Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Beneficial Effects of Curcumin on Lipids: Possible Effects on Dyslipidemia-induced Cardiovascular Complications

Author(s): Habib Yaribeygi*, Mina Maleki, Alexandra E. Butler, Tannaz Jamialahmadi, Eric Gumpricht and Amirhossein Sahebkar*

Volume 31, Issue 42, 2024

Published on: 10 August, 2023

Page: [6957 - 6970] Pages: 14

DOI: 10.2174/0929867331666230707094644

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Dyslipidemia and altered lipid metabolism are closely involved in the pathogenesis and clinical manifestation of many metabolic and non-metabolic diseases. Therefore, mitigation of pharmacological and nutritional factors together with lifestyle modifications is paramount. One potential nutraceutical exhibiting cell signaling and lipid-modulating properties implicated in dyslipidemias is curcumin. Specifically, recent evidence suggest that curcumin may improve lipid metabolism and prevent dyslipidemia-induced cardiovascular complications via several pathways. Although the exact molecular mechanisms involved are not well understood, the evidence presented in this review suggests that curcumin can provide significant lipid benefits via modulation of adipogenesis and lipolysis, and prevention or reduction of lipid peroxidation and lipotoxicity via different molecular pathways. Curcumin can also improve the lipid profile and reduce dyslipidemia- dependent cardiovascular problems by impacting important mechanisms of fatty acid oxidation, lipid absorption, and cholesterol metabolism. Although only limited direct supporting evidence is available, in this review we assess the available knowledge regarding the possible nutraceutical effects of curcumin on lipid homeostasis and its possible impacts on dyslipidemic cardiovascular events from a mechanistic viewpoint.

Keywords: Lipid homeostasis, cholesterol homeostasis, lipid metabolism, cardiovascular disorders, curcumin, lipogenesis, dyslipidemia.

[1]
Liang, W.; Nishino, I. State of the art in muscle lipid diseases. Acta Myol., 2010, 29(2), 351-6.
[PMID: 21314018]
[2]
Lee, C-H.; Olson, P.; Evans, R.M. Minireview: Lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology, 2003, 144(6), 2201-2207.
[PMID: 12746275]
[3]
Mesa-Herrera, F.; Taoro-González, L.; Valdés-Baizabal, C.; Diaz, M.; Marín, R. Lipid and lipid raft alteration in aging and neurodegenerative diseases: A window for the development of new biomarkers. Int. J. Mol. Sci., 2019, 20(15), 3810.
[PMID: 31382686]
[4]
Gerc, V.; Masic, I.; Salihefendic, N.; Zildzic, M. Cardiovascular diseases (CVDs) in COVID-19 pandemic era. Mater. Sociomed., 2020, 32(2), 158-164.
[PMID: 32843866]
[5]
Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The global burden of cardiovascular diseases and risk: A compass for future health. J. Am. Coll. Cardiol., 2022, 80(25), 2361-2371.
[6]
Chen, L.; Chen, X.W.; Huang, X.; Song, B.L.; Wang, Y.; Wang, Y. Regulation of glucose and lipid metabolism in health and disease. Sci. China Life Sci., 2019, 62(11), 1420-1458.
[PMID: 31686320]
[7]
Haile, K.; Timerga, A. Dyslipidemia and its associated risk factors among adult type-2 diabetic patients at Jimma University Medical Center, Jimma, Southwest Ethiopia. Diabetes Metab. Syndr. Obes., 2020, 13, 4589-4597.
[PMID: 33273834]
[8]
Savelieff, M.G.; Callaghan, B.C.; Feldman, E.L. The emerging role of dyslipidemia in diabetic microvascular complications. Curr. Opin. Endocrinol. Diabetes Obes., 2020, 27(2), 115-123.
[PMID: 32073426]
[9]
Athyros, V.G.; Doumas, M.; Imprialos, K.P.; Stavropoulos, K.; Georgianou, E.; Katsimardou, A.; Karagiannis, A. Diabetes and lipid metabolism. Hormones, 2018, 17(1), 61-67.
[PMID: 29858856]
[10]
Chandel, N.S. Lipid metabolism. Cold Spring Harb. Perspect. Biol., 2021, 13(9), a040576.
[PMID: 34470787]
[11]
Long, J.; Zhang, C.J.; Zhu, N.; Du, K.; Yin, Y.F.; Tan, X.; Liao, D.F.; Qin, L. Lipid metabolism and carcinogenesis, cancer development. Am. J. Cancer Res., 2018, 8(5), 778-791.
[PMID: 29888102]
[12]
Chung, K.W. Advances in understanding of the role of lipid metabolism in aging. Cells, 2021, 10(4), 880.
[PMID: 33924316]
[13]
Ponziani, F.R.; Pecere, S.; Gasbarrini, A.; Ojetti, V. Physiology and pathophysiology of liver lipid metabolism. Expert Rev. Gastroenterol. Hepatol., 2015, 9(8), 1055-1067.
[PMID: 26070860]
[14]
Ko, C-W.; Qu, J.; Black, D.D.; Tso, P. Regulation of intestinal lipid metabolism: Current concepts and relevance to disease. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(3), 169-183.
[PMID: 32015520]
[15]
Schoeler, M.; Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord., 2019, 20(4), 461-472.
[PMID: 31707624]
[16]
Séguro, F.; Rabès, J.P.; Taraszkiewicz, D.; Ruidavets, J.B.; Bongard, V.; Ferrières, J. Genetic diagnosis of familial hypercholesterolemia is associated with a premature and high coronary heart disease risk. Clin. Cardiol., 2018, 41(3), 385-391.
[PMID: 29574850]
[17]
Penno, G.; Solini, A.; Zoppini, G.; Fondelli, C.; Trevisan, R.; Vedovato, M.; Gruden, G.; Lamacchia, O.; Pontiroli, A.E.; Arosio, M.; Orsi, E.; Pugliese, G. Hypertriglyceridemia is independently associated with renal, but not retinal complications in subjects with type 2 diabetes: A cross-sectional analysis of the Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicenter Study. PLoS One, 2015, 10(5), e0125512.
[PMID: 25942403]
[18]
Zhou, Y.; Wang, C.; Shi, K.; Yin, X. Relationship between dyslipidemia and diabetic retinopathy: A systematic review and meta-analysis. Medicine, 2018, 97(36), e12283.
[PMID: 30200172]
[19]
Jeng, C-J.; Hsieh, Y.T.; Yang, C.M.; Yang, C.H.; Lin, C.L.; Wang, I.J. Diabetic retinopathy in patients with dyslipidemia: Development and progression. Ophthalmol. Retina, 2018, 2(1), 38-45.
[PMID: 31047300]
[20]
Jellinger, P.S.; Handelsman, Y.; Rosenblit, P.D.; Bloomgarden, Z.T.; Fonseca, V.A.; Garber, A.J.; Grunberger, G.; Guerin, C.K.; Bell, D.S.H.; Mechanick, J.I.; Pessah-Pollack, R.; Wyne, K.; Smith, D.; Brinton, E.A.; Fazio, S.; Davidson, M. American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr. Pract., 2017, 23(S.2), 1-87.
[PMID: 28437620]
[21]
Pol, T.; Held, C.; Westerbergh, J.; Lindbäck, J.; Alexander, J.H.; Alings, M.; Erol, C.; Goto, S.; Halvorsen, S.; Huber, K.; Hanna, M.; Lopes, R.D.; Ruzyllo, W.; Granger, C.B.; Hijazi, Z. Dyslipidemia and risk of cardiovascular events in patients with atrial fibrillation treated with oral anticoagulation therapy: Insights from the ARISTOTLE (apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation) trial. J. Am. Heart Assoc., 2018, 7(3), e007444.
[PMID: 29419390]
[22]
Hedayatnia, M.; Asadi, Z.; Zare-Feyzabadi, R.; Yaghooti-Khorasani, M.; Ghazizadeh, H.; Ghaffarian-Zirak, R.; Nosrati-Tirkani, A.; Mohammadi-Bajgiran, M.; Rohban, M.; Sadabadi, F.; Rahimi, H.R.; Ghalandari, M.; Ghaffari, M.S.; Yousefi, A.; Pouresmaeili, E.; Besharatlou, M.R.; Moohebati, M.; Ferns, G.A.; Esmaily, H.; Ghayour-Mobarhan, M. Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids Health Dis., 2020, 19(1), 42.
[PMID: 32178672]
[23]
Vaziri, N.D. Role of dyslipidemia in impairment of energy metabolism, oxidative stress, inflammation and cardiovascular disease in chronic kidney disease. Clin. Exp. Nephrol., 2014, 18(2), 265-268.
[PMID: 23974528]
[24]
Yang, X.; Li, Y.; Li, Y.; Ren, X.; Zhang, X.; Hu, D.; Gao, Y.; Xing, Y.; Shang, H. Oxidative stress-mediated atherosclerosis: Mechanisms and therapies. Front. Physiol., 2017, 8, 600.
[PMID: 28878685]
[25]
Yaribeygi, H.; Farrokhi, F.R.; Butler, A.E.; Sahebkar, A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell. Physiol., 2019, 234(6), 8152-8161.
[PMID: 30317615]
[26]
Wengrofsky, P.; Lee, J.; Makaryus, A.N. Dyslipidemia and its role in the pathogenesis of atherosclerotic cardiovascular disease: Implications for evaluation and targets for treatment of dyslipidemia based on recent guidelines. In: Dyslipidemia; IntechOpen, 2019.
[27]
Cavieres, V.; Valdes, K.; Moreno, B.; Moore-Carrasco, R.; Gonzalez, D.R. Vascular hypercontractility and endothelial dysfunction before development of atherosclerosis in moderate dyslipidemia: Role for nitric oxide and interleukin-6. Am. J. Cardiovasc. Dis., 2014, 4(3), 114-122.
[PMID: 25360389]
[28]
Ercan, M.; Firtina, S.; Konukoglu, D. Comparison of plasma viscosity as a marker of endothelial dysfunction with nitric oxide and asymmetric dimethylarginine in subjects with dyslipidemia. Clin. Hemorheol. Microcirc., 2014, 57(4), 315-323.
[PMID: 23455843]
[29]
Khutami, C.; Sumiwi, S.A.; Khairul Ikram, N.K.; Muchtaridi, M. The effects of antioxidants from natural products on obesity, dyslipidemia, diabetes and their molecular signaling mechanism. Int. J. Mol. Sci., 2022, 23(4), 2056.
[PMID: 35216172]
[30]
Zhang, Y.; Li, X.; Zou, D.; Liu, W.; Yang, J.; Zhu, N.; Huo, L.; Wang, M.; Hong, J.; Wu, P.; Ren, G.; Ning, G. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J. Clin. Endocrinol. Metab., 2008, 93(7), 2559-2565.
[PMID: 18397984]
[31]
Tian, H. Low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembling strategy of biotin-tailored IR780 and quercetin. Chem. Eng. J., 2020, 382, 123043.
[32]
Alkushi, A.G. Alternative natural management of dyslipidemia. In: Dyslipidemia; IntechOpen, 2019.
[33]
Singh, S.P.; Sashidhara, K.V. Lipid lowering agents of natural origin: An account of some promising chemotypes. Eur. J. Med. Chem., 2017, 140, 331-348.
[PMID: 28987600]
[34]
Bahmani, M.; Mirhoseini, M.; Shirzad, H.; Sedighi, M.; Shahinfard, N.; Rafieian-Kopaei, M. A review on promising natural agents effective on hyperlipidemia. J. Evid. Based Complementary Altern. Med., 2015, 20(3), 228-238.
[PMID: 25633423]
[35]
Kita, T.; Imai, S.; Sawada, H.; Kumagai, H.; Seto, H. The biosynthetic pathway of curcuminoid in turmeric (Curcuma longa) as revealed by 13C-labeled precursors. Biosci. Biotechnol. Biochem., 2008, 72(7), 1789-1798.
[PMID: 18603793]
[36]
Trujillo, J.; Chirino, Y.I.; Molina-Jijón, E.; Andérica-Romero, A.C.; Tapia, E.; Pedraza-Chaverrí, J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol., 2013, 1(1), 448-456.
[PMID: 24191240]
[37]
Hussain, Z.; Thu, H.E.; Amjad, M.W.; Hussain, F.; Ahmed, T.A.; Khan, S. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. Mater. Sci. Eng. C, 2017, 77, 1316-1326.
[PMID: 28532009]
[38]
Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf. B Biointerfaces, 2010, 79(1), 113-125.
[PMID: 20456930]
[39]
Lababidi, N.; Sigal, V.; Koenneke, A.; Schwarzkopf, K.; Manz, A.; Schneider, M. Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration. Beilstein J. Nanotechnol., 2019, 10(1), 2280-2293.
[PMID: 31807413]
[40]
Lopresti, A.L.; Drummond, P.D. Efficacy of curcumin, and a saffron/curcumin combination for the treatment of major depression: A randomised, double-blind, placebo-controlled study. J. Affect. Disord., 2017, 207, 188-196.
[PMID: 27723543]
[41]
Teter, B.; Morihara, T.; Lim, G.P.; Chu, T.; Jones, M.R.; Zuo, X.; Paul, R.M.; Frautschy, S.A.; Cole, G.M. Curcumin restores innate immune Alzheimer’s disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiol. Dis., 2019, 127, 432-448.
[PMID: 30951849]
[42]
Sahebkar, A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil. Steril., 2010, 94(5), e75-e76.
[PMID: 20797714]
[43]
Mohajeri, M.; Bianconi, V.; Ávila-Rodriguez, M.F.; Barreto, G.E.; Jamialahmadi, T.; Pirro, M.; Sahebkar, A. Curcumin: A phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol. Res., 2020, 156, 104765.
[PMID: 32217147]
[44]
Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135.
[PMID: 29180127]
[45]
Ghasemi, F.; Bagheri, H.; Barreto, G.E.; Read, M.I.; Sahebkar, A. Effects of curcumin on microglial cells. Neurotox. Res., 2019, 36(1), 12-26.
[PMID: 30949950]
[46]
Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348.
[PMID: 27638428]
[47]
Iranshahi, M.; Sahebkar, A.; Hosseini, S.T.; Takasaki, M.; Konoshima, T.; Tokuda, H. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine, 2010, 17(3-4), 269-273.
[PMID: 19577457]
[48]
Panahi, Y.; Ghanei, M.; Bashiri, S.; Hajihashemi, A.; Sahebkar, A. Short-term curcuminoid supplementation for chronic pulmonary complications due to sulfur mustard intoxication: Positive results of a randomized double-blind placebo-controlled trial. Drug Res., 2015, 65(11), 567-573.
[PMID: 25268878]
[49]
Marjaneh R.M.; Rahmani F.; Hassanian S.M.; Rezaei N.; Hashemzehi M.; Bahrami A.; Ariakia F.; Fiuji H.; Sahebkar A.; Avan A.; Khazaei M.; Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J. Cell Physiol. 2018 Oct; 233(10):6785-6798. Epub 2018 May 8
[http://dx.doi.org/10.1002/jcp.26538] [PMID: 29737515]
[50]
Keihanian F.; Saeidinia A.; Bagheri R.K.; Johnston T.P.; Sahebkar A.; Curcumin, hemostasis, thrombosis, and coagulation. J. Cell Physiol. 2018 Jun; 233(6):4497-4511. http://dx.doi.org/10.1002/jcp.26249. Epub 2017 Dec 26. PMID: 29052850.
[51]
Khayatan D.; Razavi S.M.; Arab Z.N.; Niknejad A.H.; Nouri K.; Momtaz S.; Gumpricht E.; Jamialahmadi T.; Abdolghaffari A.H.; Barreto G.E.; Sahebkar A.; Protective effects of curcumin against traumatic brain injury. Biomed. Pharmacother. 2022 Oct; 154:113621. http://dx.doi.org/10.1016/j.biopha.2022.113621. Epub 2022 Aug 30. PMID: 36055110.
[52]
Heidari, Z.; Daei, M.; Boozari, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother. Res., 2022, 36(4), 1442-1458.
[PMID: 34904764]
[53]
Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Reiner, Ž.; Majeed, M.; Sahebkar, A. Curcuminoids modify lipid profile in type 2 diabetes mellitus: A randomized controlled trial. Complement. Ther. Med., 2017, 33, 1-5.
