Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Novel bone Morphogenetic Protein (BMP)-2/4 Consensus Peptide (BCP) for the Osteogenic Differentiation of C2C12 Cells

Author(s): Jin Wook Hwang and Youn Ho Han*

Volume 24, Issue 7, 2023

Published on: 19 July, 2023

Page: [610 - 619] Pages: 10

DOI: 10.2174/1389203724666230614112027

Price: $65

conference banner
Abstract

Background: Despite the promising clinical potential of bone morphogenetic protein (BMP)-related therapies for bone formation, their side effects warrant the need for alternative therapeutic peptides. BMP family members can aid in bone repair; however, peptides derived from BMP2/ 4 have not yet been investigated.

Methods: In this study, three candidates BMP2/4 consensus peptide (BCP) 1, 2, and 3 were identified and their ability to induce osteogenesis in C2C12 cells was analyzed. First, an alkaline phosphatase (ALP) staining assay was performed to evaluate the osteogenic effects of BCPs. Next, the effects of BCPs on RNA expression levels and protein abundances of osteogenic markers were explored. Furthermore, the transcriptional activity of ALP by BCP1 and in silico molecular docking model on BMP type IA receptor (BRIA) were performed.

Results: BCP1-3 induced higher RUNX2 expression than BMP2. Interestingly, among them, BCP1 significantly promoted osteoblast differentiation more than BMP2 in ALP staining with no cytotoxicity. BCP1 significantly induced the osteoblast markers, and the highest RUNX2 expression was observed at 100 ng/mL compared to other concentrations. In transfection experiments, BCP1 stimulated osteoblast differentiation via RUNX2 activation and the Smad signaling pathway. Finally, in silico molecular docking suggested the possible binding sites of BCP1 on BRIA.

Conclusion: These results show that BCP1 promotes osteogenicity in C2C12 cells. This study suggests that BCP1 is the most promising candidate peptide to replace BMP2 for osteoblast differentiation.

Keywords: BMP2, BMP4, BMP-2/4 consensus peptide (BCP)-1–3, osteogenic differentiation, Smad signal pathway, molecular docking model.

« Previous
Graphical Abstract
[1]
Sandler, A.B.; Scanaliato, J.P.; Raiciulescu, S.; Nesti, L.; Dunn, J.C. Bone Morphogenic Protein for Upper Extremity Fractures: A Systematic Review. Hand (N. Y.), 2023, 18(1), 80-88.
[PMID: 33789512]
[2]
Shah, P.; Keppler, L.; Rutkowski, J. Bone morphogenic protein: an elixir for bone grafting--a review. J. Oral Implantol., 2012, 38(6), 767-778.
[http://dx.doi.org/10.1563/AAID-JOI-D-10-00196] [PMID: 21574851]
[3]
Gillman, C.E.; Jayasuriya, A.C. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater. Sci. Eng. C, 2021, 130, 112466.
[http://dx.doi.org/10.1016/j.msec.2021.112466] [PMID: 34702541]
[4]
Le, B.Q.; Too, J.H.; Tan, T.C.; Smith, R.A.A.; Nurcombe, V.; Cool, S.M.; Yu, N. Application of a BMP2-binding heparan sulphate to promote periodontal regeneration. Eur. Cell. Mater., 2021, 42, 139-153.
[http://dx.doi.org/10.22203/eCM.v042a10] [PMID: 34464450]
[5]
Refaat, M.; Klineberg, E.O.; Fong, M.C.; Garcia, T.C.; Leach, J.K.; Haudenschild, D.R. Binding to COMP reduces the BMP2 dose for spinal fusion in a rat model. Spine, 2016, 41(14), E829-E836.
[http://dx.doi.org/10.1097/BRS.0000000000001408] [PMID: 26679888]
[6]
Woo, E.J. Adverse events after recombinant human BMP2 in nonspinal orthopaedic procedures. Clin. Orthop. Relat. Res., 2013, 471(5), 1707-1711.
[http://dx.doi.org/10.1007/s11999-012-2684-x] [PMID: 23132207]
[7]
Ferrà-Cañellas, M.M.; Munar-Bestard, M.; Garcia-Sureda, L.; Lejeune, B.; Ramis, J.M.; Monjo, M. BMP4 micro-immunotherapy increases collagen deposition and reduces PGE2 release in human gingival fibroblasts and increases tissue viability of engineered 3D gingiva under inflammatory conditions. J. Periodontol., 2021, 92(10), 1448-1459.
[http://dx.doi.org/10.1002/JPER.20-0552] [PMID: 33393105]
[8]
Goldman, D.C.; Donley, N.; Christian, J.L. Genetic interaction between Bmp2 and Bmp4 reveals shared functions during multiple aspects of mouse organogenesis. Mech. Dev., 2009, 126(3-4), 117-127.
[http://dx.doi.org/10.1016/j.mod.2008.11.008] [PMID: 19116164]
[9]
Li, X.C.; Wu, Y.H.; Bai, X.D.; Ji, W.; Guo, Z.M.; Wang, C.F.; He, Q.; Ruan, D. BMP7-based functionalized self-assembling peptides protect nucleus pulposus-derived stem cells from apoptosis in vitro. Tissue Eng. Part A, 2016, 22(19-20), 1218-1228.
[http://dx.doi.org/10.1089/ten.tea.2016.0230] [PMID: 27582519]
[10]
Katagiri, T.; Yamaguchi, A.; Komaki, M.; Abe, E.; Takahashi, N.; Ikeda, T.; Rosen, V.; Wozney, J.M.; Fujisawa-Sehara, A.; Suda, T. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J. Cell Biol., 1994, 127(6), 1755-1766.
[http://dx.doi.org/10.1083/jcb.127.6.1755] [PMID: 7798324]
[11]
Oliveira, O.R.G.; Martins, S.P.R.; Lima, W.G.; Gomes, M.M. The use of bone morphogenetic proteins (BMP) and pseudarthrosis, a literature review. Revista Brasileira de Ortop, 2017, 52(2), 124-140.
[http://dx.doi.org/10.1016/j.rboe.2016.03.005] [PMID: 28409128]
[12]
Kaplan, F.S.; Fiori, J.; DE LA Peña, L.S.; Ahn, J.; Billings, P.C.; Shore, E.M. Dysregulation of the BMP-4 signaling pathway in fibrodysplasia ossificans progressiva. Ann. N. Y. Acad. Sci., 2006, 1068(1), 54-65.
[http://dx.doi.org/10.1196/annals.1346.008] [PMID: 16831905]
[13]
Zhang, F.; Song, J.; Zhang, H.; Huang, E.; Song, D.; Tollemar, V.; Wang, J.; Wang, J.; Mohammed, M.; Wei, Q.; Fan, J.; Liao, J.; Zou, Y.; Liu, F.; Hu, X.; Qu, X.; Chen, L.; Yu, X.; Luu, H.H.; Lee, M.J.; He, T.C.; Ji, P. Wnt and BMP signaling crosstalk in regulating dental stem cells: Implications in dental tissue engineering. Genes Dis., 2016, 3(4), 263-276.
[http://dx.doi.org/10.1016/j.gendis.2016.09.004] [PMID: 28491933]
[14]
Matsubara, T.; Kida, K.; Yamaguchi, A.; Hata, K.; Ichida, F.; Meguro, H.; Aburatani, H.; Nishimura, R.; Yoneda, T. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J. Biol. Chem., 2008, 283(43), 29119-29125.
[http://dx.doi.org/10.1074/jbc.M801774200] [PMID: 18703512]
[15]
Silvério, K.G.; Davidson, K.C.; James, R.G.; Adams, A.M.; Foster, B.L.; Nociti, F.H., Jr; Somerman, M.J.; Moon, R.T. Wnt/β-catenin pathway regulates bone morphogenetic protein (BMP2)-mediated differentiation of dental follicle cells. J. Periodontal Res., 2012, 47(3), 309-319.
[http://dx.doi.org/10.1111/j.1600-0765.2011.01433.x] [PMID: 22150562]
[16]
Itoh, K.; Udagawa, N.; Katagiri, T.; Iemura, S.; Ueno, N.; Yasuda, H.; Higashio, K.; Quinn, J.M.W.; Gillespie, M.T.; Martin, T.J.; Suda, T.; Takahashi, N. Bone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factor-kappaB ligand. Endocrinology, 2001, 142(8), 3656-3662.
[http://dx.doi.org/10.1210/endo.142.8.8300] [PMID: 11459815]
[17]
Liu, D.D.; Zhang, C.Y.; Liu, Y.; Li, J.; Wang, Y.X.; Zheng, S.G. RUNX2 regulates osteoblast differentiation via the BMP4 signaling pathway. J. Dent. Res., 2022, 101(10), 1227-1237.
[http://dx.doi.org/10.1177/00220345221093518] [PMID: 35619284]
[18]
Choi, Y.H.; Han, Y.; Jin, S.W.; Lee, G.H.; Kim, G.S.; Lee, D.Y.; Chung, Y.C.; Lee, K.Y.; Jeong, H.G. Pseudoshikonin I enhances osteoblast differentiation by stimulating Runx2 and Osterix. J. Cell. Biochem., 2018, 119(1), 748-757.
[http://dx.doi.org/10.1002/jcb.26238] [PMID: 28657691]
[19]
Nam, S.W.; Kim, S.H.; Han, Y. Discovery and development of berberine derivatives as stimulants of osteoblast differentiation. Biochem. Biophys. Res. Commun., 2020, 527(1), 110-116.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.145] [PMID: 32446353]
[20]
Liu, X. W.; Ma, B.; Zi, Y.; Xiang, L. B.; Han, T. Y. Effects of rutin on osteoblast MC3T3-E1 differentiation, ALP activity and Runx2 protein expression. Euro j histochem, 2021, 65(1), 3159.
[21]
Park, K.R.; Lee, J.Y.; Cho, M.; Yun, H.M.; Ziyuglycoside, I. Ziyuglycoside I upregulates RUNX2 through ERK1/2 in promoting osteoblast differentiation and bone mineralization. Am. J. Chin. Med., 2021, 49(4), 883-900.
[http://dx.doi.org/10.1142/S0192415X21500427] [PMID: 33829967]
[22]
Wu, H.; Whitfield, T.W.; Gordon, J.A.R.; Dobson, J.R.; Tai, P.W.L.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Lian, J.B. Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis. Genome Biol., 2014, 15(3), R52.
[http://dx.doi.org/10.1186/gb-2014-15-3-r52] [PMID: 24655370]
[23]
Javed, A.; Bae, J.S.; Afzal, F.; Gutierrez, S.; Pratap, J.; Zaidi, S.K.; Lou, Y.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Lian, J.B. Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal. J. Biol. Chem., 2008, 283(13), 8412-8422.
[http://dx.doi.org/10.1074/jbc.M705578200] [PMID: 18204048]
[24]
Hopkins, C.R. Inhibitors of the bone morphogenetic protein (BMP) signaling pathway: a patent review (2008-2015). Expert Opin. Ther. Pat., 2016, 26(10), 1115-1128.
[http://dx.doi.org/10.1080/13543776.2016.1217330] [PMID: 27476794]
[25]
Yan, C.P.; Wang, X.K.; Jiang, K.; Yin, C.; Xiang, C.; Wang, Y.; Pu, C.; Chen, L.; Li, Y.L. β-Ecdysterone Enhanced Bone Regeneration Through the BMP-2/SMAD/RUNX2/Osterix Signaling Pathway. Front. Cell Dev. Biol., 2022, 10, 883228.
[http://dx.doi.org/10.3389/fcell.2022.883228] [PMID: 35669516]
[26]
Guzman, A.; Femiak, M.Z.; Boergermann, J.H.; Paschkowsky, S.; Kreuzaler, P.A.; Fratzl, P.; Harms, G.S.; Knaus, P. SMAD versus non-SMAD signaling is determined by lateral mobility of bone morphogenetic protein (BMP) receptors. J. Biol. Chem., 2012, 287(47), 39492-39504.
[http://dx.doi.org/10.1074/jbc.M112.387639] [PMID: 22961979]
[27]
Sales, A.; Khodr, V.; Machillot, P.; Chaar, L.; Fourel, L.; Guevara-Garcia, A.; Migliorini, E.; Albigès-Rizo, C.; Picart, C. Differential bioactivity of four BMP-family members as function of biomaterial stiffness. Biomaterials, 2022, 281, 121363.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121363] [PMID: 35063741]
[28]
Khodr, V.; Machillot, P.; Migliorini, E.; Reiser, J.B.; Picart, C. High-throughput measurements of bone morphogenetic protein/bone morphogenetic protein receptor interactions using biolayer interferometry. Biointerphases, 2021, 16(3), 031001.
[http://dx.doi.org/10.1116/6.0000926] [PMID: 34241280]
[29]
Poynton, A.R.; Lane, J.M. Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine, 2002, 27(16)(Suppl.), S40-S48.
[http://dx.doi.org/10.1097/00007632-200208151-00010] [PMID: 12205419]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy