Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Naturally Occurring Cholinesterase Inhibitors from Plants, Fungi, Algae, and Animals: A Review of the Most Effective Inhibitors Reported in 2012-2022

Author(s): Ana Paula Murray*, Brunella Biscussi, Valeria Cavallaro, Martina Donozo and Silvana A. Rodriguez

Volume 22, Issue 10, 2024

Published on: 24 July, 2023

Page: [1621 - 1649] Pages: 29

DOI: 10.2174/1570159X21666230623105929

Price: $65

conference banner
Abstract

Since the development of the “cholinergic hypothesis” as an important therapeutic approach in the treatment of Alzheimer’s disease (AD), the scientific community has made a remarkable effort to discover new and effective molecules with the ability to inhibit the enzyme acetylcholinesterase (AChE). The natural function of this enzyme is to catalyze the hydrolysis of the neurotransmitter acetylcholine in the brain. Thus, its inhibition increases the levels of this neurochemical and improves the cholinergic functions in patients with AD alleviating the symptoms of this neurological disorder. In recent years, attention has also been focused on the role of another enzyme, butyrylcholinesterase (BChE), mainly in the advanced stages of AD, transforming this enzyme into another target of interest in the search for new anticholinesterase agents. Over the past decades, Nature has proven to be a rich source of bioactive compounds relevant to the discovery of new molecules with potential applications in AD therapy. Bioprospecting of new cholinesterase inhibitors among natural products has led to the discovery of an important number of new AChE and BChE inhibitors that became potential lead compounds for the development of anti-AD drugs. This review summarizes a total of 260 active compounds from 142 studies which correspond to the most relevant (IC50 ≤ 15 μM) research work published during 2012-2022 on plant-derived anticholinesterase compounds, as well as several potent inhibitors obtained from other sources like fungi, algae, and animals.

Keywords: Acetylcholinesterase, butyrylcholinesterase, cholinesterase inhibitors, secondary metabolites, Alzheimer’s disease, bioactive compounds.

Graphical Abstract
[1]
Sharma, P.; Sharma, A.; Fayaz, F.; Wakode, S.; Pottoo, F.H. Biological Signatures of Alzheimer’s Disease. Curr. Top. Med. Chem., 2020, 20(9), 770-781.
[http://dx.doi.org/10.2174/1568026620666200228095553] [PMID: 32108008]
[2]
Singh, R.K. Recent trends in the management of Alzheimer’s disease: Current therapeutic options and drug repurposing approaches. Curr. Neuropharmacol., 2020, 18(9), 868-882.
[http://dx.doi.org/10.2174/1570159X18666200128121920] [PMID: 31989900]
[3]
Gąsiorowski, K.; Brokos, J.B.; Sochocka, M.; Ochnik, M.; Chojdak-Łukasiewicz, J.; Zajączkowska, K.; Fułek, M.; Leszek, J. Current and near-future treatment of Alzheimer’s disease. Curr. Neuropharmacol., 2022, 20(6), 1144-1157.
[http://dx.doi.org/10.2174/1570159X19666211202124239] [PMID: 34856906]
[4]
Guzman-Martinez, L.; Maccioni, R.B.; Farías, G.A.; Fuentes, P.; Navarrete, L.P. Biomarkers for Alzheimer’s Disease. Curr. Alzheimer Res., 2019, 16(6), 518-528.
[http://dx.doi.org/10.2174/1567205016666190517121140] [PMID: 31099321]
[5]
Stanciu, G.D.; Luca, A.; Rusu, R.N.; Bild, V.; Beschea Chiriac, S.I.; Solcan, C.; Bild, W.; Ababei, D.C. Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomolecules, 2019, 10(1), 40.
[http://dx.doi.org/10.3390/biom10010040] [PMID: 31888102]
[6]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[7]
Sussman, J.L.; Silman, I. Acetylcholinesterase: structure and use as a model for specific cation—protein interactions. Curr. Opin. Struct. Biol., 1992, 2(5), 721-729.
[http://dx.doi.org/10.1016/0959-440X(92)90207-N]
[8]
Johnson, G.; Moore, S. The peripheral anionic site of acetylcholinesterase: structure, functions and potential role in rational drug design. Curr. Pharm. Des., 2006, 12(2), 217-225.
[http://dx.doi.org/10.2174/138161206775193127] [PMID: 16454738]
[9]
De Ferrari, G.V.; Canales, M.A.; Shin, I.; Weiner, L.M.; Silman, I.; Inestrosa, N.C. A structural motif of acetylcholinesterase that promotes amyloid β-peptide fibril formation. Biochemistry, 2001, 40(35), 10447-10457.
[http://dx.doi.org/10.1021/bi0101392] [PMID: 11523986]
[10]
Tang, H.; Zhao, H.T.; Zhong, S.M.; Wang, Z.Y.; Chen, Z.F.; Liang, H. Novel oxoisoaporphine-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. Bioorg. Med. Chem. Lett., 2012, 22(6), 2257-2261.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.090] [PMID: 22341944]
[11]
Lockridge, O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Ther., 2015, 148, 34-46.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.011] [PMID: 25448037]
[12]
Scheiner, M.; Hoffmann, M.; He, F.; Poeta, E.; Chatonnet, A.; Monti, B.; Maurice, T.; Decker, M. Selective pseudo-irreversible butyrylcholinesterase inhibitors transferring antioxidant moieties to the enzyme show pronounced neuroprotective efficacy in vitro and in vivo in an Alzheimer’s disease mouse model. J. Med. Chem., 2021, 64(13), 9302-9320.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00534] [PMID: 34152756]
[13]
Lockridge, O.; Bartels, C.F.; Vaughan, T.A.; Wong, C.K.; Norton, S.E.; Johnson, L.L. Complete amino acid sequence of human serum cholinesterase. J. Biol. Chem., 1987, 262(2), 549-557.
[http://dx.doi.org/10.1016/S0021-9258(19)75818-9] [PMID: 3542989]
[14]
Furukawa-Hibi, Y.; Alkam, T.; Nitta, A.; Matsuyama, A.; Mizoguchi, H.; Suzuki, K.; Moussaoui, S.; Yu, Q.S.; Greig, N.H.; Nagai, T.; Yamada, K. Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-β peptide in mice. Behav. Brain Res., 2011, 225(1), 222-229.
[http://dx.doi.org/10.1016/j.bbr.2011.07.035] [PMID: 21820013]
[15]
Agatonovic-Kustrin, S.; Kettle, C.; Morton, D.W. A molecular approach in drug development for Alzheimer’s disease. Biomed. Pharmacother., 2018, 106, 553-565.
[http://dx.doi.org/10.1016/j.biopha.2018.06.147] [PMID: 29990843]
[16]
Andrisano, V.; Naldi, M.; De Simone, A.; Bartolini, M. A patent review of butyrylcholinesterase inhibitors and reactivators 2010-2017. Expert Opin. Ther. Pat., 2018, 28(6), 455-465.