[PMID: 28735818]
[54]
Hasanzadeh S.; Read M.I.; Bland A.R.; Majeed M.; Jamialahmadi T.; Sahebkar A.; Curcumin: An inflammasome silencer. Pharmacol. Res. 2020 Sep; 159:104921. http://dx.doi.org/10.1016/j.phrs.2020.104921. Epub 2020 May 25. PMID: 32464325.
[55]
Mokhtari-Zaer A.; Marefati N.; Atkin S.L.; Butler A.E.; Sahebkar A.; The protective role of curcumin in myocardial ischemia-reperfusion injury. J. Cell Physiol.2018 Jan; 234(1):214-222. http://dx.doi.org/10.1002/jcp.26848. Epub 2018 Jul 3. PMID: 29968913.
[56]
Soetikno, V.; Watanabe, K.; Sari, F.R.; Harima, M.; Thandavarayan, R.A.; Veeraveedu, P.T.; Arozal, W.; Sukumaran, V.; Lakshmanan, A.P.; Arumugam, S.; Suzuki, K. Curcumin attenuates diabetic nephropathy by inhibiting PKC-α and PKC-β1 activity in streptozotocin-induced type I diabetic rats. Mol. Nutr. Food Res., 2011, 55(11), 1655-1665.
[http://dx.doi.org/10.1002/mnfr.201100080] [PMID: 22045654]
[57]
Lu, M.; Yin, N.; Liu, W.; Cui, X.; Chen, S.; Wang, E. Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling. Biomed Res Int., 2017, 2017, 1516985.
[http://dx.doi.org/10.1155/2017/1516985] [PMID: 28194406]
[58]
Soltani, S.; Boozari, M.; Cicero, A.F.G.; Jamialahmadi, T.; Sahebkar, A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother. Res., 2021, 35(6), 2854-2878.
[http://dx.doi.org/10.1002/ptr.6991] [PMID: 33464676]
[59]
Ganjali, S.; Blesso, C.N.; Banach, M.; Pirro, M.; Majeed, M.; Sahebkar, A. Effects of curcumin on HDL functionality. Pharmacol. Res., 2017, 119, 208-218.
[http://dx.doi.org/10.1016/j.phrs.2017.02.008] [PMID: 28192240]
[60]
Ahmadian, M.; Wang, Y.; Sul, H.S. Lipolysis in adipocytes. Int. J. Biochem. Cell Biol., 2010, 42(5), 555-559.
[http://dx.doi.org/10.1016/j.biocel.2009.12.009] [PMID: 20025992]
[61]
Sancho, V.; Trigo, M.V.; González, N.; Valverde, I.; Malaisse, W.J.; Villanueva-Peñacarrillo, M.L. Effects of glucagon-like peptide-1 and exendins on kinase activity, glucose transport and lipid metabolism in adipocytes from normal and type-2 diabetic rats. J. Mol. Endocrinol., 2005, 35(1), 27-38.
[http://dx.doi.org/10.1677/jme.1.01747] [PMID: 16087719]
[62]
Zhao, X.; Feng, D.; Wang, Q.; Abdulla, A.; Xie, X.J.; Zhou, J.; Sun, Y.; Yang, E.S.; Liu, L.P.; Vaitheesvaran, B.; Bridges, L.; Kurland, I.J.; Strich, R.; Ni, J.Q.; Wang, C.; Ericsson, J.; Pessin, J.E.; Ji, J.Y.; Yang, F. Regulation of lipogenesis by cyclin-dependent kinase 8–mediated control of SREBP-1. J. Clin. Invest., 2012, 122(7), 2417-2427.
[http://dx.doi.org/10.1172/JCI61462] [PMID: 22684109]
[63]
Ducheix, S.; Lobaccaro, J.M.A.; Martin, P.G.; Guillou, H. Liver X Receptor: An oxysterol sensor and a major player in the control of lipogenesis. Chem. Phys. Lipids, 2011, 164(6), 500-514.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.06.004] [PMID: 21693109]
[64]
Wang, Y.; Viscarra, J.; Kim, S.J.; Sul, H.S. Transcriptional regulation of hepatic lipogenesis. Nat. Rev. Mol. Cell Biol., 2015, 16(11), 678-689.
[http://dx.doi.org/10.1038/nrm4074] [PMID: 26490400]
[65]
Sanders, F.W.B.; Griffin, J.L. De novo lipogenesis in the liver in health and disease: More than just a shunting yard for glucose. Biol. Rev. Camb. Philos. Soc., 2016, 91(2), 452-468.
[http://dx.doi.org/10.1111/brv.12178] [PMID: 25740151]
[66]
Duncan, R.E.; Ahmadian, M.; Jaworski, K.; Sarkadi-Nagy, E.; Sul, H.S. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr., 2007, 27(1), 79-101.
[http://dx.doi.org/10.1146/annurev.nutr.27.061406.093734] [PMID: 17313320]
[67]
Kobori, M.; Takahashi, Y.; Takeda, H.; Takahashi, M.; Izumi, Y.; Akimoto, Y.; Sakurai, M.; Oike, H.; Nakagawa, T.; Itoh, M.; Bamba, T.; Kimura, T. Dietary intake of curcumin improves eIF2 signaling and reduces lipid levels in the white adipose tissue of obese mice. Sci. Rep., 2018, 8(1), 9081.
[http://dx.doi.org/10.1038/s41598-018-27105-w] [PMID: 29899429]
[68]
Song, W.Y.; Choi, J.H. Korean Curcuma longa L. induces lipolysis and regulates leptin in adipocyte cells and rats. Nutr. Res. Pract., 2016, 10(5), 487-493.
[http://dx.doi.org/10.4162/nrp.2016.10.5.487] [PMID: 27698955]
[69]
Cui, Y.; Yu, S.; Gao, W.; Zhao, Z.; Wu, J.; Xiao, M.; An, L. Dietary curcumin supplementation regulates the lipid metabolism in laying hens. Ital. J. Anim. Sci., 2022, 21(1), 1106-1116.
[http://dx.doi.org/10.1080/1828051X.2022.2071774]
[70]
Wang, L.; Zhang, B.; Huang, F.; Liu, B.; Xie, Y. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance. J. Lipid Res., 2016, 57(7), 1243-1255.
[http://dx.doi.org/10.1194/jlr.M067397] [PMID: 27220352]
[71]
Shao, W.; Yu, Z.; Chiang, Y.; Yang, Y.; Chai, T.; Foltz, W.; Lu, H.; Fantus, I.G.; Jin, T. Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS One, 2012, 7(1), e28784.
[http://dx.doi.org/10.1371/journal.pone.0028784] [PMID: 22253696]
[72]
Ejaz, A.; Wu, D.; Kwan, P.; Meydani, M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J. Nutr., 2009, 139(5), 919-925.
[http://dx.doi.org/10.3945/jn.108.100966] [PMID: 19297423]
[73]
Pan, Y.; Zhao, D.; Yu, N.; An, T.; Miao, J.; Mo, F.; Gu, Y.; Zhang, D.; Gao, S.; Jiang, G. Curcumin improves glycolipid metabolism through regulating peroxisome proliferator activated receptor γ signalling pathway in high-fat diet-induced obese mice and 3T3-L1 adipocytes. R. Soc. Open Sci., 2017, 4(11), 170917.
[http://dx.doi.org/10.1098/rsos.170917] [PMID: 29291086]
[74]
Xie, Z.; Shen, G.; Wang, Y.; Wu, C. Curcumin supplementation regulates lipid metabolism in broiler chickens. Poult. Sci., 2019, 98(1), 422-429.
[http://dx.doi.org/10.3382/ps/pey315] [PMID: 30053224]
[75]
Shahid, S.U.; Sarwar, S. The abnormal lipid profile in obesity and Coronary Heart Disease (CHD) in Pakistani subjects. Lipids Health Dis., 2020, 19(1), 1-7.
[PMID: 31900179]
[76]
Ma, Y.; Temkin, S.M.; Hawkridge, A.M.; Guo, C.; Wang, W.; Wang, X.Y.; Fang, X. Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Lett., 2018, 435, 92-100.
[http://dx.doi.org/10.1016/j.canlet.2018.08.006] [PMID: 30102953]
[77]
Al Batran, R.; Almutairi, M.; Ussher, J.R. Glucagon-like peptide-1 receptor mediated control of cardiac energy metabolism. Peptides, 2018, 100, 94-100.
[http://dx.doi.org/10.1016/j.peptides.2017.12.005] [PMID: 29412838]
[78]
Pilz, S.; März, W. Free fatty acids as a cardiovascular risk factor. Clin. Chem. Lab. Med., 2008, 46(4), 429-434.
[http://dx.doi.org/10.1515/CCLM.2008.118] [PMID: 18605928]
[79]
I S Sobczak, A.; A Blindauer, C.; J Stewart, A. Changes in plasma free fatty acids associated with type-2 diabetes. Nutrients, 2019, 11(9), 2022.
[http://dx.doi.org/10.3390/nu11092022] [PMID: 31466350]
[80]
Ghosh, A.; Gao, L.; Thakur, A.; Siu, P.M.; Lai, C.W.K. Role of free fatty acids in endothelial dysfunction. J. Biomed. Sci., 2017, 24(1), 50.
[http://dx.doi.org/10.1186/s12929-017-0357-5] [PMID: 28750629]
[81]
Xin, Y.; Zhang, J.; Fan, Y.; Wang, C. Serum free fatty acids are associated with severe coronary artery calcification, especially in diabetes: A retrospective study. BMC Cardiovasc. Disord., 2021, 21(1), 343.
[http://dx.doi.org/10.1186/s12872-021-02152-w] [PMID: 34266394]
[82]
Berbée, J.F.P.; Boon, M.R.; Khedoe, P.P.S.J.; Bartelt, A.; Schlein, C.; Worthmann, A.; Kooijman, S.; Hoeke, G.; Mol, I.M.; John, C.; Jung, C.; Vazirpanah, N.; Brouwers, L.P.J.; Gordts, P.L.S.M.; Esko, J.D.; Hiemstra, P.S.; Havekes, L.M.; Scheja, L.; Heeren, J.; Rensen, P.C.N. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat. Commun., 2015, 6(1), 6356.
[http://dx.doi.org/10.1038/ncomms7356] [PMID: 25754609]
[83]
Gao, C.L.; Zhu, C.; Zhao, Y.P.; Chen, X.H.; Ji, C.B.; Zhang, C.M.; Zhu, J.G.; Xia, Z.K.; Tong, M.L.; Guo, X.R. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol. Cell. Endocrinol., 2010, 320(1-2), 25-33.
[http://dx.doi.org/10.1016/j.mce.2010.01.039] [PMID: 20144685]
[84]
Jang, E.M.; Choi, M.S.; Jung, U.J.; Kim, M.J.; Kim, H.J.; Jeon, S.M.; Shin, S.K.; Seong, C.N.; Lee, M.K. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat–fed hamsters. Metabolism, 2008, 57(11), 1576-1583.
[http://dx.doi.org/10.1016/j.metabol.2008.06.014] [PMID: 18940397]
[85]
Na, L.X.; Zhang, Y.L.; Li, Y.; Liu, L.Y.; Li, R.; Kong, T.; Sun, C.H. Curcumin improves insulin resistance in skeletal muscle of rats. Nutr. Metab. Cardiovasc. Dis., 2011, 21(7), 526-533.
[http://dx.doi.org/10.1016/j.numecd.2009.11.009] [PMID: 20227862]
[86]
Meléndez-Salcido, C.G.; Vargas-Ortiz, K.; Silva-Gaona, O.G.; León-García, M.C.; Ortega-Hernández, L.A.; Macías-Cervantes, M.H.; Ramírez-Emiliano, J.; Perez- Vazquez, V. Curcumin ameliorates protein expression changes involved in mitochondrial fatty acids metabolism in heart of mice fed a high-fructose diet. Res Square, 2020, 1-15.
[http://dx.doi.org/10.21203/rs.3.rs-17918/v1]
[87]
Ji, R.; Xiang, X.; Li, X.; Mai, K.; Ai, Q. Effects of dietary curcumin on growth, antioxidant capacity, fatty acid composition and expression of lipid metabolism-related genes of large yellow croaker fed a high-fat diet. Br. J. Nutr., 2021, 126(3), 345-354.
[http://dx.doi.org/10.1017/S0007114520004171] [PMID: 33076999]
[88]
Niu, Y.; He, J.; Ahmad, H.; Wang, C.; Zhong, X.; Zhang, L.; Cui, T.; Zhang, J.; Wang, T. Curcumin attenuates insulin resistance and hepatic lipid accumulation in a rat model of intra-uterine growth restriction through insulin signalling pathway and sterol regulatory element binding proteins. Br. J. Nutr., 2019, 122(6), 616-624.
[http://dx.doi.org/10.1017/S0007114519001508] [PMID: 31237229]
[89]
Tranchida, F.; Shintu, L.; Rakotoniaina, Z.; Tchiakpe, L.; Deyris, V.; Hiol, A.; Caldarelli, S. Metabolomic and lipidomic analysis of serum samples following Curcuma longa extract supplementation in high-fructose and saturated fat fed rats. PLoS One, 2015, 10(8), e0135948.
[http://dx.doi.org/10.1371/journal.pone.0135948] [PMID: 26288372]
[90]
Kamalakkannan, N.; Rukkumani, R.; Viswanathan, P.; Rajasekharan, K.N.; Menon, V.P. Effect of curcumin and its analogue on lipids in carbon tetrachloride–induced hepatotoxicity: A comparative study. Pharm. Biol., 2005, 43(5), 460-466.
[http://dx.doi.org/10.1080/13880200590963880]
[91]
Weisberg, S.P.; Leibel, R.; Tortoriello, D.V. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology, 2008, 149(7), 3549-3558.
[http://dx.doi.org/10.1210/en.2008-0262] [PMID: 18403477]
[92]
Wu, L.Y.; Chen, C.W.; Chen, L.K.; Chou, H.Y.; Chang, C.L.; Juan, C.C. Curcumin attenuates adipogenesis by inducing preadipocyte apoptosis and inhibiting adipocyte differentiation. Nutrients, 2019, 11(10), 2307.
[http://dx.doi.org/10.3390/nu11102307] [PMID: 31569380]
[93]
Ceja-Galicia, Z.A.; García-Arroyo, F.E.; Aparicio-Trejo, O.E.; El-Hafidi, M.; Gonzaga-Sánchez, G.; León-Contreras, J.C.; Hernández-Pando, R.; Guevara-Cruz, M.; Tovar, A.R.; Rojas-Morales, P.; Aranda-Rivera, A.K.; Sánchez-Lozada, L.G.; Tapia, E.; Pedraza-Chaverri, J. Therapeutic effect of curcumin on 5/6Nx hypertriglyceridemia: Association with the improvement of renal mitochondrial β-oxidation and lipid metabolism in kidney and liver. Antioxidants, 2022, 11(11), 2195.
[http://dx.doi.org/10.3390/antiox11112195] [PMID: 36358567]
[94]
Zeng, C.; Zhong, P.; Zhao, Y.; Kanchana, K.; Zhang, Y.; Khan, Z.A.; Chakrabarti, S.; Wu, L.; Wang, J.; Liang, G. Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. J. Mol. Cell. Cardiol., 2015, 79, 1-12.
[http://dx.doi.org/10.1016/j.yjmcc.2014.10.002] [PMID: 25444713]
[95]
Thota, R.N.; Acharya, S.H.; Abbott, K.A.; Garg, M.L. Curcumin and long-chain Omega-3 polyunsaturated fatty acids for prevention of type 2 diabetes (COP-D): Study protocol for a randomised controlled trial. Trials, 2016, 17(1), 565.
[http://dx.doi.org/10.1186/s13063-016-1702-9] [PMID: 27894336]
[96]
Saraf-Bank, S.; Ahmadi, A.; Paknahad, Z.; Maracy, M.; Nourian, M. Effects of curcumin on cardiovascular risk factors in obese and overweight adolescent girls: A randomized clinical trial. Sao Paulo Med. J., 2019, 137(5), 414-422.
[http://dx.doi.org/10.1590/1516-3180.2018.0454120419] [PMID: 31691723]
[97]
Lichtenstein, A.H.; Jones, P.J. Lipids: Absorption and transport. In: Present knowledge in nutrition, 10th ed.; Erdman Jr, J.W.; Macdonald, I.A.; Zeisel, S.H., Eds.; Wiley Online Library, 2012; 1, pp. 111-117.
[http://dx.doi.org/10.1002/9781119946045.ch9]
[98]
Jalili-Nik, M.; Mahboobnia, K.; Guest, P.C.; Majeed, M.; Al-Rasadi, K.; Jamialahmadi, T.; Sahebkar, A. Impact of curcumin on hepatic low-density lipoprotein uptake. In: Physical Exercise and Natural and Synthetic Products in Health and Disease; Guest, P.C., Ed.; Springer: New York, NY, 2022; 2343, pp. 395-400.
[http://dx.doi.org/10.1007/978-1-0716-1558-4_29]
[99]
Zou, J.; Zhang, S.; Li, P.; Zheng, X.; Feng, D. Supplementation with curcumin inhibits intestinal cholesterol absorption and prevents atherosclerosis in high-fat diet–fed apolipoprotein E knockout mice. Nutr. Res., 2018, 56, 32-40.
[http://dx.doi.org/10.1016/j.nutres.2018.04.017] [PMID: 30055772]
[100]
Feng, D.; Ohlsson, L.; Duan, R.D. Curcumin inhibits cholesterol uptake in Caco-2 cells by down-regulation of NPC1L1 expression. Lipids Health Dis., 2010, 9(1), 40.
[http://dx.doi.org/10.1186/1476-511X-9-40] [PMID: 20403165]
[101]
Ferguson, J.J.A.; Stojanovski, E.; MacDonald-Wicks, L.; Garg, M.L. Curcumin potentiates cholesterol-lowering effects of phytosterols in hypercholesterolaemic individuals. A randomised controlled trial. Metabolism, 2018, 82, 22-35.
[http://dx.doi.org/10.1016/j.metabol.2017.12.009] [PMID: 29291429]
[102]
Yuan, F.; Wu, W.; Ma, L.; Wang, D.; Hu, M.; Gong, J.; Fang, K.; Xu, L.; Dong, H.; Lu, F. Turmeric and curcuminiods ameliorate disorders of glycometabolism among subjects with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res., 2022, 177, 106121.
[http://dx.doi.org/10.1016/j.phrs.2022.106121] [PMID: 35143971]
[103]
Groenen, A.G.; Halmos, B.; Tall, A.R.; Westerterp, M. Cholesterol efflux pathways, inflammation, and atherosclerosis. Crit. Rev. Biochem. Mol. Biol., 2021, 56(4), 426-439.
[http://dx.doi.org/10.1080/10409238.2021.1925217] [PMID: 34182846]
[104]
Aguilar-Ballester, M.; Herrero-Cervera, A.; Vinué, Á.; Martínez-Hervás, S.; González-Navarro, H. Impact of cholesterol metabolism in immune cell function and atherosclerosis. Nutrients, 2020, 12(7), 2021.
[http://dx.doi.org/10.3390/nu12072021] [PMID: 32645995]
[105]
Shin, S.K.; Ha, T.Y.; McGregor, R.A.; Choi, M.S. Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol. Nutr. Food Res., 2011, 55(12), 1829-1840.
[http://dx.doi.org/10.1002/mnfr.201100440] [PMID: 22058071]
[106]
Qinna, N.A.; Kamona, B.S.; Alhussainy, T.M.; Taha, H.; Badwan, A.A.; Matalka, K.Z. Effects of prickly pear dried leaves, artichoke leaves, turmeric and garlic extracts, and their combinations on preventing dyslipidemia in rats. ISRN Pharmacol., 2012, 167979.
[http://dx.doi.org/10.5402/2012/167979] [PMID: 22811929]
[107]
Riyad, P. Atherosclerotic plaque regression and HMG-CoA reductase inhibition potential of curcumin: An integrative omics and in-vivo study. J. Appl. Biol. Biotechnol., 2022, 10(1), 1-3.
[108]
Sahebkar, A. Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis. Phytother. Res., 2014, 28(5), 633-642.
[http://dx.doi.org/10.1002/ptr.5045] [PMID: 23922235]
[109]
Sahebkar, A. Curcuminoids for the management of hypertriglyceridaemia. Nat. Rev. Cardiol., 2014, 11(2), 123-123.
[http://dx.doi.org/10.1038/nrcardio.2013.140-c1] [PMID: 24395048]
[110]
Valentine, C.; Ohnishi, K.; Irie, K.; Murakami, A. Curcumin may induce lipolysis via proteo-stress in Huh7 human hepatoma cells. J. Clin. Biochem. Nutr., 2019, 65(2), 91-98.
[http://dx.doi.org/10.3164/jcbn.19-7] [PMID: 31592057]
[111]
Akila, G.; Rajakrishnan, V.; Viswanathan, P.; Rajashekaran, K.N.; Menon, V.P. Effects of curcumin on lipid profile and lipid peroxidation status in experimental hepatic fibrosis. Hepatol. Res., 1998, 11(3), 147-157.
[http://dx.doi.org/10.1016/S1386-6346(98)00026-6]
[112]
Vafa, T.S.; Emadi, M.; Sadoughi, S.D. Effect of curcumin on Bax, Bcl-2, antioxidant enzymes and lipid peroxidation of sperm after freezing procedure. J. Ardabil Uni. Med. Sci., 2018, 18(1), 120-130.
[http://dx.doi.org/10.29252/jarums.18.1.120]
[113]
Soto-Urquieta, M.G.; López-Briones, S.; Pérez-Vázquez, V.; Saavedra-Molina, A.; González-Hernández, G.A.; Ramírez-Emiliano, J. Curcumin restores mitochondrial functions and decreases lipid peroxidation in liver and kidneys of diabetic db/db mice. Biol. Res., 2014, 47(1), 74.
[http://dx.doi.org/10.1186/0717-6287-47-74] [PMID: 25723052]
[114]
Kalpana, C.; Menon, V.P. Modulatory effects of curcumin on lipid peroxidation and antioxidant status during nicotine-induced toxicity. Pol. J. Pharmacol., 2004, 56(5), 581-586.
[PMID: 15591646]
[115]
Ozcelik, M.; Erişir, M.; Guler, O.; Baykara, M.; Kirman, E. The effect of curcumin on lipid peroxidation and selected antioxidants in irradiated rats. Acta Vet. Brno, 2018, 87(4), 379-385.
[http://dx.doi.org/10.2754/avb201887040379]
[116]
Mahfouz, M.; Zhou, Q.; Kummerow, A. Effect of curcumin on LDL oxidation in vitro, and lipid peroxidation and antioxidant enzymes in cholesterol fed rabbits. Int. J. Vitam. Nutr. Res., 2011, 81(6), 378-391.
[http://dx.doi.org/10.1024/0300-9831/a000084] [PMID: 22673922]
[117]
Mozolewska, P.; Duzowska, K.; Pakiet, A.; Mika, A.; Śledziński, T. Inhibitors of fatty acid synthesis and oxidation as potential anticancer agents in colorectal cancer treatment. Anticancer Res., 2020, 40(9), 4843-4856.
[http://dx.doi.org/10.21873/anticanres.14487] [PMID: 32878772]
[118]
Younesian, O.; Kazerouni, F.; Dehghan-Nayeri, N.; Omrani, D.; Rahimipour, A.; Shanaki, M.; Rezapour Kalkhoran, M.; Cheshmi, F. Effect of curcumin on fatty acid synthase expression and enzyme activity in breast cancer cell line SKBR3. Int. J. Cancer Manag., 2017, 10(3)
[http://dx.doi.org/10.5812/ijcm.8173]
[119]
Marnett, L.J. Lipid peroxidation—DNA damage by malondialdehyde. Mutat. Res., 1999, 424(1-2), 83-95.
[http://dx.doi.org/10.1016/S0027-5107(99)00010-X] [PMID: 10064852]
[120]
Basu, S.; De, D.; Dev Khanna, H.; Kumar, A. Lipid peroxidation, DNA damage and total antioxidant status in neonatal hyperbilirubinemia. J. Perinatol., 2014, 34(7), 519-523.
[http://dx.doi.org/10.1038/jp.2014.45] [PMID: 24674982]
[121]
Kuo, J.J.; Chang, H.H.; Tsai, T.H.; Lee, T.Y. Curcumin ameliorates mitochondrial dysfunction associated with inhibition of gluconeogenesis in free fatty acid-mediated hepatic lipoapoptosis. Int. J. Mol. Med., 2012, 30(3), 643-649.
[http://dx.doi.org/10.3892/ijmm.2012.1020] [PMID: 22692588]
[122]
Tsai, I.J.; Chen, C.W.; Tsai, S.Y.; Wang, P.Y.; Owaga, E.; Hsieh, R.H. Curcumin supplementation ameliorated vascular dysfunction and improved antioxidant status in rats fed a high-sucrose, high-fat diet. Appl. Physiol. Nutr. Metab., 2018, 43(7), 669-676.
[http://dx.doi.org/10.1139/apnm-2017-0670] [PMID: 29378153]
[123]
Zhao, L.; Luo, R.; Yu, H.; Li, S.; Yu, Q.; Wang, W.; Cai, K.; Xu, T.; Chen, R.; Tian, W. Curcumin protects human umbilical vein endothelial cells against high oxidized low density lipoprotein-induced lipotoxicity and modulates autophagy. Iran. J. Basic Med. Sci., 2021, 24(12), 1734-1742.
[PMID: 35432800]
[124]
Qin, S.; Huang, L.; Gong, J.; Shen, S.; Huang, J.; Ren, H.; Hu, H. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: A meta-analysis of randomized controlled trials. Nutr. J., 2017, 16(1), 68.
[http://dx.doi.org/10.1186/s12937-017-0293-y] [PMID: 29020971]
[125]
Cox, F.F.; Misiou, A.; Vierkant, A.; Ale-Agha, N.; Grandoch, M.; Haendeler, J.; Altschmied, J. Protective effects of curcumin in cardiovascular diseases—Impact on oxidative stress and mitochondria. Cells, 2022, 11(3), 342.
[http://dx.doi.org/10.3390/cells11030342] [PMID: 35159155]
[126]
Ahmadabady, S.; Beheshti, F.; Shahidpour, F.; Khordad, E.; Hosseini, M. A protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide in rats. Biochem. Biophys. Rep., 2021, 25, 100908.
[http://dx.doi.org/10.1016/j.bbrep.2021.100908] [PMID: 33506115]
[127]
Salehi, B.; Del Prado-Audelo, M.L.; Cortés, H.; Leyva-Gómez, G.; Stojanović-Radić, Z.; Singh, Y.D.; Patra, J.K.; Das, G.; Martins, N.; Martorell, M.; Sharifi-Rad, M.; Cho, W.C.; Sharifi-Rad, J. Therapeutic applications of curcumin nanomedicine formulations in cardiovascular diseases. J. Clin. Med., 2020, 9(3), 746.
[http://dx.doi.org/10.3390/jcm9030746] [PMID: 32164244]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy