Abstract
Introduction: There is increasing interest in the application of artificial intelligence (AI) and machine learning (ML) in all fields of medicine to facilitate greater personalisation of management.
Methods: ML could be the next step of personalized medicine in chronic obstructive pulmonary disease (COPD) by giving the exact risk (risk for exacerbation, death, etc.) of every patient (based on his/her parameters like lung function, clinical data, demographics, previous exacerbations, etc.), thus providing a prognosis/risk for the specific patient based on individual characteristics (individual approach).
Result: ML algorithm might utilise some traditional risk factors along with some others that may be location-specific (e.g. the risk of exacerbation thatmay be related to ambient pollution but that could vary massively between different countries, or between different regions of a particular country).
Conclusion: This is a step forward from the commonly used assignment of patients to a specific group for which prognosis/risk data are available (group approach).
Keywords: Machine learning, COPD, GOLD, Mortality, Exacerbations, Prediction.
[http://dx.doi.org/10.1080/17476348.2020.1743181] [PMID: 32166988]
[http://dx.doi.org/10.1183/09031936.00136412] [PMID: 23204018]
[http://dx.doi.org/10.1136/thoraxjnl-2014-205507] [PMID: 24781218]
[http://dx.doi.org/10.1183/13993003.02058-2018] [PMID: 30846468]
[http://dx.doi.org/10.2147/COPD.S175706] [PMID: 31371934]
[http://dx.doi.org/10.1136/thoraxjnl-2020-214556] [PMID: 32409611]
[http://dx.doi.org/10.1007/s10462-009-9124-7]
[http://dx.doi.org/10.2147/COPD.S312560] [PMID: 34168440]
[http://dx.doi.org/10.3233/BME-141212] [PMID: 25227099]
[http://dx.doi.org/10.3390/jpm12020228] [PMID: 35207716]
[http://dx.doi.org/10.3390/diagnostics11050829] [PMID: 34064395]
[http://dx.doi.org/10.2147/COPD.S284720] [PMID: 33488073]
[http://dx.doi.org/10.2147/COPD.S270729] [PMID: 33061342]
[http://dx.doi.org/10.2147/COPD.S302877] [PMID: 33907396]
[http://dx.doi.org/10.1136/thoraxjnl-2018-211855] [PMID: 30617161]
[http://dx.doi.org/10.1183/09059180.00008612] [PMID: 24293462]
[http://dx.doi.org/10.2147/COPD.S240720] [PMID: 32280207]
[http://dx.doi.org/10.1007/5584_2019_379] [PMID: 31049844]
[http://dx.doi.org/10.2147/COPD.S290422] [PMID: 33633446]
[http://dx.doi.org/10.1056/NEJMoa021322] [PMID: 14999112]
[http://dx.doi.org/10.1183/13993003.00975-2015] [PMID: 27076586]
[http://dx.doi.org/10.4103/0970-2113.80321] [PMID: 21712919]
[http://dx.doi.org/10.2147/COPD.S361235] [PMID: 35547783]
[http://dx.doi.org/10.1371/journal.pone.0252386] [PMID: 34043708]