[http://dx.doi.org/10.1080/13543776.2018.1476494]
[17]
Wang, Y.H.; Wan, Q.L.; Gu, C.D.; Luo, H.R.; Long, C.L. Synthesis and biological evaluation of lycorine derivatives as dual inhibitors of humanacetylcholinesterase and butyrylcholinesterase. Chem. Cent. J., 2012, 6(1), 96.
[http://dx.doi.org/10.1186/1752-153X-6-96] [PMID: 22958411]
[18]
Konrath, E.L.; Passos, C.S.; Klein-Júnior, L.C.; Henriques, A.T. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol., 2013, 65(12), 1701-1725.
[http://dx.doi.org/10.1111/jphp.12090] [PMID: 24236981]
[19]
Heinrich, M.; Lee Teoh, H. Galanthamine from snowdrop—the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J. Ethnopharmacol., 2004, 92(2-3), 147-162.
[http://dx.doi.org/10.1016/j.jep.2004.02.012] [PMID: 15137996]
[20]
Yang, G.; Wang, Y.; Tian, J.; Liu, J.P. Huperzine A for Alzheimer’s disease: A systematic review and meta-analysis of randomized clinical trials. PLoS One, 2013, 8(9), e74916.
[http://dx.doi.org/10.1371/journal.pone.0074916] [PMID: 24086396]
[21]
Houghton, P.J.; Ren, Y.; Howes, M.J. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep., 2006, 23(2), 181-199.
[http://dx.doi.org/10.1039/b508966m] [PMID: 16572227]
[22]
Williams, P.; Sorribas, A.; Howes, M.J.R. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep., 2011, 28(1), 48-77.
[http://dx.doi.org/10.1039/C0NP00027B] [PMID: 21072430]
[23]
Santos, T.C.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; Paes, A.M.A. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Front. Pharmacol., 2018, 9, 1192.
[http://dx.doi.org/10.3389/fphar.2018.01192] [PMID: 30405413]
[24]
Tamfu, A.N.; Kucukaydin, S.; Yeskaliyeva, B.; Ozturk, M.; Dinica, R.M. Non-alkaloid cholinesterase inhibitory compounds from natural sources. Molecules, 2021, 26(18), 5582.
[http://dx.doi.org/10.3390/molecules26185582] [PMID: 34577053]
[25]
Murray, A.; Faraoni, M.; Castro, M.; Alza, N.; Cavallaro, V. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Curr. Neuropharmacol., 2013, 11(4), 388-413.
[http://dx.doi.org/10.2174/1570159X11311040004] [PMID: 24381530]
[26]
Howes, M-J.R.; Houghton, P.J. Ethnobotanical treatment strategies against Alzheimer’s disease. Curr. Alzheimer Res., 2012, 9(1), 67-85.
[http://dx.doi.org/10.2174/156720512799015046] [PMID: 22329652]
[27]
Maříková, J.; Mamun, A.A.; Shammari, L.A.; Korábečný, J.; Kučera, T.; Hulcová, D.; Kuneš, J.; Malaník, M.; Vašková, M.; Kohelová, E.; Nováková, L.; Cahlíková, L.; Pour, M. Structure elucidation and cholinesterase inhibition activity of two new minor amaryllidaceae alkaloids. Molecules, 2021, 26(5), 1279.
[http://dx.doi.org/10.3390/molecules26051279] [PMID: 33652925]
[28]
Kohelová, E.; Maříková, J.; Korábečný, J.; Hulcová, D.; Kučera, T.; Jun, D.; Chlebek, J.; Jenčo, J.; Šafratová, M.; Hrabinová, M.; Ritomská, A.; Malaník, M.; Peřinová, R.; Breiterová, K.; Kuneš, J.; Nováková, L.; Opletal, L.; Cahlíková, L. Alkaloids of Zephyranthes citrina (Amaryllidaceae) and their implication to Alzheimer’s disease: Isolation, structural elucidation and biological activity. Bioorg. Chem., 2021, 107, 104567.
[http://dx.doi.org/10.1016/j.bioorg.2020.104567] [PMID: 33387730]
[29]
Thorroad, S.; Worawittayanont, P.; Khunnawutmanotham, N.; Chimnoi, N.; Jumruksa, A.; Ruchirawat, S. Three new Lycopodium alkaloids from Huperzia carinata and Huperzia squarrosa. Tetrahedron, 2014, 70(43), 8017-8022.
[http://dx.doi.org/10.1016/j.tet.2014.08.042]
[30]
Tang, Y.; Fu, Y.; Xiong, J.; Li, M.; Ma, G.L.; Yang, G.X.; Wei, B.G.; Zhao, Y.; Zhang, H.Y.; Hu, J.F. Casuarinines A-J, lycodine-type alkaloids from Lycopodiastrum casuarinoides. J. Nat. Prod., 2013, 76(8), 1475-1484.
[http://dx.doi.org/10.1021/np4003355] [PMID: 23941108]
[31]
Nguyen, V.T.; To, D.C.; Tran, M.H.; Oh, S.H.; Kim, J.A.; Ali, M.Y. Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua. Bioorg. Med. Chem., 2015, 23(13), 3126-3134.
[http://dx.doi.org/10.1016/j.bmc.2015.04.080]
[32]
Chaichompoo, W.; Rojsitthisak, P.; Pabuprapap, W.; Siriwattanasathien, Y.; Yotmanee, P.; Haritakun, W.; Suksamrarn, A. Stephapierrines A-H, new tetrahydroprotoberberine and aporphine alkaloids from the tubers of Stephania pierrei diels and their anti-cholinesterase activities. RSC Advances, 2021, 11(34), 21153-21169.
[http://dx.doi.org/10.1039/D1RA03276C] [PMID: 35479350]
[33]
Sousa, J.P.M.; Ramos, M.J.; Fernandes, P.A. Modern strategies for the diversification of the supply of natural compounds: the case of alkaloid painkillers. ChemBioChem, 2022, 23(10), e202100623.
[http://dx.doi.org/10.1002/cbic.202100623] [PMID: 34971022]
[34]
Brunhofer, G.; Fallarero, A.; Karlsson, D.; Batista-Gonzalez, A.; Shinde, P.; Gopi Mohan, C.; Vuorela, P. Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: The case of chelerythrine. Bioorg. Med. Chem., 2012, 20(22), 6669-6679.
[http://dx.doi.org/10.1016/j.bmc.2012.09.040] [PMID: 23062825]
[35]
Safa, N.; Trobec, T.; Holland, D.C.; Slazak, B.; Jacobsson, E.; Hawkes, J.A.; Frangež, R.; Sepčić, K.; Göransson, U.; Moodie, L.W.K.; Robertson, L.P. Spatial distribution and stability of cholinesterase inhibitory protoberberine alkaloids from Papaver setiferum. J. Nat. Prod., 2022, 85(1), 215-224.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00980] [PMID: 34910498]
[36]
Hao, D-C. Drug Metabolism and Disposition Diversity of Ranunculales Phytometabolites. In: Ranunculales Medicinal Plants; Academic Press, 2019; pp. 175-221.
[http://dx.doi.org/10.1016/B978-0-12-814232-5.00005-8]
[37]
Li, P.; Liu, S.; Liu, Q.; Shen, J.; Yang, R.; Jiang, B. Screening of acetylcholinesterase inhibitors and characterizing of phytochemical constituents from Dichocarpum auriculatum (Franch.) W.T. Wang & P. K. Hsiao through UPLC-MS combined with an acetylcholinesterase inhibition assay in vitro. J. Ethnopharmacol., 2019, 245, 112185.
[38]
Lima, J.A.; Thiago, T.W.; da Fonseca, A.C.C.; do Amaral, R.F. Geissoschizoline, a promising alkaloid for Alzheimer’s disease: Inhibition of human cholinesterases, anti-inflammatory effects and molecular docking. Bioorg. Chem., 2020, 104, 104215.
[http://dx.doi.org/10.1016/j.bioorg.2020.104215]
[39]
Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G. Gaussian 03, revision C. 02; Gaussian, Inc.: Wallingford, CT, 2013.
[40]
Liu, Y.M.; Feng, Y.D.; Lu, X.; Nie, J.B.; Li, W.; Wang, L.N. Isosteroidal alkaloids as potent dual-binding site inhibitors of both acetylcholinesterase and butyrylcholinesterase from the bulbs of Fritillaria walujewii. Eur. J. Med. Chem., 2017, 137, 280-291.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.007]
[41]
Kitamura, Y.; Kaneko, K.; Shiro, M.; Chen, Y-P.; Hsu, H.; Lee, P.; Xu, G-J. Tortifoline, a novel (20S, 22R)-5.ALPHA.-cevanine alkaloid from Fritillaria tortifolia. Chem. Pharm. Bull. (Tokyo), 1989, 37(6), 1514-1516.
[http://dx.doi.org/10.1248/cpb.37.1514]
[42]
Liew, S.Y.; Khaw, K.Y.; Murugaiyah, V.; Looi, C.Y.; Wong, Y.L.; Mustafa, M.R.; Litaudon, M.; Awang, K. Natural indole butyrylcholinesterase inhibitors from Nauclea officinalis. Phytomedicine, 2015, 22(1), 45-48.
[http://dx.doi.org/10.1016/j.phymed.2014.11.003] [PMID: 25636869]
[43]
Yu, P.; Chen, Z.; Liu, Y.; Gu, Z.; Wang, X.; Zhang, Y.; Ma, Y.; Dong, M.; Tian, Z. Bioactivity-Guided Separation of Anti-Cholinesterase Alkaloids from Uncaria rhynchophlly (Miq.) Miq. Ex Havil Based on HSCCC Coupled with Molecular Docking. Molecules, 2022, 27(6), 2013.
[http://dx.doi.org/10.3390/molecules27062013] [PMID: 35335376]
[44]
Zhao, T.; Li, C.; Wang, S.; Song, X. Green tea (Camellia sinensis): A review of its phytochemistry, pharmacology, and toxicology. Molecules, 2022, 27(12), 3909.
[http://dx.doi.org/10.3390/molecules27123909] [PMID: 35745040]
[45]
Gaur, R.; Ke, J.P.; Zhang, P.; Yang, Z.; Bao, G.H. Novel cinnamoylated flavoalkaloids identified in tea with acetylcholinesterase inhibition effect. J. Agric. Food Chem., 2020, 68(10), 3140-3148.
[http://dx.doi.org/10.1021/acs.jafc.9b08285] [PMID: 32053361]
[46]
Aćimović M.G. Nutraceutical Potential of Apiaceae. In: Bioactive Molecules in Food; Mérillon, J-M.; Ramawat, K.G., Eds.; Springer International Publishing: Cham, 2017; pp. 1-31.
[http://dx.doi.org/10.1007/978-3-319-54528-8_17-1]
[47]
Thiviya, P.; Gamage, A.; Piumali, D.; Merah, O.; Madhujith, T. Apiaceae as an important source of antioxidants and their applications. Cosmetics, 2021, 8(4), 111.
[http://dx.doi.org/10.3390/cosmetics8040111]
[48]
Sarker, S.D.; Nahar, L. Natural medicine: The genus Angelica. Curr. Med. Chem., 2004, 11, 1479-1500.
[49]
Ben Salem, S.; Jabrane, A.; Harzallah-Skhiri, F.; Ben Jannet, H. New bioactive dihydrofuranocoumarins from the roots of the Tunisian Ferula lutea (Poir.) maire. Bioorg. Med. Chem. Lett., 2013, 23, 4248-4252.
[50]
Güvenalp, Z.; Özbek, H.; Yerdelen, K.Ö.; Yılmaz, G.; Kazaz, C.; Demirezer, L.Ö. Cholinesterase inhibition and molecular docking studies of sesquiterpene coumarin ethers from Heptaptera cilicica. Rec. Nat. Prod., 2017, 11(5), 462-467.
[http://dx.doi.org/10.25135/rnp.58.17.03.051]
[51]
Abdul Wahab, S.M.; Sivasothy, Y.; Liew, S.Y.; Litaudon, M.; Mohamad, J.; Awang, K. Natural cholinesterase inhibitors from Myristica cinnamomea king. Bioorg. Med. Chem. Lett., 2016, 26(15), 3785-3792.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.046] [PMID: 27236720]
[52]
Amir Rawa, M.S.; Nurul Azman, N.A.; Mohamad, S.; Nogawa, T.; Wahab, H.A. In vitro and in silico anti-acetylcholinesterase activity from Macaranga tanarius and Syzygium jambos. Molecules, 2022, 27(9), 2648.
[http://dx.doi.org/10.3390/molecules27092648] [PMID: 35565998]
[53]
Kshirsagar, P.; Gaikwad, S.; Pai, S.; Desai, N.; Bapat, V. Evaluation of antioxidant capacity and phytochemical investigation of eleven Clusiaceae members from Western Ghats, India. Biocatal. Agric. Biotechnol., 2022, 44, 102476.
[http://dx.doi.org/10.1016/j.bcab.2022.102476]
[54]
Khaw, K.Y.; Choi, S.B.; Tan, S.C.; Wahab, H.A.; Chan, K.L.; Murugaiyah, V. Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies. Phytomedicine, 2014, 21(11), 1303-1309.
[http://dx.doi.org/10.1016/j.phymed.2014.06.017] [PMID: 25172794]
[55]
Rios, M.Y.; Ocampo-Acuña, Y.D.; Ramírez-Cisneros, M.Á.; Salazar-Rios, M.E. Furofuranone Lignans from Leucophyllum ambiguum. J. Nat. Prod., 2020, 83(5), 1424-1431.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00759] [PMID: 32239935]
[56]
Jung, H.A.; Karki, S.; Kim, J.H.; Choi, J.S. BACE1 and cholinesterase inhibitory activities of Nelumbo nucifera embryos. Arch. Pharm. Res., 2015, 38(6), 1178-1187.
[http://dx.doi.org/10.1007/s12272-014-0492-4] [PMID: 25300425]
[57]
Mukherjee, P.K.; Mukherjee, D.; Maji, A.K.; Rai, S.; Heinrich, M. The sacred lotus (Nelumbo nucifera) - phytochemical and therapeutic profile. J. Pharm. Pharmacol., 2009, 61(4), 407-422.
[http://dx.doi.org/10.1211/jpp/61.04.0001] [PMID: 19298686]
[58]
Gonzalez, E.P.; Hagenow, S.; Murillo, M.A.; Stark, H.; Suarez, L.C. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorg. Chem., 2020, 98, 103722.
[http://dx.doi.org/10.1016/j.bioorg.2020.103722]
[59]
Elsebai, M.F.; Ghabbour, H.A.; Marzouk, A.M.; Salmas, R.E.; Orhan, I.E.; Senol, F.S. Amberboin and lipidiol: X-ray crystalographic data, absolute configuration and inhibition of cholinesterase. Phytochem. Lett., 2018, 27, 44-48.
[http://dx.doi.org/10.1016/j.phytol.2018.06.023]
[60]
Bhakta, H.K.; Park, C.H.; Yokozawa, T.; Min, B.S.; Jung, H.A.; Choi, J.S. Kinetics and molecular docking studies of loganin, morroniside and 7-O-galloyl-d-sedoheptulose derived from Corni fructus as cholinesterase and β-secretase 1 inhibitors. Arch. Pharm. Res., 2016, 39(6), 794-805.
[http://dx.doi.org/10.1007/s12272-016-0745-5] [PMID: 27106028]
[61]
Visen, P.K.S.; Saraswat, B.; Raj, K.; Bhaduri, A.P.; Dubey, M.P. Prevention of galactosamine - induced hepatic damage by the natural product loganin from the plant strychnos nux-vomica: studies on isolated hepatocytes and bile flow in rat. Phyther Res. John Wiley & Sons. Ltd, 1998, 12, 405-408.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199809)12:6%3C405:AID-PTR322%3E3.0.CO]
[62]
Santi, M.D.; Arredondo, F.; Carvalho, D.; Echeverry, C.; Prunell, G.; Peralta, M.A.; Cabrera, J.L.; Ortega, M.G.; Savio, E.; Abin-Carriquiry, J.A. Neuroprotective effects of prenylated flavanones isolated from Dalea species, in vitro and in silico studies. Eur. J. Med. Chem., 2020, 206, 112718.
[PMID: 32861919]
[63]
Chen, M.; Zhao, H.; Cheng, Y.; Wang, L.; Alotaibi, S.H.; Zhang, Y. Anti-human glioma cancer potentials of neobavaisoflavone as natural antioxidant compound and its inhibition profiles for acetylcholinesterase and butyrylcholinesterase enzymes with molecular modeling and spin density distributions studies. J. Oleo Sci., 2022, 71, 277-288.
[64]
Piemontese, L.; Vitucci, G.; Catto, M.; Laghezza, A.; Perna, F.M.; Rullo, M. Natural scaffolds with multi-target activity for the potential treatment of Alzheimer’s disease. Molecules, 2018, 23(9), 2182.
[65]
Kato, Y.; Koshino, H.; Uzawa, J.; Anzai, K. Fungerin, a New Antifungal Alkaloid from Fusarium sp. Biosci. Biotechnol. Biochem., 1996, 60, 2081-2083.
[http://dx.doi.org/10.1271/bbb.60.2081]
[66]
Nong, X.H.; Wang, Y.F.; Zhang, X.Y.; Zhou, M.P.; Xu, X.Y.; Qi, S.H. Territrem and butyrolactone derivatives from a marine-derived fungus Aspergillus terreus. Mar. Drugs, 2014, 12, 6113-6124.
[67]
Lee, J.P.; Kang, M-G.; Lee, J.Y.; Oh, J.M.; Baek, S.C.; Leem, H.H.; Park, D.; Cho, M.L.; Kim, H. Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds. Bioorg. Chem., 2019, 89, 103043.
[PMID: 31200287]
[68]
Xiao, J.; Zhao, X.; Zhong, W.T.; Jiao, F.R.; Wang, X.L.; Ma, L. Bufadienolides from the venom of bufo bufo gargarizans and their enzyme inhibition activities and brine shrimp lethality. Nat. Prod. Commun., 2018, 13, 827-830.
[69]
Spinelli, R.; Sanchis, I.; Aimaretti, F.M.; Attademo, A.M.; Portela, M.; Humpola, M.V.; Tonarelli, G.G.; Siano, A.S. Natural multi-target inhibitors of cholinesterases and monoamine oxidase enzymes with antioxidant potential from skin extracts of Hypsiboas cordobae and Pseudis minuta (Anura: Hylidae). Chem. Biodivers., 2019, 16(1), e1800472.
[http://dx.doi.org/10.1002/cbdv.201800472] [PMID: 30412651]
[70]
Spinelli, R.; Aimaretti, F.M.; López, J.A.; Siano, A.S. Amphibian skin extracts as source of bioactive multi-target agents against different pathways of Alzheimer’s disease. Nat. Prod. Res., 2021, 35, 686-689.
[71]
Botić, T.; Defant, A.; Zanini, P.; Žužek, M.C.; Frangež, R.; Janussen, D. Discorhabdin alkaloids from Antarctic latrunculia spp. sponges as a new class of cholinesterase inhibitors. Eur. J. Med. Chem., 2017, 136, 294-304.
[72]
Olatunji, O.J.; Ogundajo, A.L.; Oladosu, I.A.; Changwichit, K.; Ingkaninan, K.; Yuenyongsawad, S. Non-competitive inhibition of acetylcholinesterase by bromotyrosine alkaloids. Nat. Prod. Commun., 2014, 9, 1559-1561.
[http://dx.doi.org/10.1177/1934578X1400901107]
[73]
Castellanos, F.; Amaya-García, F.; Tello, E.; Ramos, F.A.; Umaña, A.; Puyana, M. Screening of acetylcholinesterase inhibitors in marine organisms from the Caribbean Sea. Nat. Prod. Res., 2019, 33, 3533-3540.
[http://dx.doi.org/10.1080/14786419.2018.1481837]
[74]
Sibanyoni, M.N.; Chaudhary, S.K.; Chen, W.; Adhami, H.R.; Combrinck, S.; Maharaj, V. Isolation, in vitro evaluation and molecular docking of acetylcholinesterase inhibitors from South African Amaryllidaceae. Fitoterapia, 2020, 146, 104650.
[http://dx.doi.org/10.1016/j.fitote.2020.104650]
[75]
Zhan, G.; Liu, J.; Zhou, J.; Sun, B.; Aisa, H.A.; Yao, G. Amaryllidaceae alkaloids with new framework types from Zephyranthes candida as potent acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2017, 127, 771-780.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.057] [PMID: 27823880]
[76]
Nilsu, T.; Thorroad, S.; Ruchirawat, S.; Thasana, N. Squarrosine a and pyrrolhuperzine a, new lycopodium alkaloids from thai and philippine Huperzia squarrosa. Planta Med., 2016, 82(11/12), 1046-1050.
[http://dx.doi.org/10.1055/s-0042-106904] [PMID: 27191582]
[77]
Dong, L.B.; Wu, X.D.; Shi, X.; Zhang, Z.J.; Yang, J.; Zhao, Q.S. Phleghenrines A-D and Neophleghenrine A, Bioactive and structurally rigid Lycopodium alkaloids from Phlegmariurus henryi. Org. Lett., 2016, 18(18), 4498-4501.
[http://dx.doi.org/10.1021/acs.orglett.6b02065] [PMID: 27583693]
[78]
Rukachaisirikul, T.; Kumjun, S.; Suebsakwong, P.; Apiratikul, N.; Suksamrarn, A. A new pyrrole alkaloid from the roots of Cissampelos pareira. Nat. Prod. Res., 2021, 35, 80-87.
[http://dx.doi.org/10.1080/14786419.2019.1614576]
[79]
Dong, J.W.; Cai, L.; Fang, Y.S.; Xiao, H.; Li, Z.J.; Ding, Z.T. Proaporphine and aporphine alkaloids with acetylcholinesterase inhibitory activity from Stephania epigaea. Fitoterapia, 2015, 104, 102-107.
[http://dx.doi.org/10.1016/j.fitote.2015.05.019] [PMID: 26028544]
[80]
Kong, X.P.; Ren, H.Q.; Liu, E.Y.L.; Leung, K.W.; Guo, S.C.; Duan, R.; Dong, T.T.X.; Tsim, K.W.K. The cholinesterase inhibitory properties of stephaniae tetrandrae radix. Molecules, 2020, 25(24), 5914.
[http://dx.doi.org/10.3390/molecules25245914] [PMID: 33327436]
[81]
Ahmad, H.; Ahmad, S.; Shah, S.A.A.; Latif, A.; Ali, M.; Khan, F.A.; Tahir, M.N.; Shaheen, F.; Wadood, A.; Ahmad, M. Antioxidant and anticholinesterase potential of diterpenoid alkaloids from Aconitum heterophyllum. Bioorg. Med. Chem., 2017, 25(13), 3368-3376.
[http://dx.doi.org/10.1016/j.bmc.2017.04.022] [PMID: 28457693]
[82]
Kim, J.H.; Thao, N.P.; Han, Y.K.; Lee, Y.S.; Luyen, B.T.T.; Oanh, H.V.; Kim, Y.H.; Yang, S.Y. The insight of in vitro and in silico studies on cholinesterase inhibitors from the roots of Cimicifuga dahurica (Turcz.). Maxim. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1174-1180.
[http://dx.doi.org/10.1080/14756366.2018.1491847] [PMID: 30286669]
[83]
Ahmad, H.; Ahmad, S.; Ali, M.; Latif, A.; Shah, S.A.A.; Naz, H.; ur Rahman, N.; Shaheen, F.; Wadood, A.; Khan, H.U.; Ahmad, M. Norditerpenoid alkaloids of Delphinium denudatum as cholinesterase inhibitors. Bioorg. Chem., 2018, 78, 427-435.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.008] [PMID: 29698893]
[84]
Cheenpracha, S.; Jitonnom, J.; Komek, M.; Ritthiwigrom, T.; Laphookhieo, S. Acetylcholinesterase inhibitory activity and molecular docking study of steroidal alkaloids from Holarrhena pubescens barks. Steroids, 2016, 108, 92-98.
[http://dx.doi.org/10.1016/j.steroids.2016.01.018] [PMID: 26850468]
[85]
Fadaeinasab, M.; Basiri, A.; Kia, Y.; Karimian, H.; Ali, H.M.; Murugaiyah, V. New indole alkaloids from the bark of rauvolfia reflexa and their cholinesterase inhibitory activity. Cell. Physiol. Biochem., 2015, 37(5), 1997-2011.
[http://dx.doi.org/10.1159/000438560]
[86]
Kashyap, P.; Kalaiselvan, V.; Kumar, R.; Kumar, S. Ajmalicine and reserpine: Indole alkaloids as multi-target directed ligands towards factors implicated in Alzheimer’s disease. Molecules, 2020, 25(7), 1609.
[http://dx.doi.org/10.3390/molecules25071609] [PMID: 32244635]
[87]
Park, J.H.; Whang, W.K. Bioassay-guided isolation of anti-Alzheimer active components from the aerial parts of hedyotis diffusa and simultaneous analysis for marker compounds. Molecules, 2020, 25(24), 5867.
[http://dx.doi.org/10.3390/molecules25245867] [PMID: 33322478]
[88]
Li, N.; Zhu, H.T.; Wang, D.; Zhang, M.; Yang, C.R.; Zhang, Y.J. New flavoalkaloids with potent α-glucosidase and acetylcholinesterase inhibitory activities from yunnan black tea ‘Jin-Ya’. J. Agric. Food Chem., 2020, 68(30), 7955-7963.
[http://dx.doi.org/10.1021/acs.jafc.0c02401] [PMID: 32628847]
[89]
Wang, W.; Fu, X.W.; Dai, X.L.; Hua, F.; Chu, G.X.; Chu, M.J.; Hu, F.L.; Ling, T.J.; Gao, L.P.; Xie, Z.W.; Wan, X.C.; Bao, G.H. Novel acetylcholinesterase inhibitors from Zijuan tea and biosynthetic pathway of caffeoylated catechin in tea plant. Food Chem., 2017, 237, 1172-1178.
[http://dx.doi.org/10.1016/j.foodchem.2017.06.011] [PMID: 28763966]
[90]
Meng, X.H.; Zhu, H.T.; Yan, H.; Wang, D.; Yang, C.R.; Zhang, Y.J. C-8 N-Ethyl-2-pyrrolidinone-substituted flavan-3-ols from the leaves of Camellia sinensis var. pubilimba. J. Agric. Food Chem., 2018, 66, 7150-7155.
[http://dx.doi.org/10.1021/acs.jafc.8b02066]
[91]
Kwon, Y.; Kim, H.P.; Kim, M.J.; Chun, W. Acetylcholinesterase inhibitors from Angelica polymorpha stem. Nat. Prod. Sci., 2017, 23(2), 97-102.
[http://dx.doi.org/10.20307/nps.2017.23.2.97]
[92]
Adhami, H.R.; Fitz, V.; Lubich, A.; Kaehlig, H.; Zehl, M.; Krenn, L. Acetylcholinesterase inhibitors from galbanum, the oleo gum-resin of Ferula gummosa Boiss. Phytochem. Lett., 2014, 10, lxxxii-lxxxvii.
[http://dx.doi.org/10.1016/j.phytol.2014.08.023]
[93]
Park, S.Y.; Lee, N.; Lee, S.; Kim, M.J.; Chun, W.; Kim, H.P.; Yang, H.J.; Lee, H.S.; Kwon, Y. A new 3, 4-epoxyfurocoumarin from Heracleum moellendorffii roots. Nat. Prod. Sci., 2017, 23(3), 213-216.
[http://dx.doi.org/10.20307/nps.2017.23.3.213]
[94]
Giap, T.H.; Duc, P.M. Chemical constituents and biological activities of the fruits of Knema pachycarpa de wilde. Nat. Prod. Res., 2021, 35, 455-464.
[95]
Yu, M.Y.; Liu, S.N.; Liu, H.; Meng, Q.H.; Qin, X.J.; Liu, H.Y. Acylphloroglucinol trimers from Callistemon salignus seeds: Isolation, configurational assignment, hAChE inhibitory effects, and molecular docking studies. Bioorg. Chem., 2021, 117, 105404.
[http://dx.doi.org/10.1016/j.bioorg.2021.105404]
[96]
Liu, H.; He, X.Z.; Feng, M.Y. Acylphloroglucinols with acetylcholinesterase inhibitory effects from the fruits of Eucalyptus robusta. Bioorg. Chem., 2020, 103, 104127.
[http://dx.doi.org/10.1016/j.bioorg.2020.104127]
[97]
Qin, X.J.; Liu, H.; Li, P.P.; Ni, W.; He, L.; Khan, A.; Hao, X.J.; Liu, H.Y. Polymethylated acylphloroglucinols from Rhodomyrtus tomentosa exert acetylcholinesterase inhibitory effects. Bioorg. Chem., 2021, 107, 104519.
[http://dx.doi.org/10.1016/j.bioorg.2020.104519] [PMID: 33293058]
[98]
Jamila, N.; Khairuddean, M.; Yeong, K.K.; Osman, H.; Murugaiyah, V. Cholinesterase inhibitory triterpenoids from the bark of Garcinia hombroniana. J. Enzyme Inhib. Med. Chem., 2015, 30, 133-139.
[99]
Jamila, N.; Yeong, K.K.; Murugaiyah, V.; Atlas, A.; Khan, I.; Khan, N. Molecular docking studies and in vitro cholinesterase enzyme inhibitory activities of chemical constituents of Garcinia hombroniana. Nat. Prod. Res., 2015, 29, 86-90.
[100]
Jamila, N.; Khan, N.; Khan, I.; Khan, A.A.; Khan, S.N. A bioactive cycloartane triterpene from Garcinia hombroniana. Nat. Prod. Res., 2016, 30, 1388-1397.
[http://dx.doi.org/10.1080/14786419.2015.1060594]
[101]
Zhang, J.J.; Yang, X.W.; Liu, X.; Ma, J.Z.; Liao, Y.; Xu, G. 1,9-seco-bicyclic polyprenylated acylphloroglucinols from hypericum uralum. J. Nat. Prod., 2015, 78, 3075-3079.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00830]
[102]
Ali, F.; Khan, H.U.; Afzal, M.; Samad, A.; Khan, S.U.; Ali, I. Two new cholinesterase inhibitors asiatoates A and B from Buddleja asiatica. J. Asian Nat. Prod. Res., 2013, 15, 631-637.
[103]
Zhang, X.; Oh, M.; Kim, S.; Kim, J.; Kim, H.; Kim, S. Epimediphine, a novel alkaloid from Epimedium koreanum inhibits acetylcholinesterase. Nat. Prod. Res., 2013, 27, 1067-1074.
[104]
Wang, M.; Wang, S.; Li, Y.; Wu, P.; Yi, P.; Huang, L. A rare sesquiterpenoid-alkaloid hydrid with selective BuChE inhibitory activity from Valeriana officinalis var. latifolia Miq. Tetrahedron Lett., 2022, 92, 153679.
[http://dx.doi.org/10.1016/j.tetlet.2022.153679]
[105]
Queiroz, M.M.F.; Queiroz, E.F.; Zeraik, M.L.; Marti, G.; Favre-Godal, Q.; Simões-Pires, C.; Marcourt, L.; Carrupt, P.A.; Cuendet, M.; Paulo, M.Q.; Bolzani, V.S.; Wolfender, J.L. Antifungals and acetylcholinesterase inhibitors from the stem bark of Croton heliotropiifolius. Phytochem. Lett., 2014, 10, lxxxviii-xciii.
[http://dx.doi.org/10.1016/j.phytol.2014.08.013]
[106]
Huang, Q.Q.; Bi, J.L.; Sun, Q.Y.; Yang, F.M.; Wang, Y.H.; Tang, G.H.; Zhao, F.W.; Wang, H.; Xu, J.J.; Kennelly, E.; Long, C.L.; Yin, G.F. Bioactive isoquinoline alkaloids from Corydalis saxicola. Planta Med., 2012, 78(1), 65-70.
[http://dx.doi.org/10.1055/s-0031-1280126] [PMID: 21858757]
[107]
Wan Othman, W.N.N.; Liew, S.Y.; Khaw, K.Y.; Murugaiyah, V.; Litaudon, M.; Awang, K. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae). Bioorg. Med. Chem., 2016, 24(18), 4464-4469.
[http://dx.doi.org/10.1016/j.bmc.2016.07.043] [PMID: 27492195]
[108]
Cao, Y.; Li, H.; Zhang, Y.; Wang, J.; Ren, Y.; Liu, Y.; Wang, M.; He, C.; Chen, X.; Zheng, X.; Feng, W. Alkaloids and lignans with acetylcholinesterase inhibitory activity from the flower buds of Magnolia biondii Pamp. New J. Chem., 2020, 44(25), 10309-10316.
[http://dx.doi.org/10.1039/D0NJ01537G]
[109]
Queiroz, M.M.F.; Queiroz, E.F.; Zeraik, M.L.; Ebrahimi, S.N.; Marcourt, L.; Cuendet, M. Chemical composition of the bark of Tetrapterys mucronata and identification of acetylcholinesterase inhibitory constituents. J. Nat. Prod., 2014, 77, 650-656.
[http://dx.doi.org/10.1021/np401003p]
[110]
Islam, R.; Adib, M.; Ahsan, M.; Rahman, M.M.; Mazid, M.A. Cholinesterase and glycation inhibition assay of several metabolites obtained from plant and fungi. Dhaka University Journal of Pharmaceutical Sciences, 2019, 18(1)
[http://dx.doi.org/10.3329/dujps.v18i1.41424]
[111]
Ramli, R.A.; Lie, W.; Pyne, S.G. Alkaloids from the roots of stichoneuron caudatum and their acetylcholinesterase inhibitory activities. J. Nat. Prod., 2014, 77, 894-901.
[http://dx.doi.org/10.1021/np400978x]
[112]
Yang, Y.; Cheng, X.; Liu, W.; Chou, G.; Wang, Z.; Wang, C. Potent AChE and BChE inhibitors isolated from seeds of Peganum harmala Linn by a bioassay-guided fractionation. J. Ethnopharmacol., 2015, 168, 279-286.
[113]
Sevindik, H.G.; Güvenalp, Z.; Yerdelen, K.Ö.; Yuca, H.; Demirezer, L.Ö. Research on drug candidate anticholinesterase molecules from Achillea biebersteinii Afan. using by molecular docking and in vitro methods. Med. Chem. Res., 2015, 24(11), 3794-3802.
[http://dx.doi.org/10.1007/s00044-015-1423-8]
[114]
Bhakta, H.K.; Park, C.H.; Yokozawa, T.; Tanaka, T.; Jung, H.A.; Choi, J.S. Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits. Arch. Pharm. Res., 2017, 40(7), 836-853.
[http://dx.doi.org/10.1007/s12272-017-0924-z] [PMID: 28589255]
[115]
Chen, L.; Chen, S.; Sun, P.; Liu, X.; Zhan, Z.; Wang, J. Psoralea corylifolia L.: A comprehensive review of its botany, traditional uses, phytochemistry, pharmacology, toxicology, quality control and pharmacokinetics. Chin. Med., 2023, 18(1), 4.
[http://dx.doi.org/10.1186/s13020-022-00704-6] [PMID: 36627680]
[116]
Jeong, G.S.; Kang, M.G.; Lee, J.Y.; Lee, S.R.; Park, D.; Cho, M.; Kim, H. Inhibition of butyrylcholinesterase and human monoamine oxidase-b by the coumarin glycyrol and liquiritigenin isolated from Glycyrrhiza uralensis. Molecules, 2020, 25(17), 3896.
[http://dx.doi.org/10.3390/molecules25173896] [PMID: 32859055]
[117]
Ji, S.; Li, Z.; Song, W.; Wang, Y.; Liang, W.; Li, K. Bioactive constituents of Glycyrrhiza uralensis (Licorice): Discovery of the effective components of a traditional herbal medicine. J. Nat. Prod., 2016, 79, 281-292.
[118]
Radulović, N.S.; Genčić, M.S.; Stojanović, N.M.; Randjelović, P.J.; Baldovini, N.; Kurteva, V. Prenylated β-diketones, two new additions to the family of biologically active Hypericum perforatum L. (Hypericaceae) secondary metabolites. Food Chem. Toxicol., 2018, 118, 505-513.
[http://dx.doi.org/10.1016/j.fct.2018.05.009] [PMID: 29751080]
[119]
Devidas, S.B.; Rahmatkar, S.N.; Singh, R.; Sendri, N.; Purohit, R.; Singh, D.; Bhandari, P. Amelioration of cognitive deficit in zebrafish by an undescribed anthraquinone from Juglans regia L.: An in silico, in vitro and in vivo approach. Eur. J. Pharmacol., 2021, 906, 174234.
[http://dx.doi.org/10.1016/j.ejphar.2021.174234] [PMID: 34090895]
[120]
Murata, T.; Selenge, E.; Oikawa, S.; Ageishi, K.; Batkhuu, J.; Sasaki, K. Cholinesterase-inhibitory diterpenoids and chemical constituents from aerial parts of Caryopteris mongolica. J. Nat. Med., 2015, 69, 471-478.
[121]
Ślusarczyk, S.; Senol Deniz, F.S.; Abel, R.; Pecio, Ł.; Pérez-Sánchez, H.; Cerón-Carrasco, J.P.; den-Haan, H.; Banerjee, P.; Preissner, R.; Krzyżak, E.; Oleszek, W.; E Orhan, I.; Matkowski, A. Norditerpenoids with selective anti-cholinesterase activity from the roots of Perovskia atriplicifolia benth. Int. J. Mol. Sci., 2020, 21(12), 1-18.
[http://dx.doi.org/10.3390/ijms21124475] [PMID: 32586060]
[122]
Seong, S.H.; Ha, M.T.; Min, B.S.; Jung, H.A.; Choi, J.S. Moracin derivatives from Morus radix as dual BACE1 and cholinesterase inhibitors with antioxidant and anti-glycation capacities. Life Sci., 2018, 210, 20-28.
[http://dx.doi.org/10.1016/j.lfs.2018.08.060] [PMID: 30170070]
[123]
Dai, L.Y.; Yin, Q.M.; Qiu, J.K.; Zhang, Z.Y.; Li, G.; Huang, M.N. Goodyschle A, a new butenolide with significant BchE inhibitory activity from Goodyera schlechtendaliana. Nat. Prod. Res., 2021, 85, 4916-4921.
[http://dx.doi.org/10.1080/14786419.2020.1744142]
[124]
Koay, Y.H.; Basiri, A.; Murugaiyah, V.; Chan, K.L. Isocorilagin, a cholinesterase inhibitor from Phyllanthus niruri. Nat. Prod. Commun., 2014, 9, 515-517.
[http://dx.doi.org/10.1177/1934578X1400900423]
[125]
Liu, Q.; Shen, J.; Li, P.; Li, Y.; He, C.; Xiao, P. Stilbenoids isolated from the roots of Rheum lhasaense under the guidance of the acetylcholinesterase inhibition activity. J. Nat. Med., 2021, 75(2), 372-380.
[http://dx.doi.org/10.1007/s11418-020-01478-7] [PMID: 33411157]
[126]
Augustin, N.; Nuthakki, V.K.; Abdullaha, M.; Hassan, Q.P.; Gandhi, S.G.; Bharate, S.B. Discovery of helminthosporin, an anthraquinone isolated from Rumex abyssinicus Jacq as a dual cholinesterase inhibitor. ACS Omega, 2020, 5(3), 1616-1624.
[http://dx.doi.org/10.1021/acsomega.9b03693] [PMID: 32010836]
[127]
Khan, S.; Wang, Z.; Wang, R.; Zhang, L. Horizontoates A-C: New cholinesterase inhibitors from Cotoneaster horizontalis. Phytochem. Lett., 2014, 10, 204-208.
[http://dx.doi.org/10.1016/j.phytol.2014.09.007]
[128]
Zhang, F.; Li, S.; Liu, C.; Fang, K.; Jiang, Y.; Zhang, J.; Lan, J.; Zhu, L.; Pang, H.; Wang, G. Rapid screening for acetylcholinesterase inhibitors in Selaginella doederleinii Hieron by using functionalized magnetic Fe3O4 nanoparticles. Talanta, 2022, 243, 123284.
[http://dx.doi.org/10.1016/j.talanta.2022.123284] [PMID: 35255433]
[129]
Zhou, Z.Q.; Xiao, J.; Fan, H.X.; Yu, Y.; He, R.R.; Feng, X.L.; Kurihara, H.; So, K.F.; Yao, X.S.; Gao, H. Polyphenols from wolfberry and their bioactivities. Food Chem., 2017, 214, 644-654.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.105] [PMID: 27507521]
[130]
Lee, J.S.; Kim, J.H.; Han, Y.K.; Ma, J.Y.; Kim, Y.H.; Li, W.; Yang, S.Y. Cholinesterases inhibition studies of biological active compounds from the rhizomes of Alpinia officinarum Hance and in silico molecular dynamics. Int. J. Biol. Macromol., 2018, 120(PtB), 2442-2447.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.014] [PMID: 30193916]
[131]
Kalaycıoğlu, Z.; Gazioğlu, I.; Erim, F.B. Comparison of antioxidant, anticholinesterase, and antidiabetic activities of three curcuminoids isolated from Curcuma longa L. Nat. Prod. Res., 2017, 31, 219-7.
[132]
Lin, S.; Yan, S.; Liu, Y.; Zhang, X.; Cao, F.; He, Y. New secondary metabolites with immunosuppressive and BChE inhibitory activities from an endophytic fungus Daldinia sp. TJ403-LS1. Bioorg. Chem., 2021, 114, 105091.
[http://dx.doi.org/10.1016/j.bioorg.2021.105091]
[133]
Xiao, Y.; Liang, W.; Zhang, Z.; Wang, Y.; Zhang, S.; Liu, J. Polyketide derivatives from the endophytic fungus Phaeosphaeria sp. LF5 isolated from Huperzia serrata and their acetylcholinesterase inhibitory activities. J. Fungi, 2022, 8(3), 232.
[134]
Sallam, A.; Sabry, M.A.; Galala, A.A. Westalsan: A new acetylcholine esterase inhibitor from the endophytic fungus Westerdykella nigra. Chem. Biodivers., 2021, 18(4), e2000957.
[http://dx.doi.org/10.1002/cbdv.202000957] [PMID: 33555630]
[135]
Xiao, Z.; Huang, H.; Shao, C.; Xia, X.; Ma, L.; Huang, X.; Lu, Y.; Lin, Y.; Long, Y.; She, Z. Asperterpenols A and B, new sesterterpenoids isolated from a mangrove endophytic fungus Aspergillus sp. 085242. Org. Lett., 2013, 15(10), 2522-2525.
[http://dx.doi.org/10.1021/ol401005j] [PMID: 23642191]
[136]
Long, Y.; Cui, H.; Liu, X.; Xiao, Z.; Wen, S.; She, Z. Acetylcholinesterase inhibitory meroterpenoid from a mangrove endophytic fungus Aspergillus sp. 16-5c. Molecules, 2017, 22(5), 727.
[137]
Wang, M.; Sun, M.; Hao, H.; Lu, C. Avertoxins A-D, Prenyl Asteltoxin Derivatives from Aspergillus versicolor Y10, an endophytic fungus of Huperzia serrata. J. Nat. Prod., 2015, 78, 3067-3070.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00600]
[138]
Ding, B.; Wang, Z.; Huang, X.; Liu, Y.; Chen, W.; She, Z. Bioactive α-pyrone meroterpenoids from mangrove endophytic fungus Penicillium sp. Nat. Prod. Res., 2016, 30, 2805-2812.
[http://dx.doi.org/10.1080/14786419.2016.1164702]
[139]
Choi, B.W.; Lee, H.S.; Shin, H.C.; Lee, B.H. Multifunctional activity of polyphenolic compounds associated with a potential for Alzheimer’s disease therapy from Ecklonia cava. Phytother. Res., 2015, 29(4), 549-553.
[http://dx.doi.org/10.1002/ptr.5282] [PMID: 25640212]
[140]
Choi, J.S.; Haulader, S.; Karki, S.; Jung, H.J.; Kim, H.R.; Jung, H.A. Acetyl- and butyryl-cholinesterase inhibitory activities of the edible brown alga Eisenia bicyclis. Arch. Pharm. Res., 2015, 38(8), 1477-1487.
[http://dx.doi.org/10.1007/s12272-014-0515-1] [PMID: 25370610]
[141]
Seong, S.H.; Ali, M.Y.; Kim, H.R.; Jung, H.A.; Choi, J.S. BACE1 inhibitory activity and molecular docking analysis of meroterpenoids from Sargassum serratifolium. Bioorg. Med. Chem., 2017, 25(15), 3964-3970.
[http://dx.doi.org/10.1016/j.bmc.2017.05.033] [PMID: 28576634]
[142]
Liu, Y-M.; Fan, J-J.; Wang, L-N. Discovery of guanidine derivatives from Buthus martensii Karsch with metal-binding and cholinesterase inhibition properties. Molecules, 2021, 26(21), 6737.
[143]
Vitale, R.M.; Rispoli, V.; Desiderio, D.; Sgammato, R.; Thellung, S.; Canale, C.; Vassalli, M.; Carbone, M.; Ciavatta, M.L.; Mollo, E.; Felicità, V.; Arcone, R.; Gavagnin Capoggiani, M.; Masullo, M.; Florio, T.; Amodeo, P. In silico identification and experimental validation of novel anti-Alzheimer’s multitargeted ligands from a marine source featuring a “2-aminoimidazole plus aromatic group” scaffold. ACS Chem. Neurosci., 2018, 9(6), 1290-1303.
[http://dx.doi.org/10.1021/acschemneuro.7b00416] [PMID: 29473731]
[144]
Sirimangkalakitti, N.; Olatunji, O.J.; Changwichit, K.; Saesong, T.; Chamni, S.; Chanvorachote, P. Bromotyrosine alkaloids with acetylcholinesterase inhibitory activity from the thai sponge Acanthodendrilla sp. Nat. Prod. Commun., 2015, 10, 1945-1949.
[http://dx.doi.org/10.1177/1934578X1501001135]
[145]
Ómarsdóttir, S.; Wang, X.; Liu, H.; Duggan, B.M.; Molinski, T.F.; Lepadins, I.K. 3-O-(3′-Methylthio)acryloyloxy-decahydroquinoline esters from a bahamian Ascidian didemnum sp. assignment of absolute stereostructures. J. Org. Chem., 2018, 83, 13670-13677.
[http://dx.doi.org/10.1021/acs.joc.8b01609]
[146]
Olsen, E.K.; Hansen, E.; W K Moodie, L.; Isaksson, J.; Sepčić, K.; Cergolj, M.; Svenson, J.; Andersen, J.H. Marine AChE inhibitors isolated from Geodia barretti: Natural compounds and their synthetic analogs. Org. Biomol. Chem., 2016, 14(5), 1629-1640.
[http://dx.doi.org/10.1039/C5OB02416A] [PMID: 26695619]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy