; Garcia, E.P.; Sathe, S.; Tang, X.; Mao, Z.; Blair, L.A.C. Calcium channel and NMDA receptor activities differentially regulate nuclear C/EBPbeta levels to control neuronal survival. Neuron, 2003, 39(4), 625-639.
[http://dx.doi.org/10.1016/S0896-6273(03)00496-3] [PMID: 12925277]
[159]
Sattler, R.; Tymianski, M. Molecular mechanisms of calcium-dependent excitotoxicity. J. Mol. Med. (Berl.), 2000, 78(1), 3-13.
[http://dx.doi.org/10.1007/s001090000077] [PMID: 10759025]
[160]
Farooqui, A.A.; Horrocks, L.A. Involvement of glutamate receptors, lipases, and phospholipases in long-term potentiation and neurodegeneration. J. Neurosci. Res., 1994, 38(1), 6-11.
[http://dx.doi.org/10.1002/jnr.490380103] [PMID: 8057391]
[161]
Liu, A.; Wu, J.; Yang, C.; Wu, Y.; Zhang, Y.; Zhao, F.; Wang, H.; Yuan, L.; Song, L.; Zhu, T.; Fan, Y.; Yang, B. TRPM7 in CHBP-induced renoprotection upon ischemia reperfusion-related injury. Sci. Rep., 2018, 8(1), 5510.
[http://dx.doi.org/10.1038/s41598-018-22852-2] [PMID: 29615639]
[162]
Liu, A.; Yang, B. Roles of TRPM7 in Renal Ischemia-Reperfusion Injury. Curr. Protein Pept. Sci., 2019, 20(8), 777-788.
[http://dx.doi.org/10.2174/1389203720666190507102948] [PMID: 31060485]
[163]
Jia, J.; Verma, S.; Nakayama, S.; Quillinan, N.; Grafe, M.R.; Hurn, P.D.; Herson, P.S. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J. Cereb. Blood Flow Metab., 2011, 31(11), 2160-2168.
[http://dx.doi.org/10.1038/jcbfm.2011.77] [PMID: 21587268]
[164]
Hu, J.; Pang, W.S.; Han, J.; Zhang, K.; Zhang, J.Z.; Chen, L.D. Gualou Guizhi decoction reverses brain damage with cerebral ischemic stroke, multi-component directed multi-target to screen calcium-overload inhibitors using combination of molecular docking and protein–protein docking. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 115-125.
[http://dx.doi.org/10.1080/14756366.2017.1396457] [PMID: 29185359]
[165]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[166]
Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med., 2007, 13(6), 688-694.
[http://dx.doi.org/10.1038/nm1577] [PMID: 17486089]
[167]
Honda, H.M.; Korge, P.; Weiss, J.N. Mitochondria and ischemia/reperfusion injury. Ann. N. Y. Acad. Sci., 2005, 1047(1), 248-258.
[http://dx.doi.org/10.1196/annals.1341.022] [PMID: 16093501]
[168]
Gong, J.; Sun, F.; Li, Y.; Zhou, X.; Duan, Z.; Duan, F.; Zhao, L.; Chen, H.; Qi, S.; Shen, J. Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway. Neuropharmacology, 2015, 91, 123-134.
[http://dx.doi.org/10.1016/j.neuropharm.2014.11.020] [PMID: 25510970]
[169]
Hybertson, B.M.; Gao, B.; Bose, S.K.; McCord, J.M. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol. Aspects Med., 2011, 32(4-6), 234-246.
[http://dx.doi.org/10.1016/j.mam.2011.10.006] [PMID: 22020111]
[170]
Kumar, H.; Kim, I.S.; More, S.V.; Kim, B.W.; Choi, D.K. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat. Prod. Rep., 2014, 31(1), 109-139.
[http://dx.doi.org/10.1039/C3NP70065H] [PMID: 24292194]
[171]
Wu, L.; Wang, H.; Li, J.; Feng, H.; Zhao, W.; Zhang, H. Dual anti-ischemic effects of rosmarinic acid n-butyl ester via alleviation of DAPK-p53-mediated neuronal damage and microglial inflammation. Acta Pharmacol. Sin., 2017, 38(4), 459-468.
[http://dx.doi.org/10.1038/aps.2016.156] [PMID: 28216621]
[172]
Giacomello, M.; Pyakurel, A.; Glytsou, C.; Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol., 2020, 21(4), 204-224.
[http://dx.doi.org/10.1038/s41580-020-0210-7] [PMID: 32071438]
[173]
Yang, J.L.; Mukda, S.; Chen, S.D. Diverse roles of mitochondria in ischemic stroke. Redox Biol., 2018, 16, 263-275.
[http://dx.doi.org/10.1016/j.redox.2018.03.002] [PMID: 29549824]
[174]
Gallego, I.; Villate-Beitia, I.; Saenz-del-Burgo, L.; Puras, G.; Pedraz, J.L. Therapeutic opportunities and delivery strategies for brain revascularization in stroke, neurodegeneration, and aging. Pharmacol. Rev., 2022, 74(2), 439-461.
[http://dx.doi.org/10.1124/pharmrev.121.000418] [PMID: 35302047]
[175]
Yousufuddin, M.; Young, N. Aging and ischemic stroke. Aging (Albany NY), 2019, 11(9), 2542-2544.
[http://dx.doi.org/10.18632/aging.101931] [PMID: 31043575]
[176]
Whitaker, R.M.; Corum, D.; Beeson, C.C.; Schnellmann, R.G. Mitochondrial biogenesis as a pharmacological target: A new approach to acute and chronic diseases. Annu. Rev. Pharmacol. Toxicol., 2016, 56(1), 229-249.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103155] [PMID: 26566156]
[177]
Archer, S.L. Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N. Engl. J. Med., 2013, 369(23), 2236-2251.
[http://dx.doi.org/10.1056/NEJMra1215233] [PMID: 24304053]
[178]
Huang, P.; Galloway, C.A.; Yoon, Y. Control of mitochondrial morphology through differential interactions of mitochondrial fusion and fission proteins. PLoS One, 2011, 6(5), e20655.
[http://dx.doi.org/10.1371/journal.pone.0020655] [PMID: 21647385]
[179]
Chen, S.D.; Lin, T.K.; Yang, D.I.; Lee, S.Y.; Shaw, F.Z.; Liou, C.W.; Chuang, Y.C. Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury. Biochem. Biophys. Res. Commun., 2015, 460(2), 397-403.
[http://dx.doi.org/10.1016/j.bbrc.2015.03.045] [PMID: 25791474]
[180]
Grohm, J.; Kim, S-W.; Mamrak, U.; Tobaben, S.; Cassidy-Stone, A.; Nunnari, J.; Plesnila, N.; Culmsee, C. Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death Differ., 2012, 19(9), 1446-1458.
[http://dx.doi.org/10.1038/cdd.2012.18] [PMID: 22388349]
[181]
Kesherwani, V.; Atif, F.; Yousuf, S.; Agrawal, S.K. Resveratrol protects spinal cord dorsal column from hypoxic injury by activating Nrf-2. Neuroscience, 2013, 241, 80-88.
[http://dx.doi.org/10.1016/j.neuroscience.2013.03.015] [PMID: 23523995]
[182]
Rajasekar, N.; Dwivedi, S.; Tota, S.; Kamat, P.K.; Hanif, K.; Nath, C.; Shukla, R. Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur. J. Pharmacol., 2013, 715(1-3), 381-394.
[http://dx.doi.org/10.1016/j.ejphar.2013.04.033] [PMID: 23685326]
[183]
Liu, L.; Zhang, W.; Wang, L.; Li, Y.; Tan, B.; Lu, X.; Deng, Y.; Zhang, Y.; Guo, X.; Mu, J.; Yu, G. Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis. Neurochem. Res., 2014, 39(7), 1322-1331.
[http://dx.doi.org/10.1007/s11064-014-1315-1] [PMID: 24777807]
[184]
Liu, P.; Zou, D.; Chen, K.; Zhou, Q.; Gao, Y.; Huang, Y.; Zhu, J.; Zhang, Q.; Mi, M. Dihydromyricetin Improves Hypobaric Hypoxia-Induced Memory Impairment via Modulation of SIRT3 Signaling. Mol. Neurobiol., 2016, 53(10), 7200-7212.
[http://dx.doi.org/10.1007/s12035-015-9627-y] [PMID: 26687185]
[185]
Sabogal-Guáqueta, A.M.; Hobbie, F.; Keerthi, A.; Oun, A.; Kortholt, A.; Boddeke, E.; Dolga, A. Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomed. Pharmacother., 2019, 118, 109295.
[http://dx.doi.org/10.1016/j.biopha.2019.109295] [PMID: 31545255]
[186]
Wang, L.Y.; Wu, J.; Yang, Z.; Wang, X.J.; Fu, Y.; Liu, S.Z.; Wang, H.M.; Zhu, W.L.; Zhang, H.Y.; Zhao, W.M. (M)- and (P)-bicelaphanol A, dimeric trinorditerpenes with promising neuroprotective activity from Celastrus orbiculatus. J. Nat. Prod., 2013, 76(4), 745-749.
[http://dx.doi.org/10.1021/np3008182] [PMID: 23421714]
[187]
Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282.
[http://dx.doi.org/10.1038/s41580-020-00324-8] [PMID: 33495651]
[188]
Tuo, Q.; Lei, P.; Jackman, K.A.; Li, X.; Xiong, H.; Li, X.; Liuyang, Z.; Roisman, L.; Zhang, S.; Ayton, S.; Wang, Q.; Crouch, P.J.; Ganio, K.; Wang, X.; Pei, L.; Adlard, P.A.; Lu, Y.; Cappai, R.; Wang, J.; Liu, R.; Bush, A.I. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol. Psychiatry, 2017, 22(11), 1520-1530.
[http://dx.doi.org/10.1038/mp.2017.171] [PMID: 28886009]
[189]
Zheng, K.; Dong, Y.; Yang, R.; Liang, Y.; Wu, H.; He, Z. Regulation of ferroptosis by bioactive phytochemicals: Implications for medical nutritional therapy. Pharmacol. Res., 2021, 168, 105580.
[http://dx.doi.org/10.1016/j.phrs.2021.105580] [PMID: 33781874]
[190]
Robertson, G.S.; Crocker, S.J.; Nicholson, D.W.; Schulz, J.B. Neuroprotection by the inhibition of apoptosis. Brain Pathol., 2000, 10(2), 283-292.
[http://dx.doi.org/10.1111/j.1750-3639.2000.tb00262.x] [PMID: 10764048]
[191]
Hengartner, M.O. The biochemistry of apoptosis. Nature, 2000, 407(6805), 770-776.
[http://dx.doi.org/10.1038/35037710] [PMID: 11048727]
[192]
Luo, X.; Budihardjo, I.; Zou, H.; Slaughter, C.; Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell, 1998, 94(4), 481-490.
[http://dx.doi.org/10.1016/S0092-8674(00)81589-5] [PMID: 9727491]
[193]
Fischer, U.; Schulze-Osthoff, K. New approaches and therapeutics targeting apoptosis in disease. Pharmacol. Rev., 2005, 57(2), 187-215.
[http://dx.doi.org/10.1124/pr.57.2.6] [PMID: 15914467]
[194]
Daniel, P.T.; Koert, U.; Schuppan, J. Apoptolidin: induction of apoptosis by a natural product. Angew. Chem. Int. Ed., 2006, 45(6), 872-893.
[http://dx.doi.org/10.1002/anie.200502698] [PMID: 16404760]
[195]
Melnikova, I.; Golden, J. Apoptosis-targeting therapies. Nat. Rev. Drug Discov., 2004, 3(11), 905-906.
[http://dx.doi.org/10.1038/nrd1554] [PMID: 15558860]
[196]
Alam, J.J. Apoptosis: target for novel drugs. Trends Biotechnol., 2003, 21(11), 479-483.
[http://dx.doi.org/10.1016/j.tibtech.2003.08.006] [PMID: 14573360]
[197]
Love, S. Apoptosis and brain ischaemia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(2), 267-282.
[http://dx.doi.org/10.1016/S0278-5846(03)00022-8] [PMID: 12657366]
[198]
Kang, J.W.; Kim, J.H.; Song, K.; Kim, S.H.; Yoon, J.H.; Kim, K.S. Kaempferol and quercetin, components of Ginkgo biloba extract (EGb 761), induce caspase-3-dependent apoptosis in oral cavity cancer cells. Phytother. Res., 2010, 24(Suppl. 1), S77-S82.
[http://dx.doi.org/10.1002/ptr.2913] [PMID: 19585476]
[199]
Kar, S.; Palit, S.; Ball, W.B.; Das, P.K. Carnosic acid modulates Akt/IKK/NF-κB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. Apoptosis, 2012, 17(7), 735-747.
[http://dx.doi.org/10.1007/s10495-012-0715-4] [PMID: 22453599]
[200]
Wang, Y.; Ma, H.; Huang, J.; Yao, Z.; Yu, J.; Zhang, W.; Zhang, L.; Wang, Z.; Zhuang, C. Discovery of bardoxolone derivatives as novel orally active necroptosis inhibitors. Eur. J. Med. Chem., 2021, 212, 113030.
[http://dx.doi.org/10.1016/j.ejmech.2020.113030] [PMID: 33248849]
[201]
Delehouzé, C.; Leverrier-Penna, S.; Le Cann, F.; Comte, A.; Jacquard-Fevai, M.; Delalande, O.; Desban, N.; Baratte, B.; Gallais, I.; Faurez, F.; Bonnet, M.C.; Hauteville, M.; Goekjian, P.G.; Thuillier, R.; Favreau, F.; Vandenabeele, P.; Hauet, T.; Dimanche-Boitrel, M.T.; Bach, S. 6E11, a highly selective inhibitor of Receptor-Interacting Protein Kinase 1, protects cells against cold hypoxia-reoxygenation injury. Sci. Rep., 2017, 7(1), 12931.
[http://dx.doi.org/10.1038/s41598-017-12788-4] [PMID: 29018243]
[202]
Newton, K.; Wickliffe, K.E.; Dugger, D.L.; Maltzman, A.; Roose-Girma, M.; Dohse, M.; Kőműves, L.; Webster, J.D.; Dixit, V.M. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature, 2019, 574(7778), 428-431.
[http://dx.doi.org/10.1038/s41586-019-1548-x] [PMID: 31511692]
[203]
Wang, W.; Qiao, O.; Ji, H.; Zhang, X.; Han, X.; Zhang, Y.; Wang, J.; Li, X.; Gao, W. Autophagy in vascular dementia and natural products with autophagy regulating activity. Pharmacol. Res., 2021, 170, 105756.
[http://dx.doi.org/10.1016/j.phrs.2021.105756] [PMID: 34237440]
[204]
Adhami, F.; Schloemer, A.; Kuan, C.Y. The roles of autophagy in cerebral ischemia. Autophagy, 2007, 3(1), 42-44.
[http://dx.doi.org/10.4161/auto.3412] [PMID: 17035724]
[205]
Liu, Y.; Xue, X.; Zhang, H.; Che, X.; Luo, J.; Wang, P.; Xu, J.; Xing, Z.; Yuan, L.; Liu, Y.; Fu, X.; Su, D.; Sun, S.; Zhang, H.; Wu, C.; Yang, J. Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia. Autophagy, 2019, 15(3), 493-509.
[http://dx.doi.org/10.1080/15548627.2018.1531196] [PMID: 30304977]
[206]
Zhang, X.; Yan, H.; Yuan, Y.; Gao, J.; Shen, Z.; Cheng, Y.; Shen, Y.; Wang, R.R.; Wang, X.; Hu, W.W.; Wang, G.; Chen, Z. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy, 2013, 9(9), 1321-1333.
[http://dx.doi.org/10.4161/auto.25132] [PMID: 23800795]
[207]
Zhan, L.; Liu, L.; Li, K.; Wu, B.; Liu, D.; Liang, D.; Wen, H.; Wang, Y.; Sun, W.; Liao, W.; Xu, E. Neuroprotection of hypoxic postconditioning against global cerebral ischemia through influencing posttranslational regulations of heat shock protein 27 in adult rats. Brain Pathol., 2017, 27(6), 822-838.
[http://dx.doi.org/10.1111/bpa.12472] [PMID: 27936516]
[208]
Zhan, L.; Chen, S.; Li, K.; Liang, D.; Zhu, X.; Liu, L.; Lu, Z.; Sun, W.; Xu, E. Autophagosome maturation mediated by Rab7 contributes to neuroprotection of hypoxic preconditioning against global cerebral ischemia in rats. Cell Death Dis., 2017, 8(7), e2949.
[http://dx.doi.org/10.1038/cddis.2017.330] [PMID: 28726776]
[209]
Wen, Y.D.; Sheng, R.; Zhang, L.S.; Han, R.; Zhang, X.; Zhang, X.D.; Han, F.; Fukunaga, K.; Qin, Z.H. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy, 2008, 4(6), 762-769.
[http://dx.doi.org/10.4161/auto.6412] [PMID: 18567942]
[210]
Xie, C.; Ginet, V.; Sun, Y.; Koike, M.; Zhou, K.; Li, T.; Li, H.; Li, Q.; Wang, X.; Uchiyama, Y.; Truttmann, A.C.; Kroemer, G.; Puyal, J.; Blomgren, K.; Zhu, C. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy, 2016, 12(2), 410-423.
[http://dx.doi.org/10.1080/15548627.2015.1132134] [PMID: 26727396]
[211]
Ginet, V.; Spiehlmann, A.; Rummel, C.; Rudinskiy, N.; Grishchuk, Y.; Luthi-Carter, R.; Clarke, P.G.H.; Truttmann, A.C.; Puyal, J. Involvement of autophagy in hypoxic-excitotoxic neuronal death. Autophagy, 2014, 10(5), 846-860.
[http://dx.doi.org/10.4161/auto.28264] [PMID: 24674959]
[212]
Cătană, C.S.; Atanasov, A.G.; Berindan-Neagoe, I. Natural products with anti-aging potential: Affected targets and molecular mechanisms. Biotechnol. Adv., 2018, 36(6), 1649-1656.
[http://dx.doi.org/10.1016/j.biotechadv.2018.03.012] [PMID: 29597027]
[213]
Guo, D.; Xie, J.; Zhao, J.; Huang, T.; Guo, X.; Song, J. Resveratrol protects early brain injury after subarachnoid hemorrhage by activating autophagy and inhibiting apoptosis mediated by the Akt/mTOR pathway. Neuroreport, 2018, 29(5), 368-379.
[http://dx.doi.org/10.1097/WNR.0000000000000975] [PMID: 29360689]
[214]
Breuss, J.; Atanasov, A.; Uhrin, P. Resveratrol and Its Effects on the Vascular System. Int. J. Mol. Sci., 2019, 20(7), 1523.
[http://dx.doi.org/10.3390/ijms20071523] [PMID: 30934670]
[215]
Zhang, Y.; Miao, J.M. Ginkgolide K promotes astrocyte proliferation and migration after oxygen-glucose deprivation via inducing protective autophagy through the AMPK/mTOR/ULK1 signaling pathway. Eur. J. Pharmacol., 2018, 832, 96-103.
[http://dx.doi.org/10.1016/j.ejphar.2018.05.029] [PMID: 29787772]
[216]
Roussel, B.D.; Kruppa, A.J.; Miranda, E.; Crowther, D.C.; Lomas, D.A.; Marciniak, S.J. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol., 2013, 12(1), 105-118.
[http://dx.doi.org/10.1016/S1474-4422(12)70238-7] [PMID: 23237905]
[217]
Hernández-Fonseca, K.; Massieu, L. Disruption of endoplasmic reticulum calcium stores is involved in neuronal death induced by glycolysis inhibition in cultured hippocampal neurons. J. Neurosci. Res., 2005, 82(2), 196-205.
[http://dx.doi.org/10.1002/jnr.20631] [PMID: 16175570]
[218]
Bettigole, S.E.; Glimcher, L.H. Endoplasmic reticulum stress in immunity. Annu. Rev. Immunol., 2015, 33(1), 107-138.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112116] [PMID: 25493331]
[219]
Oyadomari, S.; Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ., 2004, 11(4), 381-389.
[http://dx.doi.org/10.1038/sj.cdd.4401373] [PMID: 14685163]
[220]
Paschen, W.; Mengesdorf, T. Cellular abnormalities linked to endoplasmic reticulum dysfunction in cerebrovascular disease—therapeutic potential. Pharmacol. Ther., 2005, 108(3), 362-375.
[http://dx.doi.org/10.1016/j.pharmthera.2005.05.008] [PMID: 16140387]
[221]
Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol., 2012, 13(2), 89-102.
[http://dx.doi.org/10.1038/nrm3270] [PMID: 22251901]
[222]
Thastrup, O.; Dawson, A.P.; Scharff, O.; Foder, B.; Cullen, P.J.; Drøbak, B.K.; Bjerrum, P.J.; Christensen, S.B.; Hanley, M.R. Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents Actions, 1994, 43(3-4), 187-193.
[http://dx.doi.org/10.1007/BF01986687] [PMID: 7725971]
[223]
Pereira, D.M.; Valentão, P.; Correia-da-Silva, G.; Teixeira, N.; Andrade, P.B. Translating endoplasmic reticulum biology into the clinic: a role for ER-targeted natural products? Nat. Prod. Rep., 2015, 32(5), 705-722.
[http://dx.doi.org/10.1039/C4NP00102H] [PMID: 25703279]
[224]
Doeppner, T.R.; Mlynarczuk-Bialy, I.; Kuckelkorn, U.; Kaltwasser, B.; Herz, J.; Hasan, M.R.; Hermann, D.M.; Bähr, M. The novel proteasome inhibitor BSc2118 protects against cerebral ischaemia through HIF1A accumulation and enhanced angioneurogenesis. Brain, 2012, 135(11), 3282-3297.
[http://dx.doi.org/10.1093/brain/aws269] [PMID: 23169919]
[225]
Yang, H.; Chen, D.; Cui, Q.C.; Yuan, X.; Dou, Q.P. Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res., 2006, 66(9), 4758-4765.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4529] [PMID: 16651429]
[226]
Fenteany, G.; Standaert, R.F.; Lane, W.S.; Choi, S.; Corey, E.J.; Schreiber, S.L. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science, 1995, 268(5211), 726-731.
[http://dx.doi.org/10.1126/science.7732382] [PMID: 7732382]
[227]
Matzinger, P. Friendly and dangerous signals: is the tissue in control? Nat. Immunol., 2007, 8(1), 11-13.
[http://dx.doi.org/10.1038/ni0107-11] [PMID: 17179963]
[228]
Chae, U.; Min, J.S.; Lee, H.; Song, K.S.; Lee, H.S.; Lee, H.J.; Lee, S.R.; Lee, D.S. Chrysophanol suppresses pro-inflammatory response in microglia via regulation of Drp1-dependent mitochondrial fission. Immunopharmacol. Immunotoxicol., 2017, 39(5), 268-275.
[http://dx.doi.org/10.1080/08923973.2017.1344988] [PMID: 28703078]
[229]
Zhao, Q.; Ding, Y.; Deng, Z.; Lee, O.Y.; Gao, P.; Chen, P.; Rose, R.J.; Zhao, H.; Zhang, Z.; Tao, X.P.; Heck, A.J.R.; Kao, R.; Yang, D. Natural products triptolide, celastrol, and withaferin A inhibit the chaperone activity of peroxiredoxin I. Chem. Sci. (Camb.), 2015, 6(7), 4124-4130.
[http://dx.doi.org/10.1039/C5SC00633C] [PMID: 28717468]
[230]
Hao, M.; Li, X.; Feng, J.; Pan, N. Triptolide Protects Against Ischemic Stroke in Rats. Inflammation, 2015, 38(4), 1617-1623.
[http://dx.doi.org/10.1007/s10753-015-0137-x] [PMID: 25687641]
[231]
Lee, T.H.; Jung, C.H.; Lee, D.H. Neuroprotective effects of Schisandrin B against transient focal cerebral ischemia in Sprague–Dawley rats. Food Chem. Toxicol., 2012, 50(12), 4239-4245.
[http://dx.doi.org/10.1016/j.fct.2012.08.047] [PMID: 22960133]
[232]
Jung, H.W.; Kang, S.Y.; Park, K.H.; Oh, T.W.; Jung, J.K.; Kim, S.H.; Choi, D.J.; Park, Y.K. Effect of the semen extract of Thuja orientalis on inflammatory responses in transient focal cerebral ischemia rat model and LPS-stimulated BV-2 microglia. Am. J. Chin. Med., 2013, 41(1), 99-117.
[http://dx.doi.org/10.1142/S0192415X13500080] [PMID: 23336510]
[233]
Elango, C.; Jayachandaran, K.S.; Niranjali Devaraj, S. Hawthorn extract reduces infarct volume and improves neurological score by reducing oxidative stress in rat brain following middle cerebral artery occlusion. Int. J. Dev. Neurosci., 2009, 27(8), 799-803.
[http://dx.doi.org/10.1016/j.ijdevneu.2009.08.008] [PMID: 19712738]
[234]
Chen, N.; Chiu, P.Y.; Ko, K.M. Schisandrin B enhances cerebral mitochondrial antioxidant status and structural integrity, and protects against cerebral ischemia/reperfusion injury in rats. Biol. Pharm. Bull., 2008, 31(7), 1387-1391.
[http://dx.doi.org/10.1248/bpb.31.1387] [PMID: 18591780]
[235]
Kang, B.K.; Kim, M.K.; Kim, S.Y.; Lee, S.J.; Choi, Y.W.; Choi, B.T.; Shin, H.K. Anti-neuroinflammatory effects of Uncaria sinensis in LPS-stimulated BV2 microglia cells and focal cerebral ischemic mice. Am. J. Chin. Med., 2015, 43(6), 1099-1115.
[http://dx.doi.org/10.1142/S0192415X15500639] [PMID: 26364663]
[236]
Ballabh, P.; Braun, A.; Nedergaard, M. The blood-brain barrier: an overview. Neurobiol. Dis., 2004, 16(1), 1-13.
[http://dx.doi.org/10.1016/j.nbd.2003.12.016] [PMID: 15207256]
[237]
Oldendorf, W.H.; Cornford, M.E.; Brown, W.J. The large apparent work capability of the blood-brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann. Neurol., 1977, 1(5), 409-417.
[http://dx.doi.org/10.1002/ana.410010502] [PMID: 617259]
[238]
D’Souza, A.; Dave, K.M.; Stetler, R.A.; S Manickam, D. Targeting the blood-brain barrier for the delivery of stroke therapies. Adv. Drug Deliv. Rev., 2021, 171, 332-351.
[http://dx.doi.org/10.1016/j.addr.2021.01.015] [PMID: 33497734]
[239]
Parodi-Rullán, R.; Sone, J.Y.; Fossati, S. Endothelial mitochondrial dysfunction in cerebral amyloid angiopathy and Alzheimer’s disease. J. Alzheimers Dis., 2019, 72(4), 1019-1039.
[http://dx.doi.org/10.3233/JAD-190357] [PMID: 31306129]
[240]
Kim, K.A.; Shin, D.; Kim, J.H.; Shin, Y.J.; Rajanikant, G.K.; Majid, A.; Baek, S.H.; Bae, O.N. Role of autophagy in endothelial damage and blood-brain barrier disruption in ischemic stroke. Stroke, 2018, 49(6), 1571-1579.
[http://dx.doi.org/10.1161/STROKEAHA.117.017287] [PMID: 29724893]
[241]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[242]
Pardridge, W.M. Neurotrophins, neuroprotection and the blood-brain barrier. Curr. Opin. Investig. Drugs, 2002, 3(12), 1753-1757.
[PMID: 12528312]
[243]
Dang, B.; Duan, X.; Wang, Z.; He, W.; Chen, G. A therapeutic target of cerebral hemorrhagic stroke: Matrix metalloproteinase-9. Curr. Drug Targets, 2017, 18(12), 1358-1366.
[http://dx.doi.org/10.2174/1389450118666170427151657] [PMID: 28460607]
[244]
Seo, H.B.; Kang, B.K.; Kim, J.H.; Choi, Y.W.; Hong, J.W.; Choi, B.T.; Shin, H.K. Partially purified components of Uncaria sinensis attenuate blood brain barrier disruption after ischemic brain injury in mice. BMC Complement. Altern. Med., 2015, 15(1), 157.
[http://dx.doi.org/10.1186/s12906-015-0678-4] [PMID: 26012470]
[245]
Tang, C.; Xue, H.; Bai, C.; Fu, R.; Wu, A. The effects of Tanshinone IIA on blood–brain barrier and brain edema after transient middle cerebral artery occlusion in rats. Phytomedicine, 2010, 17(14), 1145-1149.
[http://dx.doi.org/10.1016/j.phymed.2010.03.017] [PMID: 20570121]
[246]
Huang, P.; Zhou, C.M.; Qin-Hu; Liu, Y.Y.; Hu, B.H.; Chang, X.; Zhao, X.R.; Xu, X.S.; Li, Q.; Wei, X.H.; Mao, X.W.; Wang, C.S.; Fan, J.Y.; Han, J.Y. Cerebralcare Granule® attenuates blood–brain barrier disruption after middle cerebral artery occlusion in rats. Exp. Neurol., 2012, 237(2), 453-463.
[http://dx.doi.org/10.1016/j.expneurol.2012.07.017] [PMID: 22868201]
[247]
Liu, Y.; Tang, G.H.; Sun, Y.H.; Lin, X.J.; Wei, C.; Yang, G.Y.; Liu, J.R. The protective role of Tongxinluo on blood–brain barrier after ischemia–reperfusion brain injury. J. Ethnopharmacol., 2013, 148(2), 632-639.
[http://dx.doi.org/10.1016/j.jep.2013.05.018] [PMID: 23707212]
[248]
Doyle, K.P.; Simon, R.P.; Stenzel-Poore, M.P. Mechanisms of ischemic brain damage. Neuropharmacology, 2008, 55(3), 310-318.
[http://dx.doi.org/10.1016/j.neuropharm.2008.01.005] [PMID: 18308346]
[249]
Luo, Y.; Tang, H.; Li, H.; Zhao, R.; Huang, Q.; Liu, J. Recent advances in the development of neuroprotective agents and therapeutic targets in the treatment of cerebral ischemia. Eur. J. Med. Chem., 2019, 162, 132-146.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.014] [PMID: 30445263]
[250]
Mansueto, G.; Lanza, G.; Fisicaro, F.; Alaouieh, D.; Hong, E.; Girolami, S.; Montella, M.; Feola, A.; Di Napoli, M. Central and peripheral nervous system complications of vasculitis syndromes from pathology to bedside: Part 1—central nervous system. Curr. Neurol. Neurosci. Rep., 2022, 22(1), 47-69.
[http://dx.doi.org/10.1007/s11910-022-01172-z] [PMID: 35138587]
[251]
Lattanzi, S.; Norata, D.; Divani, A.A.; Di Napoli, M.; Broggi, S.; Rocchi, C.; Ortega-Gutierrez, S.; Mansueto, G.; Silvestrini, M. Systemic inflammatory response index and futile recanalization in patients with ischemic stroke undergoing endovascular treatment. Brain Sci., 2021, 11(9), 1164.
[http://dx.doi.org/10.3390/brainsci11091164] [PMID: 34573185]
[252]
Fisicaro, F.; Di Napoli, M.; Liberto, A.; Fanella, M.; Di Stasio, F.; Pennisi, M.; Bella, R.; Lanza, G.; Mansueto, G. Neurological sequelae in patients with COVID-19: A histopathological perspective. Int. J. Environ. Res. Public Health, 2021, 18(4), 1415.
[http://dx.doi.org/10.3390/ijerph18041415] [PMID: 33546463]
[253]
Li, Y.; Li, M.; Wang, M.; Zhou, Y.; Chang, J.; Xian, Y.; Wang, D.; Mao, L.; Jin, H.; Hu, B. Acute cerebrovascular disease following COVID-19: A single center, retrospective, observational study. Stroke Vasc. Neurol., 2020, 5(3), 279-284.
[http://dx.doi.org/10.1136/svn-2020-000431] [PMID: 32616524]
[254]
Bushnell, C.D.; Chaturvedi, S.; Gage, K.R.; Herson, P.S.; Hurn, P.D.; Jiménez, M.C.; Kittner, S.J.; Madsen, T.E.; McCullough, L.D.; McDermott, M.; Reeves, M.J.; Rundek, T. Sex differences in stroke: Challenges and opportunities. J. Cereb. Blood Flow Metab., 2018, 38(12), 2179-2191.
[http://dx.doi.org/10.1177/0271678X18793324] [PMID: 30114967]
[255]
Appelros, P.; Stegmayr, B.; Terént, A. Sex differences in stroke epidemiology: A systematic review. Stroke, 2009, 40(4), 1082-1090.
[http://dx.doi.org/10.1161/STROKEAHA.108.540781] [PMID: 19211488]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy