摘要
背景:N6-甲基腺苷 (m6A) 是真核 RNA 中最常见的内部修饰。长非编码RNA(lncRNA)是一种具有多种细胞功能的新型非编码调节分子。两者均与肝纤维化(LF)的发生、发展密切相关。然而,m6A 甲基化 lncRNA 在 LF 进展中的作用仍然很大程度上未知。 方法:本研究采用HE和Masson染色观察肝脏病理变化,采用m6A修饰RNA免疫沉淀测序(m6A-seq)系统评价LF小鼠lncRNAs的m6A修饰水平,meRIP-qPCR和RT-qPCR用于检测目标lncRNA的m6A甲基化水平和RNA表达水平。 结果:肝纤维化组织中313个lncRNA中共检测到415个m6A峰。 LF中有98个显着不同的m6A峰,位于84个lncRNA上,其中45.2%的lncRNA长度在200-400 bp之间。同时,这些甲基化lncRNA的前3条染色体分别是7号、5号和1号染色体。RNA测序在LF中鉴定出154个差异表达的lncRNA。 m6A-seq和RNA-seq联合分析发现,m6A甲基化和RNA表达水平发生显着变化的lncRNA有3个:lncRNA H19、lncRNA Gm16023和lncRNA Gm17586。随后验证结果显示,lncRNA H19和lncRNA Gm17586的m6A甲基化水平显着升高,而lncRNA Gm16023的m6A甲基化水平显着降低,且3个lncRNA的RNA表达显着降低。通过创建lncRNA-miRNA-mRNA调控网络,揭示了lncRNA H19、lncRNA Gm16023和lncRNA Gm17586在LF中可能的调控关系。 结论:本研究揭示了LF小鼠lncRNA独特的m6A甲基化模式,提示lncRNA的m6A甲基化修饰与LF的发生、发展有关。
关键词: N6-甲基腺苷,lncRNA,调节网络,肝纤维化,高通量测序,meRIP-qPCR。
[http://dx.doi.org/10.1038/s41586-020-2825-4] [PMID: 33057195]
[http://dx.doi.org/10.1016/j.bone.2020.115797] [PMID: 33333242]
[http://dx.doi.org/10.1016/j.immuni.2020.04.006] [PMID: 32362325]
[http://dx.doi.org/10.1093/nar/gkaa347] [PMID: 32406913]
[http://dx.doi.org/10.1080/15592294.2020.1827722] [PMID: 33070685]
[PMID: 32266107]
[http://dx.doi.org/10.1038/s41419-021-03622-x] [PMID: 33947842]
[http://dx.doi.org/10.1016/j.tcb.2019.02.008] [PMID: 30940398]
[http://dx.doi.org/10.1186/s13046-020-01731-7] [PMID: 33183350]
[http://dx.doi.org/10.1186/s12943-020-01158-w] [PMID: 32429928]
[http://dx.doi.org/10.1038/s41419-021-03625-8] [PMID: 33795663]
[http://dx.doi.org/10.1186/s40662-020-00221-3] [PMID: 33292635]
[http://dx.doi.org/10.1038/s41467-019-12504-y] [PMID: 31597913]
[PMID: 32509177]
[http://dx.doi.org/10.3389/fgene.2019.01318] [PMID: 32038703]
[http://dx.doi.org/10.7150/thno.47354] [PMID: 33456585]
[http://dx.doi.org/10.1371/journal.pone.0173421] [PMID: 28267806]
[PMID: 34599880]
[http://dx.doi.org/10.1002/hep.31220] [PMID: 32150756]
[http://dx.doi.org/10.1038/s41419-020-03271-6] [PMID: 33311456]
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.11.014] [PMID: 33220424]
[http://dx.doi.org/10.1002/2211-5463.12379] [PMID: 29511617]
[http://dx.doi.org/10.1007/s15010-017-1113-1] [PMID: 29335905]
[http://dx.doi.org/10.2217/epi-2019-0365] [PMID: 33174480]
[http://dx.doi.org/10.1096/fj.202001337R] [PMID: 32949431]
[http://dx.doi.org/10.3390/ijms21072462] [PMID: 32252292]
[http://dx.doi.org/10.12659/MSM.921742] [PMID: 32350237]
[http://dx.doi.org/10.3390/ijms21041482] [PMID: 32098245]
[http://dx.doi.org/10.3390/ncrna6030027] [PMID: 32640630]
[http://dx.doi.org/10.3389/fgene.2019.01130] [PMID: 31824560]
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3454] [PMID: 29588351]
[http://dx.doi.org/10.3389/fcell.2021.767051] [PMID: 34869362]
[http://dx.doi.org/10.1155/2020/4780383]
[http://dx.doi.org/10.18632/aging.102205] [PMID: 31477638]
[PMID: 30675226]
[http://dx.doi.org/10.1186/s12967-020-02577-5] [PMID: 33228663]
[http://dx.doi.org/10.1038/s41467-017-00204-4] [PMID: 28747678]
[http://dx.doi.org/10.1111/jcmm.14987] [PMID: 31961061]
[http://dx.doi.org/10.1016/j.bbadis.2014.08.015] [PMID: 25201080]
[http://dx.doi.org/10.18632/aging.202383] [PMID: 33493136]
[http://dx.doi.org/10.3389/fonc.2020.556497] [PMID: 33178585]
[http://dx.doi.org/10.1371/journal.pgen.1007412] [PMID: 29799838]
[http://dx.doi.org/10.1038/s41588-020-0644-z] [PMID: 32601472]
[http://dx.doi.org/10.3389/fcell.2020.00291] [PMID: 32411708]
[http://dx.doi.org/10.1038/nature11112] [PMID: 22575960]
[http://dx.doi.org/10.1186/s12943-019-1014-2] [PMID: 30979372]
[http://dx.doi.org/10.18632/aging.102911] [PMID: 32163372]
[http://dx.doi.org/10.1186/s12943-020-1146-4] [PMID: 32111213]
[http://dx.doi.org/10.1016/j.tox.2016.06.016] [PMID: 27350269]
[http://dx.doi.org/10.1038/srep20559] [PMID: 26838806]
[http://dx.doi.org/10.18632/aging.202486] [PMID: 33460396]
[http://dx.doi.org/10.18632/aging.103136] [PMID: 32384281]