Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Multi-vesicular Liposome and its Applications: A Novel Chemically Modified Approach for Drug Delivery Application

Author(s): Kajal Ghosal*, Ayan Pani, Totan Chowdhury, Abhijeet Kundu and Sabu Thomas

Volume 24, Issue 1, 2024

Published on: 03 August, 2023

Page: [26 - 38] Pages: 13

DOI: 10.2174/1389557523666230613162512

Price: $65

conference banner
Abstract

Background: This study aimed to elaborate on all the aspects of multivesicular liposomes, including structure, function, topology, etc. Liposomes are a unique drug delivery system, in which both hydrophilic and hydrophobic drug molecules can be incorporated. Particularly, multivesicular liposomes have more advantages than other liposomes because of their unique structure. This study provides an overview of several works already performed by various researchers in this field. Numerous studies have reported on preparing and evaluating multivesicular liposomes for drug delivery applications. This study summarizes the process of formulating multivesicular liposomes and their application in drug delivery systems and provides details about how to resolve the problem of limited solubility and stability of biomolecules, along with controlled drug release kinetics, with the possibility of loading various drugs. There is no doubt that multivesicular liposome opens new avenues to develop novel drug delivery system for achieving the desired functional performances and expanding the applications in the drug delivery area.

Keywords: Multivesicular liposome, novel drug delivery, applications, functional performance, biomolecule, drug solubility.

Graphical Abstract
[1]
Hassan, S.S.M.; Kamel, A.H.; Hashem, H.M.; Bary, E.M.A. Drug delivery systems between metal, liposome, and polymer-based nanomedicine: A review. Eur. Chem. Bull., 2020, 9(3), 91-102.
[http://dx.doi.org/10.17628/ecb.2020.9.91-102]
[2]
Bangham, A.D. Liposomes; Marcel Dekker: New York, 1983, pp. 1-26.
[3]
Jain, N.K. Controlled and novel drug delivery; CBS publishers and distributors: New Delhi, , 2007; p. 304.
[4]
Anwekar, H.; Patel, S.; Singhai, A.K. Liposome-as drug carriers. Int. J. Pharm. Life Sci., 2011, 2(7), 945-951.
[5]
Kim, S.; Turker, M.S.; Chi, E.Y.; Sela, S.; Martin, G.M. Preparation of multivesicular liposomes. Biochim. Biophys. Acta Biomembr., 1983, 728(3), 339-348.
[http://dx.doi.org/10.1016/0005-2736(83)90504-7]
[6]
Mantripragada, S. DepoFoam technology for sustained release injectable drug delivery. Drug Deliv. Syst. Sci., 2001, 1, 13-16.
[7]
Mantripragada, S. A lipid based depot (DepoFoam® technology) for sustained release drug delivery. Prog. Lipid Res., 2002, 41(5), 392-406.
[http://dx.doi.org/10.1016/S0163-7827(02)00004-8] [PMID: 12121719]
[8]
Xiao, C.; Qi, X.; Maitani, Y.; Nagai, T. Sustained release of cisplatin from multivesicular liposomes: Potentiation of antitumor efficacy against S180 murine carcinoma. J. Pharm. Sci., 2004, 93(7), 1718-1724.
[http://dx.doi.org/10.1002/jps.20086] [PMID: 15176061]
[9]
Mu, H.; Wang, Y.; Chu, Y.; Jiang, Y.; Hua, H.; Chu, L.; Wang, K.; Wang, A.; Liu, W.; Li, Y.; Fu, F.; Sun, K. Multivesicular liposomes for sustained release of bevacizumab in treating laser-induced choroidal neovascularization. Drug Deliv., 2018, 25(1), 1372-1383.
[http://dx.doi.org/10.1080/10717544.2018.1474967] [PMID: 29869520]
[10]
Kim, S.; Howell, S.B. Multivesicular liposomes having a biologically active substance encapsulated therein in the presence of a hydrochloride; US, 1998, p. 5807572.
[11]
Davidson, E.M.; Barenholz, Y.; Cohen, R.; Haroutiunian, S.; Kagan, L.; Ginosar, Y. High-dose bupivacaine remotely loaded into multivesicular liposomes demonstrates slow drug release without systemic toxic plasma concentrations after subcutaneous administration in humans. Anesth. Analg., 2010, 110(4), 1018-1023.
[http://dx.doi.org/10.1213/ANE.0b013e3181d26d2a] [PMID: 20357145]
[12]
Grayson, L.S.; Hansbrough, J.F.; Zapata-Sirvent, R.; Roehrborn, A.J.; Kim, T.; Kim, S. Soft tissue infection prophylaxis with gentamicin encapsulated in multivesicular liposomes. Crit. Care Med., 1995, 23(1), 84-91.
[http://dx.doi.org/10.1097/00003246-199501000-00016] [PMID: 8001392]
[13]
Castor, T.P.; Chu, L. Methods and apparatus for making liposomes containing hydrophobic drugs; US, 1998, p. 5776486.
[14]
Jain, S.K.; Jain, R.K.; Chourasia, M.K.; Jain, A.K.; Chalasani, K.B.; Soni, V.; Jain, A. Design and development of multivesicular liposomal depot delivery system for controlled systemic delivery of acyclovir sodium. AAPS PharmSciTech, 2005, 6(1), E35-E41.
[http://dx.doi.org/10.1208/pt060108] [PMID: 16353961]
[15]
Frucht-Perry, J.; Assil, K.K.; Ziegler, E.; Douglas, H.; Brown, S.I.; Schanzlin, D.J.; Weinreb, R.N. Fibrin-enmeshed tobramycin liposomes: Single application topical therapy of Pseudomonas keratitis. Cornea, 1992, 11(5), 393-397.
[http://dx.doi.org/10.1097/00003226-199209000-00006] [PMID: 1424666]
[16]
Sankaram, M.B.; Kim, S. Multivesicular liposomes with controlled release of encapsulated biologically active substances; US, 2000, p. 6132766.
[17]
Manna, S.; Wu, Y.; Wang, Y.; Koo, B.; Chen, L.; Petrochenko, P.; Dong, Y.; Choi, S.; Kozak, D.; Oktem, B.; Xu, X.; Zheng, J. Probing the mechanism of bupivacaine drug release from multivesicular liposomes. J. Control. Release, 2019, 294, 279-287.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.029] [PMID: 30576748]
[18]
Assil, K.K.; Weinreb, R.N. Multivesicular liposomes. Arch. Ophthalmol., 1987, 105(3), 400-403.
[http://dx.doi.org/10.1001/archopht.1987.01060030120040] [PMID: 3827719]
[19]
Spector, M.S.; Zasadzinski, J.A.; Sankaram, M.B. Topology of multivesicular liposomes, a model biliquid foam. Langmuir, 1996, 12(20), 4704-4708.
[http://dx.doi.org/10.1021/la960218s]
[20]
Katre, N.V.; Asherman, J.; Schaefer, H.; Hora, M. Multivesicular liposome (DepoFoam) technology for the sustained delivery of insulin-like growth factor-I (IGF-I). J. Pharm. Sci., 1998, 87(11), 1341-1346.
[http://dx.doi.org/10.1021/js980080t] [PMID: 9811487]
[21]
Katre, N.V.; Asherman, J.; Schaefer, H.; Hora, M. A multivesicular lipid based sustained release system for the delivery of therapeutic proteins. 8th Int. Pharm. Technol. Symp. Turkey, 1996, pp. 20-21.
[22]
Gabizon, A; Barenholz, Y Liposomal anthracyclines-from basics to clinical approval of PEGylated liposomal doxorubicin. Liposomes: Rational design , 1999, 343-362.
[23]
Schneider, M. Process for the preparation of liposomes in aqueous solution; US, 1980, p. 4224179.
[24]
Ye, Q.; Asherman, J.; Stevenson, M.; Brownson, E.; Katre, N.V. DepoFoam™ technology: A vehicle for controlled delivery of protein and peptide drugs. J. Control. Release, 2000, 64(1-3), 155-166.
[http://dx.doi.org/10.1016/S0168-3659(99)00146-7] [PMID: 10640654]
[25]
Mayer, L.D.; Hope, M.J.; Cullis, P.R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta Biomembr., 1986, 858(1), 161-168.
[http://dx.doi.org/10.1016/0005-2736(86)90302-0] [PMID: 3707960]
[26]
Anderson, P.M.; Hanson, D.C.; Hasz, D.E.; Halet, M.R.; Blazar, B.R.; Ochoa, A.C. Cytokines in liposomes: Preliminary studies with IL-1, IL-2, IL-6, GM-CSF and interferon-γ. Cytokine, 1994, 6(1), 92-101.
[http://dx.doi.org/10.1016/1043-4666(94)90014-0] [PMID: 8003640]
[27]
de Miranda, P.; Blum, M.R. Pharmacokinetics of acyclovir after intravenous and oral administration. J. Antimicrob. Chemother., 1983, 12(Suppl. B), 29-37.
[http://dx.doi.org/10.1093/jac/12.suppl_B.29] [PMID: 6355048]
[28]
Goldberg, L.H.; Kaufman, R.; Kurtz, T.O.; Conant, M.A.; Eron, L.J.; Batenhorst, R.L.; Boone, G.S. Long-term suppression of recurrent genital herpes with acyclovir. A 5-year benchmark. Arch. Dermatol., 1993, 129(5), 582-587.
[http://dx.doi.org/10.1001/archderm.1993.01680260052005] [PMID: 8481018]
[29]
Kim, S.; Scheerer, S.; Geyer, M.A.; Howell, S.B. Direct cerebrospinal fluid delivery of an antiretroviral agent using multivesicular liposomes. J. Infect. Dis., 1990, 162(3), 750-752.
[http://dx.doi.org/10.1093/infdis/162.3.750] [PMID: 2167343]
[30]
Price, R.W.; Brew, B.J. The AIDS dementia complex. J. Infect. Dis., 1988, 158(5), 1079-1083.
[http://dx.doi.org/10.1093/infdis/158.5.1079] [PMID: 3053922]
[31]
Terasaki, T.; Pardridge, W.M. Restricted transport of 3′-azido-3′-deoxythymidine and dideoxynucleosides through the blood-brain barrier. J. Infect. Dis., 1988, 158(3), 630-632.
[http://dx.doi.org/10.1093/infdis/158.3.630] [PMID: 2842410]
[32]
Jain, S.K.; Gupta, Y.; Jain, A.; Bhola, M. Multivesicular liposomes bearing celecoxib-β-cyclodextrin complex for transdermal delivery. Drug Deliv., 2007, 14(6), 327-335.
[http://dx.doi.org/10.1080/10717540601098740] [PMID: 17701522]
[33]
Alvarez-Román, R.; Naik, A.; Kalia, Y.N.; Fessi, H.; Guy, R.H. Visualization of skin penetration using confocal laser scanning microscopy. Eur. J. Pharm. Biopharm., 2004, 58(2), 301-316.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.027] [PMID: 15296957]
[34]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-IN27.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[35]
Huh, J.; Chen, J.C.; Furman, G.M.; Malki, C.; King, B.; Kafie, F.; Wilson, S.E. Local treatment of prosthetic vascular graft infection with multivesicular liposome-encapsulated amikacin. J. Surg. Res., 1998, 74(1), 54-58.
[http://dx.doi.org/10.1006/jsre.1997.5188] [PMID: 9536974]
[36]
Lorentzen, J.E.; Nielsen, O.M.; Arendrup, H.; Kimose, H.H.; Bille, S.; Andersen, J.; Jensen, C.H.; Jacobsen, F.; Røder, O.C. Vascular graft infection: An analysis of sixty-two graft infections in 2411 consecutively implanted synthetic vascular grafts. Surgery, 1985, 98(1), 81-86.
[PMID: 4012610]
[37]
Langston, M.; Ramprasad, M.P.; Kararli, T.T.; Galluppi, G.R.; Katre, N.V. Modulation of the sustained delivery of myelopoietin (Leridistim) encapsulated in multivesicular liposomes (DepoFoam). J. Control. Release, 2003, 89(1), 87-99.
[http://dx.doi.org/10.1016/S0168-3659(03)00073-7] [PMID: 12695065]
[38]
van Gils, F.C.; Budel, L.M.; Burger, H.; van Leen, R.W.; Löwenberg, B.; Wagemaker, G. Interleukin-3 (IL-3) receptors on rhesus monkey bone marrow cells: Species specificity of human IL-3, binding characteristics, and lack of competition with GM-CSF. Exp. Hematol., 1994, 22(3), 248-255.
[PMID: 7509288]
[39]
Trillet-Lenoir, V.; Green, J.; Manegold, C.; Von Pawel, J.; Gatzemeier, U.; Lebeau, B.; Depierre, A.; Johnson, P.; Decoster, G.; Tomita, D.; Ewen, C. Recombinant granulocyte colony stimulating factor reduces the infectious complications of cytotoxic chemotherapy. Eur. J. Cancer, 1993, 29(3), 319-324.
[http://dx.doi.org/10.1016/0959-8049(93)90376-Q] [PMID: 7691119]
[40]
Jain, A.K.; Chalasani, K.B.; Khar, R.K.; Ahmed, F.J.; Diwan, P.V. Muco-adhesive multivesicular liposomes as an effective carrier for transmucosal insulin delivery. J. Drug Target., 2007, 15(6), 417-427.
[http://dx.doi.org/10.1080/10611860701453653] [PMID: 17613660]
[41]
Chalasani, K.B.; Russell-Jones, G.J.; Yandrapu, S.K.; Diwan, P.V.; Jain, S.K. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J. Control. Release, 2007, 117(3), 421-429.
[http://dx.doi.org/10.1016/j.jconrel.2006.12.003] [PMID: 17239471]
[42]
Kim, S.; Kim, D.J.; Geyer, M.A.; Howell, S.B. Multivesicular liposomes containing 1-β-D-arabinofuranosylcytosine for slow-release intrathecal therapy. Cancer Res., 1987, 47(15), 3935-3937.
[PMID: 3607740]
[43]
Schabel, F.M., Jr; Skipper, H.E.; Trader, M.W.; Brockman, R.W.; Laster, W.R., Jr; Corbett, T.H.; Griswold, D.P. Jr Drug control of Ara-C-resistant tumor cells. Med. Pediatr. Oncol., 1982, 10(S1)(Suppl. 1), 125-148.
[http://dx.doi.org/10.1002/mpo.2950100713] [PMID: 7162459]
[44]
Schwendener, R.A.; Lagocki, P.A.; Rahman, Y.E. The effects of charge and size on the interaction of unilamellar liposomes with macrophages. Biochim. Biophys. Acta Biomembr., 1984, 772(1), 93-101.
[http://dx.doi.org/10.1016/0005-2736(84)90521-2] [PMID: 6712952]
[45]
Zapf, J.; Froesch, E.R. Insulin-like growth factors/somatomedins: Structure, secretion, biological actions and physiological role. Horm. Res., 1986, 24(2-3), 121-130.
[http://dx.doi.org/10.1159/000180551] [PMID: 3530937]
[46]
Takano, K.; Hizuka, N.; Asakawa, K.; Sukegawa, I.; Shizume, K.; Demura, H. Effects of sc administration of recombinant human insulin-like growth factor I (IGF-I) on normal human subjects. Endocrinol. Jpn., 1990, 37(2), 309-317.
[http://dx.doi.org/10.1507/endocrj1954.37.309] [PMID: 2226347]
[47]
Wang, Y.; Luo, Y.; Li, C.; Zhang, X.; Pi, C.; Yu, L.; Wang, S.; Zhong, Z. Optimized formulation of multivesicular liposomes loaded with oleanolic acid enhanced anticancer effect in vitro. Drug Des. Devel. Ther., 2017, 11, 955-968.
[http://dx.doi.org/10.2147/DDDT.S128795] [PMID: 28392677]
[48]
Mínguez, B.; Lachenmayer, A. Diagnostic and prognostic molecular markers in hepatocellular carcinoma. Dis. Markers, 2011, 31(3), 181-190.
[http://dx.doi.org/10.1155/2011/310675] [PMID: 22045404]
[49]
Liu, Y.; Zhang, J.B.; Qin, Y.; Wang, W.; Wei, L.; Teng, Y.; Guo, L.; Zhang, B.; Lin, Z.; Liu, J.; Ren, Z.G.; Ye, Q.H.; Xie, Y. PROX1 promotes hepatocellular carcinoma metastasis by way of up-regulating hypoxia-inducible factor 1α expression and protein stability. Hepatology, 2013, 58(2), 692-705.
[http://dx.doi.org/10.1002/hep.26398] [PMID: 23505027]
[50]
Vyas, S.P.; Rawat, M.; Rawat, A.; Mahor, S.; Gupta, P.N. Pegylated protein encapsulated multivesicular liposomes: A novel approach for sustained release of interferon α. Drug Dev. Ind. Pharm., 2006, 32(6), 699-707.
[http://dx.doi.org/10.1080/03639040500528954] [PMID: 16885125]
[51]
Bailon, P.; Palleroni, A.; Schaffer, C.A.; Spence, C.L.; Fung, W.J.; Porter, J.E.; Ehrlich, G.K.; Pan, W.; Xu, Z.X.; Modi, M.W.; Farid, A.; Berthold, W.; Graves, M. Rational design of a potent, long-lasting form of interferon: A 40 kDa branched polyethylene glycol-conjugated interferon α-2a for the treatment of hepatitis C. Bioconjug. Chem., 2001, 12(2), 195-202.
[http://dx.doi.org/10.1021/bc000082g] [PMID: 11312680]
[52]
Delgado, C.; Francis, G.E.; Fisher, D. The uses and properties of PEG-linked proteins. Crit. Rev. Ther. Drug Carrier Syst., 1992, 9(3-4), 249-304.
[PMID: 1458545]
[53]
Yaksh, T.L.; Provencher, J.C.; Rathbun, M.L.; Myers, R.R.; Powell, H.; Richter, P.; Kohn, F.R. Safety assessment of encapsulated morphine delivered epidurally in a sustained-release multivesicular liposome preparation in dogs. Drug Deliv., 2000, 7(1), 27-36.
[http://dx.doi.org/10.1080/107175400266768] [PMID: 10895417]
[54]
Albers, C. Respiratory control of body temperature: A theoretical model. Respir. Physiol., 1977, 30(1-2), 137-151.
[http://dx.doi.org/10.1016/0034-5687(77)90027-5] [PMID: 877443]
[55]
Durant, P.A.C.; Yaksh, T.L. Epidural injections of bupivacaine, morphine, fentanyl, lofentanil, and DADL in chronically implanted rats: A pharmacologic and pathologic study. Anesthesiology, 1986, 64(1), 43-53.
[http://dx.doi.org/10.1097/00000542-198601000-00008] [PMID: 2867721]
[56]
Zhong, H.; Deng, Y.; Wang, X.; Yang, B. Multivesicular liposome formulation for the sustained delivery of breviscapine. Int. J. Pharm., 2005, 301(1-2), 15-24.
[http://dx.doi.org/10.1016/j.ijpharm.2005.04.001] [PMID: 16023316]
[57]
Arrowsmith, M.; Hadgraft, J.; Kellaway, I.W. The in vivo release of cortisone esters from liposomes and the intramuscular clearance of liposomes. Int. J. Pharm., 1984, 20(3), 347-362.
[http://dx.doi.org/10.1016/0378-5173(84)90181-9]
[58]
Bonetti, A.; Kim, S. Pharmacokinetics of an extended-release human interferon alpha-2b formulation. Cancer Chemother. Pharmacol., 1993, 33(3), 258-261.
[http://dx.doi.org/10.1007/BF00686225] [PMID: 8269608]
[59]
Qiu, J.; Wei, X.; Geng, F.; Liu, R.; Zhang, J.; Xu, Y. Multivesicular liposome formulations for the sustained delivery of interferon α-2b1. Acta Pharmacol. Sin., 2005, 26(11), 1395-1401.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00188.x] [PMID: 16225764]
[60]
Bukowski, R.M.; Tendler, C.; Cutler, D.; Rose, E.; Laughlin, M.M.; Statkevich, P. Treating cancer with PEG Intron. Cancer, 2002, 95(2), 389-396.
[http://dx.doi.org/10.1002/cncr.10663] [PMID: 12124839]
[61]
Wai, C.T.; Lok, A.S.F. Treatment of hepatitis B. J. Gastroenterol., 2002, 37(10), 771-778.
[http://dx.doi.org/10.1007/s005350200129] [PMID: 12424559]
[62]
Xiao, C.; Qi, X.; Maitani, Y.; Nagai, T. Sustained release of cisplatin from multivesicular liposomes: Potentiation of antitumor efficacy against S180 murine carcinoma. J. pharmaceut Sci., 2004, 93(7), 1718-1724.
[http://dx.doi.org/10.1016/B978-0-12-565050-2.50024-3]
[63]
García-Contreras, L.; Abu-Izza, K.; Lu, D.R. Biodegradable cisplatin microspheres for direct brain injection: preparation and characterization. Pharm. Dev. Technol., 1997, 2(1), 53-65.
[http://dx.doi.org/10.3109/10837459709022609] [PMID: 9552431]
[64]
Ramprasad, M.; Anantharamaiah, G.M.; Garber, D.W.; Katre, N.V. Sustained-delivery of an apolipoproteinE–peptidomimetic using multivesicular liposomes lowers serum cholesterol levels. J. Control. Release, 2002, 79(1-3), 207-218.
[http://dx.doi.org/10.1016/S0168-3659(01)00552-1] [PMID: 11853932]
[65]
Expert Panel on Detection E. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA, 2001, 285(19), 2486-2497.
[http://dx.doi.org/10.1001/jama.285.19.2486] [PMID: 11368702]
[66]
Mahley, R.W.; Apolipoprotein, E. Cholesterol transport protein with expanding role in cell biology. Science, 1988, 240(4852), 622-630.
[http://dx.doi.org/10.1126/science.3283935] [PMID: 3283935]
[67]
van der Meel, R.; Fens, M.H.A.M.; Vader, P.; van Solinge, W.W.; Eniola-Adefeso, O.; Schiffelers, R.M. Extracellular vesicles as drug delivery systems: Lessons from the liposome field. J. Control. Release, 2014, 195, 72-85.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.049] [PMID: 25094032]
[68]
Lener, T.; Gimona, M.; Aigner, L.; Börger, V.; Buzas, E.; Camussi, G.; Chaput, N.; Chatterjee, D.; Court, F.A.; Portillo, H.A. Applying extracellular vesicles based therapeutics in clinical trials-An ISEV position paper., 2015.
[69]
Patil, Y.P.; Jadhav, S. Novel methods for liposome preparation. Chem. Phys. Lipids, 2014, 177, 8-18.
[http://dx.doi.org/10.1016/j.chemphyslip.2013.10.011] [PMID: 24220497]
[70]
Armstrong, J.P.K.; Perriman, A.W. Strategies for cell membrane functionalization. Exp. Biol. Med. , 2016, 241(10), 1098-1106.
[http://dx.doi.org/10.1177/1535370216650291] [PMID: 27229904]
[71]
Ulrich, A.S. Biophysical aspects of using liposomes as delivery vehicles. Biosci. Rep., 2002, 22(2), 129-150.
[http://dx.doi.org/10.1023/A:1020178304031] [PMID: 12428898]
[72]
Menger, F.M.; Keiper, J.S. Chemistry and physics of giant vesicles as biomembrane models. Curr. Opin. Chem. Biol., 1998, 2(6), 726-732.
[http://dx.doi.org/10.1016/S1367-5931(98)80110-5] [PMID: 9914194]
[73]
Armstrong, J.P.K.; Stevens, M.M. Strategic design of extracellular vesicle drug delivery systems. Adv. Drug Deliv. Rev., 2018, 130, 12-16.
[http://dx.doi.org/10.1016/j.addr.2018.06.017] [PMID: 29959959]
[74]
Patel, V. Liposome: A novel carrier for targeting drug delivery system. Asian J. Pharm. Res. Develop., 2020, 8(4), 67-76.
[75]
Morse, M.A.; Garst, J.; Osada, T.; Khan, S.; Hobeika, A.; Clay, T.M.; Valente, N.; Shreeniwas, R.; Sutton, M.; Delcayre, A.; Hsu, D.H.; Le Pecq, J.B.; Lyerly, H.K. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J. Transl. Med., 2005, 3(1), 9.
[http://dx.doi.org/10.1186/1479-5876-3-9] [PMID: 15723705]
[76]
Escudier, B.; Dorval, T.; Chaput, N.; André, F.; Caby, M.P.; Novault, S.; Flament, C.; Leboulaire, C.; Borg, C.; Amigorena, S.; Boccaccio, C.; Bonnerot, C.; Dhellin, O.; Movassagh, M.; Piperno, S.; Robert, C.; Serra, V.; Valente, N.; Le Pecq, J.B.; Spatz, A.; Lantz, O.; Tursz, T.; Angevin, E.; Zitvogel, L. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: Results of thefirst phase I clinical trial. J. Transl. Med., 2005, 3(1), 10.
[http://dx.doi.org/10.1186/1479-5876-3-10] [PMID: 15740633]
[77]
Besse, B.; Charrier, M.; Lapierre, V.; Dansin, E.; Lantz, O.; Planchard, D.; Le Chevalier, T.; Livartoski, A.; Barlesi, F.; Laplanche, A.; Ploix, S.; Vimond, N.; Peguillet, I.; Théry, C.; Lacroix, L.; Zoernig, I.; Dhodapkar, K.; Dhodapkar, M.; Viaud, S.; Soria, J.C.; Reiners, K.S.; Pogge von Strandmann, E.; Vély, F.; Rusakiewicz, S.; Eggermont, A.; Pitt, J.M.; Zitvogel, L.; Chaput, N. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. OncoImmunology, 2016, 5(4), e1071008.
[http://dx.doi.org/10.1080/2162402X.2015.1071008] [PMID: 27141373]
[78]
Kordelas, L.; Rebmann, V.; Ludwig, A-K.; Radtke, S.; Ruesing, J.; Doeppner, T.R.; Epple, M.; Horn, P.A.; Beelen, D.W.; Giebel, B. MSC-derived exosomes: A novel tool to treat therapy-refractory graft-versus-host disease. Leukemia, 2014, 28(4), 970-973.
[http://dx.doi.org/10.1038/leu.2014.41] [PMID: 24445866]
[79]
Dai, S.; Wei, D.; Wu, Z.; Zhou, X.; Wei, X.; Huang, H.; Li, G. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther., 2008, 16(4), 782-790.
[http://dx.doi.org/10.1038/mt.2008.1] [PMID: 18362931]
[80]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[81]
Samad, A.; Sultana, Y.; Aqil, M. Liposomal drug delivery systems: An update review. Curr. Drug Deliv., 2007, 4(4), 297-305.
[http://dx.doi.org/10.2174/156720107782151269] [PMID: 17979650]
[82]
Kiani, A.; Davar, F.; Bazarganipour, M. Influence of verjuice extract on the morphology, phase, and magnetic properties of green synthesized CoFe2O4 nanoparticle: Its application as an anticancer drug delivery. Ceram. Int., 2022, 48(23), 34895-34906.
[http://dx.doi.org/10.1016/j.ceramint.2022.08.079]
[83]
R, F.; N, N.; Hyam, S. Formulation development and evaluation of liposomal drug delivery system containing etoposide. J. Compl. Med. Res., 2021, 12(4), 7-20.
[http://dx.doi.org/10.5455/jcmr.2021.12.04.02]
[84]
Ghanbari, M.; Davar, F.; Shalan, A.E. Effect of rosemary extract on the microstructure, phase evolution, and magnetic behavior of cobalt ferrite nanoparticles and its application on anti-cancer drug delivery. Ceram. Int., 2021, 47(7), 9409-9417.
[http://dx.doi.org/10.1016/j.ceramint.2020.12.073]
[85]
Rafiee, Z.; Davar, F.; Hasani, S.; Majedi, A.; Shalan, A.E. Copper sulfide nanostructures: Easy synthesis, photocatalytic and doxorubicin anticancer drug delivery applications. New J. Chem., 2021, 45(47), 22344-22353.
[http://dx.doi.org/10.1039/D1NJ04618G]
[86]
Sabaghi, V.; Davar, F.; Rashidi-Ranjbar, P.; Abdi, A. Synthesis and evaluation of pH-responsive mesoporous ZnO/PEG/DOX nanocomposite based on Zn-HKUST-1 MOF nanostructure for targeted drug delivery. J. Porous Mater., 2022, 30(1), 201-209.
[87]
Cheraghi, A.; Davar, F.; Homayoonfal, M.; Hojjati-Najafabadi, A. Effect of lemon juice on microstructure, phase changes, and magnetic performance of CoFe2O4 nanoparticles and their use on release of anti-cancer drugs. Ceram. Int., 2021, 47(14), 20210-20219.
[http://dx.doi.org/10.1016/j.ceramint.2021.04.028]
[88]
Li, J.; Zhao, J.; Tan, T.; Liu, M.; Zeng, Z.; Zeng, Y.; Zhang, L.; Fu, C.; Chen, D.; Xie, T. Nanoparticle drug delivery system for glioma and its efficacy improvement strategies: A comprehensive review. Int. J. Nanomedicine, 2020, 15, 2563-2582.
[http://dx.doi.org/10.2147/IJN.S243223] [PMID: 32368041]
[89]
Khade, A.; Gadge, G.; Mahajan, U. An overview on natural polymer based mucoadhesive buccal films for controlled drug delivery. An overview on natural polymer based mucoadhesive buccal films for controlled drug delivery. Int. J. Pharm. Res. Technol., 2020, 10(1), 48-48.
[http://dx.doi.org/10.21276/irjps.2019.6.1.7]
[90]
Singh, I.; Devi, G.; Barik, B.R.; Sharma, A.; Kaur, L. Mucoadhesive pellets for drug delivery applications: A critical review. Rev. Adhesion Adhesives, 2020, 8(2), 153-167.
[http://dx.doi.org/10.7569/RAA.2020.097305]
[91]
Nemati Shizari, L.; Mohammadpour Dounighi, N.; Bayat, M.; Mosavari, N. A New amphotericin B-loaded trimethyl chitosan nanoparticles as a drug delivery system and antifungal activity on Candida albicans biofilm. Arch. Razi Inst., 2021, 76(3), 571-586.
[PMID: 34824750]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy