Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Recent Updates on Transdermal Drug Delivery Approaches for the Management of Gout and its Clinical Perspective

Author(s): Ranjit K. Harwansh*, Soumya Mishra, Rupa Mazumder, Rohitas Deshmukh and Akhlaquer Rahman

Volume 25, Issue 2, 2024

Published on: 27 June, 2023

Page: [159 - 178] Pages: 20

DOI: 10.2174/1389201024666230606143827

Price: $65

conference banner
Abstract

Oral and injectable drug administration have recently been replaced with transdermal drug delivery (TDD) approaches, which are less intrusive, less likely to be rejected by patients, and easier to administer. There is still room for improvement in the treatment of gout with the use of a TDD system. Gout has become a worldwide epidemic and a severe threat to human beings. Gout treatment can be accomplished in various ways, including orally and intravenously. Several traditional options are still useless, cumbersome, and potentially dangerous. Hence, gout therapeutic options are desperately required for more effective and less toxic drug delivery methods. Antigout medications using TDD could substantially influence obese people in the future, even if most trials are still in the animal stages. Thus, this review aimed to provide a concise overview of recent TDD technologies and anti-gout medication delivery methods that improved therapeutic efficacy and bioavailability. Moreover, clinical updates on investigational drugs have been discussed to address the potential findings against gout.

Keywords: Gout, transdermal, drug delivery, nanocarriers, herbal bio-actives, patch.

Graphical Abstract
[1]
Singh, J.A.; Gaffo, A. Gout epidemiology and comorbidities. Semin. Arthritis Rheum., 2020, 50(3), S11-S16.
[http://dx.doi.org/10.1016/j.semarthrit.2020.04.008] [PMID: 32620196]
[2]
Dalbeth, N.; Bardin, T.; Doherty, M.; Lioté, F.; Richette, P.; Saag, K.G.; So, A.K.; Stamp, L.K.; Choi, H.K.; Terkeltaub, R. Discordant American College of Physicians and international rheumatology guidelines for gout management: Consensus statement of the Gout, Hyperuricemia and Crystal-Associated Disease Network (G-CAN). Nat. Rev. Rheumatol., 2017, 13(9), 561-568.
[http://dx.doi.org/10.1038/nrrheum.2017.126] [PMID: 28794514]
[3]
McCarty, D.J.; Hollander, J.L. Identification of urate crystals in gouty synovial fluid. Ann. Intern. Med., 1961, 54(3), 452-460.
[http://dx.doi.org/10.7326/0003-4819-54-3-452] [PMID: 13773775]
[4]
FitzGerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; Levy, G.; Libbey, C.; Mount, D.; Pillinger, M.H.; Rosenthal, A.; Singh, J.A.; Sims, J.E.; Smith, B.J.; Wenger, N.S.; Bae, S.S.; Danve, A.; Khanna, P.P.; Kim, S.C.; Lenert, A.; Poon, S.; Qasim, A.; Sehra, S.T.; Sharma, T.S.K.; Toprover, M.; Turgunbaev, M.; Zeng, L.; Zhang, M.A.; Turner, A.S.; Neogi, T. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Rheumatol., 2020, 72(6), 879-895.
[http://dx.doi.org/10.1002/art.41247] [PMID: 32390306]
[5]
Kuo, C.F.; Grainge, M.J.; Mallen, C.; Zhang, W.; Doherty, M. Rising burden of gout in the UK but continuing suboptimal management: A nationwide population study. Ann. Rheum. Dis., 2015, 74(4), 661-667.
[http://dx.doi.org/10.1136/annrheumdis-2013-204463] [PMID: 24431399]
[6]
te Kampe, R.; Janssen, M.; van Durme, C.; Jansen, T.L.; Boonen, A. Sex differences in the clinical profile among patients with Gout: Cross-sectional analyses of an observational study. J. Rheumatol., 2021, 48(2), 286-292.
[http://dx.doi.org/10.3899/jrheum.200113] [PMID: 32611671]
[7]
Harrold, L.R.; Etzel, C.J.; Gibofsky, A.; Kremer, J.M.; Pillinger, M.H.; Saag, K.G.; Schlesinger, N.; Terkeltaub, R.; Cox, V.; Greenberg, J.D. Sex differences in gout characteristics: Tailoring care for women and men. BMC Musculoskelet. Disord., 2017, 18(1), 108.
[http://dx.doi.org/10.1186/s12891-017-1465-9] [PMID: 28292303]
[8]
Hak, A.E.; Curhan, G.C.; Grodstein, F.; Choi, H.K. Menopause, postmenopausal hormone use and risk of incident gout. Ann. Rheum. Dis., 2010, 69(7), 1305-1309.
[http://dx.doi.org/10.1136/ard.2009.109884] [PMID: 19592386]
[9]
Roman, Y.; Tiirikainen, M.; Prom-Wormley, E. The prevalence of the gout-associated polymorphism rs2231142 G>T in ABCG2 in a pregnant female Filipino cohort. Clin. Rheumatol., 2020, 39(8), 2387-2392.
[http://dx.doi.org/10.1007/s10067-020-04994-9] [PMID: 32107664]
[10]
Petersen, K.K.; Siebuhr, A.S.; Graven-Nielsen, T.; Simonsen, O.; Boesen, M.; Gudbergsen, H.; Karsdal, M.; Bay-Jensen, A.C.; Arendt-Nielsen, L. Sensitization and serological biomarkers in knee osteoarthritis patients with different degrees of synovitis. Clin. J. Pain, 2016, 32(10), 841-848.
[http://dx.doi.org/10.1097/AJP.0000000000000334] [PMID: 26633689]
[11]
Deshmukh, R. Rheumatoid arthritis: Pathophysiology, current therapeutic strategies and recent advances in targeted drug delivery system. Mater. Today Commun., 2023, 35, 105877.
[http://dx.doi.org/10.1016/j.mtcomm.2023.105877]
[12]
Pandey, M.; Bajpai, M. Natural remedies for the treatment of arthritis: A review. Med. Plants -. Int. J. Phytomed., 2020, 12(4), 545-554.
[http://dx.doi.org/10.5958/0975-6892.2020.00067.2]
[13]
Graessler, J.; Graessler, A.; Unger, S.; Kopprasch, S.; Tausche, A.K.; Kuhlisch, E.; Schroeder, H.E. Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum., 2006, 54(1), 292-300.
[http://dx.doi.org/10.1002/art.21499] [PMID: 16385546]
[14]
Delgado-Charro, M.B.; Guy, R.H. Effective use of transdermal drug delivery in children. Adv. Drug Deliv. Rev., 2014, 73, 63-82.
[http://dx.doi.org/10.1016/j.addr.2013.11.014] [PMID: 24333231]
[15]
Bhowmick, M. Sengodan, TJPG Mechanisms, kinetics and mathematical modelling of transdermal permeation-an updated review. Int J Comprehen Pharm., 2013, 4(6), 1-4.
[16]
Cevc, G.; Gebauer, D.; Stieber, J.; Schätzlein, A.; Blume, G. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim. Biophys. Acta Biomembr., 1998, 1368(2), 201-215.
[http://dx.doi.org/10.1016/S0005-2736(97)00177-6] [PMID: 9459598]
[17]
Moreland, L.W.; Schiff, M.H.; Baumgartner, S.W.; Tindall, E.A.; Fleischmann, R.M.; Bulpitt, K.J.; Weaver, A.L.; Keystone, E.C.; Furst, D.E.; Mease, P.J.; Ruderman, E.M.; Horwitz, D.A.; Arkfeld, D.G.; Garrison, L.; Burge, D.J.; Blosch, C.M.; Lange, M.L.; McDonnell, N.D.; Weinblatt, M.E. Etanercept therapy in rheumatoid arthritis. A randomized, controlled trial. Ann. Intern. Med., 1999, 130(6), 478-486.
[http://dx.doi.org/10.7326/0003-4819-130-6-199903160-00004] [PMID: 10075615]
[18]
Beer, J.S.; Stallen, M.; Lombardo, M.V.; Gonsalkorale, K.; Cunningham, W.A.; Sherman, J.W. The Quadruple Process model approach to examining the neural underpinnings of prejudice. Neuroimage, 2008, 43(4), 775-783.
[http://dx.doi.org/10.1016/j.neuroimage.2008.08.033] [PMID: 18809502]
[19]
Martinon, F. Mechanisms of uric acid crystal-mediated autoinflammation. Immunol. Rev., 2010, 233(1), 218-232.
[http://dx.doi.org/10.1111/j.0105-2896.2009.00860.x] [PMID: 20193002]
[20]
Menè, P.; Punzo, G. Uric acid: bystander or culprit in hypertension and progressive renal disease? J. Hypertens., 2008, 26(11), 2085-2092.
[http://dx.doi.org/10.1097/HJH.0b013e32830e4945] [PMID: 18854744]
[21]
Gabriel, S.E.; Michaud, K. Epidemiological studies in incidence, prevalence, mortality, and comorbidity of the rheumatic diseases. Arthritis Res. Ther., 2009, 11(3), 229.
[http://dx.doi.org/10.1186/ar2669] [PMID: 19519924]
[22]
Doghramji, P.P.; Wortmann, R.L. Hyperuricemia and gout: new concepts in diagnosis and management. Postgrad. Med., 2012, 124(6), 98-109.
[http://dx.doi.org/10.3810/pgm.2012.11.2616] [PMID: 23322143]
[23]
Robinson, P.C. Gout – An update of aetiology, genetics, co-morbidities and management. Maturitas, 2018, 118, 67-73.
[http://dx.doi.org/10.1016/j.maturitas.2018.10.012] [PMID: 30415758]
[24]
Senna, E.R.; De Barros, A.L.; Silva, E.O.; Costa, I.F.; Pereira, L.V.; Ciconelli, R.M.; Ferraz, M.B. Prevalence of rheumatic diseases in Brazil: A study using the COPCORD approach. J. Rheumatol., 2004, 31(3), 594-597.
[PMID: 14994410]
[25]
FitzGerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; Levy, G.; Libbey, C.; Mount, D.; Pillinger, M.H.; Rosenthal, A.; Singh, J.A.; Sims, J.E.; Smith, B.J.; Wenger, N.S.; Bae, S.S.; Danve, A.; Khanna, P.P.; Kim, S.C.; Lenert, A.; Poon, S.; Qasim, A.; Sehra, S.T.; Sharma, T.S.K.; Toprover, M.; Turgunbaev, M.; Zeng, L.; Zhang, M.A.; Turner, A.S.; Neogi, T. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res., 2020, 72(6), 744-760.
[http://dx.doi.org/10.1002/acr.24180] [PMID: 32391934]
[26]
Haque, T.; Talukder, M.M.U. Chemical enhancer: A simplistic way to modulate barrier function of the stratum corneum. Adv. Pharm. Bull., 2018, 8(2), 169-179.
[http://dx.doi.org/10.15171/apb.2018.021] [PMID: 30023318]
[27]
Phatale, V.; Vaiphei, K.K.; Jha, S.; Patil, D.; Agrawal, M.; Alexander, A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J. Control. Release, 2022, 351, 361-380.
[http://dx.doi.org/10.1016/j.jconrel.2022.09.025] [PMID: 36169040]
[28]
Vitorino, C.; Almeida, A.; Sousa, J.; Lamarche, I.; Gobin, P.; Marchand, S.; Couet, W.; Olivier, J.C.; Pais, A. Passive and active strategies for transdermal delivery using co-encapsulating nanostructured lipid carriers: In vitro vs. in vivo studies. Eur. J. Pharm. Biopharm., 2014, 86(2), 133-144.
[http://dx.doi.org/10.1016/j.ejpb.2013.12.004] [PMID: 24333401]
[29]
Paudel, K.S.; Milewski, M.; Swadley, C.L.; Brogden, N.K.; Ghosh, P.; Stinchcomb, A.L. Challenges and opportunities in dermal/transdermal delivery. Ther. Deliv., 2010, 1(1), 109-131.
[http://dx.doi.org/10.4155/tde.10.16] [PMID: 21132122]
[30]
Subedi, R.K.; Oh, S.Y.; Chun, M.K.; Choi, H.K. Recent advances in transdermal drug delivery. Arch. Pharm. Res., 2010, 33(3), 339-351.
[http://dx.doi.org/10.1007/s12272-010-0301-7] [PMID: 20361297]
[31]
Kraft, J.C.; Freeling, J.P.; Wang, Z.; Ho, R.J.Y. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci., 2014, 103(1), 29-52.
[http://dx.doi.org/10.1002/jps.23773] [PMID: 24338748]
[32]
Dua, J.; Rana, A. Bhandari, AJIJPSR Liposome: Methods of preparation and applications. SCRIBD, 2012, 3, 14-20.
[33]
Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes — novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release, 2000, 65(3), 403-418.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[34]
Cevc, G. Transfersomes, liposomes and other lipid suspensions on the skin: Permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 1996, 13(3-4), 257-388.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v13.i3-4.30] [PMID: 9016383]
[35]
Kuotsu, K.; Karim, K.M.; Mandal, A.S.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M. Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res., 2010, 1(4), 374-380.
[http://dx.doi.org/10.4103/0110-5558.76435] [PMID: 22247876]
[36]
Gupta, R.; Kumar, A. Transfersomes: The ultra-deformable carrier system for non-invasive delivery of drug. Curr. Drug Deliv., 2021, 18(4), 408-420.
[http://dx.doi.org/10.2174/1567201817666200804105416] [PMID: 32753015]
[37]
Jacob, S.; Nair, A.B.; Shah, J.; Gupta, S.; Boddu, S.H.S.; Sreeharsha, N.; Joseph, A.; Shinu, P.; Morsy, M.A. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy—an overview on recent advances. Pharmaceutics, 2022, 14(3), 533.
[http://dx.doi.org/10.3390/pharmaceutics14030533] [PMID: 35335909]
[38]
Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Siva Kumar, N.; Vekariya, R.L. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Advances, 2020, 10(45), 26777-26791.
[http://dx.doi.org/10.1039/D0RA03491F] [PMID: 35515778]
[39]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[40]
Wang, J.J.; Zeng, Z.W.; Xiao, R.Z.; Xie, T.; Zhou, G.L.; Zhan, X.R.; Wang, S.L. Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomedicine, 2011, 6, 765-774.
[PMID: 21589644]
[41]
Molavi, F.; Barzegar-Jalali, M.; Hamishehkar, H. Polyester based polymeric nano and microparticles for pharmaceutical purposes: A review on formulation approaches. J. Control. Release, 2020, 320, 265-282.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.028] [PMID: 31962095]
[42]
Prasad, M.; Lambe, U.P.; Brar, B.; Shah, I. J, M.; Ranjan, K.; Rao, R.; Kumar, S.; Mahant, S.; Khurana, S.K.; Iqbal, H.M.N.; Dhama, K.; Misri, J.; Prasad, G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother., 2018, 97, 1521-1537.
[http://dx.doi.org/10.1016/j.biopha.2017.11.026] [PMID: 29793315]
[43]
Singh, R.; Lillard, J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[44]
Jain, J.; Arora, S.; Rajwade, J.M.; Omray, P.; Khandelwal, S.; Paknikar, K.M. Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use. Mol. Pharm., 2009, 6(5), 1388-1401.
[http://dx.doi.org/10.1021/mp900056g] [PMID: 19473014]
[45]
Koo, O.M.; Rubinstein, I.; Onyuksel, H. Role of nanotechnology in targeted drug delivery and imaging: A concise review. Nanomedicine, 2005, 1(3), 193-212.
[http://dx.doi.org/10.1016/j.nano.2005.06.004] [PMID: 17292079]
[46]
Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release, 2018, 270, 203-225.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.049] [PMID: 29199062]
[47]
Chen, Y.; Feng, X. Gold nanoparticles for skin drug delivery. Int. J. Pharm., 2022, 625, 122122.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122122] [PMID: 35987319]
[48]
Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev., 2009, 38(6), 1759-1782.
[http://dx.doi.org/10.1039/b806051g] [PMID: 19587967]
[49]
Doty, R.C.; Tshikhudo, T.R.; Brust, M.; Fernig, D.G. Extremely stable water-soluble Ag nanoparticles. Chem. Mater., 2005, 17(18), 4630-4635.
[http://dx.doi.org/10.1021/cm0508017]
[50]
Batrakova, E.V.; Bronich, T.K.; Vetro, J.A. Nanoparticulates as drug carriers; World Scientific Publishing: Singapore, 2006, p. 756.
[51]
Owen, S.C.; Chan, D.P.Y.; Shoichet, M.S. Polymeric micelle stability. Nano Today, 2012, 7(1), 53-65.
[http://dx.doi.org/10.1016/j.nantod.2012.01.002]
[52]
Tripathy, S.; Das, M.K. Dendrimers and their applications as novel drug delivery carriers. J. Appl. Pharm. Sci., 2013, 3(9), 142-149.
[53]
Ramasamy, S.; Bennet, D.; Kim, S. Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platform. Int. J. Nanomedicine, 2014, 9, 5789-5809.
[PMID: 25525360]
[54]
Rostamabadi, H.; Falsafi, S.R.; Jafari, S.M. Nanoencapsulation of carotenoids within lipid-based nanocarriers. J. Control. Release, 2019, 298, 38-67.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.005] [PMID: 30738975]
[55]
Harwansh, R.K.; Deshmukh, R.; Rahman, M.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J. Drug Deliv. Sci. Technol., 2019, 51, 224-233.
[http://dx.doi.org/10.1016/j.jddst.2019.03.006]
[56]
Lim, J.; Lanni, C.; Evarts, E.R.; Lanni, F.; Tilton, R.D.; Majetich, S.A. Magnetophoresis of nanoparticles. ACS Nano, 2011, 5(1), 217-226.
[http://dx.doi.org/10.1021/nn102383s] [PMID: 21141977]
[57]
Suwa, M.; Watarai, H. Magnetoanalysis of micro/nanoparticles: A review. Anal. Chim. Acta, 2011, 690(2), 137-147.
[http://dx.doi.org/10.1016/j.aca.2011.02.019] [PMID: 21435469]
[58]
Dixit, N.; Bali, V.; Baboota, S.; Ahuja, A.; Ali, J. Iontophoresis - an approach for controlled drug delivery: A review. Curr. Drug Deliv., 2007, 4(1), 1-10.
[PMID: 17269912]
[59]
Weaver, J.C.; Chizmadzhev, Y.A. Theory of electroporation: A review. Bioelectrochem. Bioenerg., 1996, 41(2), 135-160.
[http://dx.doi.org/10.1016/S0302-4598(96)05062-3]
[60]
Carovac, A.; Smajlovic, F.; Junuzovic, D. Application of ultrasound in medicine. Acta Inform. Med., 2011, 19(3), 168-171.
[http://dx.doi.org/10.5455/aim.2011.19.168-171] [PMID: 23408755]
[61]
Zhu, D.D.; Wang, Q.L.; Liu, X.B.; Guo, X.D. Rapidly separating microneedles for transdermal drug delivery. Acta Biomater., 2016, 41, 312-319.
[http://dx.doi.org/10.1016/j.actbio.2016.06.005] [PMID: 27265152]
[62]
Gupta, J.; Gupta, R. Vanshita, Vanshita, Microneedle technology: An insight into recent advancements and future trends in drug and vaccine delivery. Assay Drug Dev. Technol., 2021, 19(2), 97-114.
[http://dx.doi.org/10.1089/adt.2020.1022] [PMID: 33297823]
[63]
Unver, N.; Odabas, S.; Demirel, G.B.; Gul, O.T. Hollow microneedle array fabrication using a rational design to prevent skin clogging in transdermal drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(41), 8419-8431.
[http://dx.doi.org/10.1039/D2TB01648F] [PMID: 36218040]
[64]
Hao, Y.; Li, W.; Zhou, X.; Yang, F.; Qian, Z. Microneedles-based transdermal drug delivery systems: A review. J. Biomed. Nanotechnol., 2017, 13(12), 1581-1597.
[http://dx.doi.org/10.1166/jbn.2017.2474] [PMID: 29490749]
[65]
Menon, I.; Bagwe, P.; Gomes, K.B.; Bajaj, L.; Gala, R.; Uddin, M.N.; D’Souza, M.J.; Zughaier, S.M. Microneedles: A new generation vaccine delivery system. Micromachines, 2021, 12(4), 435.
[http://dx.doi.org/10.3390/mi12040435] [PMID: 33919925]
[66]
Wilson, L.; Saseen, J.J. Gouty arthritis: A review of acute management and prevention. Pharmacotherapy, 2016, 36(8), 906-922.
[http://dx.doi.org/10.1002/phar.1788] [PMID: 27318031]
[67]
Ahern, M.J.; Reid, C.; Gordon, T.P. McCREDlE, M.; Brooks, P.M.; Jones, M. Does colchicine work? The results of the first controlled study in acute gout. Aust. N. Z. J. Med., 1987, 17(3), 301-304.
[http://dx.doi.org/10.1111/j.1445-5994.1987.tb01232.x] [PMID: 3314832]
[68]
Pascual, E.; Sivera, F. Time required for disappearance of urate crystals from synovial fluid after successful hypouricaemic treatment relates to the duration of gout. Ann. Rheum. Dis., 2007, 66(8), 1056-1058.
[http://dx.doi.org/10.1136/ard.2006.060368] [PMID: 17223663]
[69]
Dalbeth, N.; Lauterio, T.J.; Wolfe, H.R. Mechanism of action of colchicine in the treatment of gout. Clin. Ther., 2014, 36(10), 1465-1479.
[http://dx.doi.org/10.1016/j.clinthera.2014.07.017] [PMID: 25151572]
[70]
Kean, W.F.; Buchanan, W.W. The use of NSAIDs in rheumatic disorders 2005: A global perspective. Inflammopharmacology, 2005, 13(4), 343-370.
[http://dx.doi.org/10.1163/156856005774415565] [PMID: 16354389]
[71]
Varrassi, G.; Alon, E.; Bagnasco, M.; Lanata, L.; Mayoral-Rojals, V.; Paladini, A.; Pergolizzi, J.V.; Perrot, S.; Scarpignato, C.; Tölle, T. Towards an effective and safe treatment of inflammatory pain: A delphi-guided expert consensus. Adv. Ther., 2019, 36(10), 2618-2637.
[http://dx.doi.org/10.1007/s12325-019-01053-x] [PMID: 31485978]
[72]
Hainer, B.L.; Matheson, E.; Wilkes, R.T. Diagnosis, treatment, and prevention of gout. Am. Fam. Physician, 2014, 90(12), 831-836.
[PMID: 25591183]
[73]
Pillinger, M.H.; Mandell, B.F. Therapeutic approaches in the treatment of gout. Semin. Arthritis Rheum., 2020, 50(3), S24-S30.
[http://dx.doi.org/10.1016/j.semarthrit.2020.04.010] [PMID: 32620199]
[74]
Lieberman, J.A., III Treatment and prophylaxis of gout flare in the clinic: An office-based approach to gout management. Postgrad. Med., 2011, 123(6), 151-165.
[http://dx.doi.org/10.3810/pgm.2011.11.2505] [PMID: 22104464]
[75]
Brucato, A.; Cianci, F.; Carnovale, C. Management of hyperuricemia in asymptomatic patients: A critical appraisal. Eur. J. Intern. Med., 2020, 74, 8-17.
[http://dx.doi.org/10.1016/j.ejim.2020.01.001] [PMID: 31952982]
[76]
Chen, L.; Wang, Y.; Sun, L.; Yan, J.; Mao, H.Q. Nanomedicine strategies for anti‐inflammatory treatment of noninfectious Arthritis. Adv. Healthc. Mater., 2021, 10(11), 2001732.
[http://dx.doi.org/10.1002/adhm.202001732] [PMID: 33870656]
[77]
Torchilin, V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov., 2014, 13(11), 813-827.
[http://dx.doi.org/10.1038/nrd4333] [PMID: 25287120]
[78]
Aslam, H.; Shukrullah, S.; Naz, M.Y.; Fatima, H.; Hussain, H.; Ullah, S.; Assiri, M.A. Current and future perspectives of multifunctional magnetic nanoparticles based controlled drug delivery systems. J. Drug Deliv. Sci. Technol., 2022, 67, 102946.
[http://dx.doi.org/10.1016/j.jddst.2021.102946]
[79]
Lippacher, A.; Müller, R.H.; Mäder, K. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int. J. Pharm., 2001, 214(1-2), 9-12.
[http://dx.doi.org/10.1016/S0378-5173(00)00623-2] [PMID: 11282228]
[80]
Lee, S.M.; Kim, H.J.; Ha, Y.J.; Park, Y.N.; Lee, S.K.; Park, Y.B.; Yoo, K.H. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano, 2013, 7(1), 50-57.
[http://dx.doi.org/10.1021/nn301215q] [PMID: 23194301]
[81]
Kesharwani, D.; Paliwal, R.; Satapathy, T.; Paul, S.D. Rheumatiod Arthritis: An updated overview of latest therapy and drug delivery. J. Pharmacopuncture, 2019, 22(4), 210-224.
[http://dx.doi.org/10.3831/KPI.2019.22.029] [PMID: 31970018]
[82]
Satya, P.M.; Padmaja, N.V.; Nadiya, S.; Masthani, S.; Satya, A.K. A review on role of nanoparticles in rheumatoid arthritis therapy. Indian J. Res. Pharm. Biotechnol., 2016, 4(6), 255.
[83]
Lansdown, A.B.G. GOLD: Human exposure and update on toxic risks. Crit. Rev. Toxicol., 2018, 48(7), 596-614.
[http://dx.doi.org/10.1080/10408444.2018.1513991] [PMID: 31851875]
[84]
Lee, H.; Lee, M.Y.; Bhang, S.H.; Kim, B.S.; Kim, Y.S.; Ju, J.H.; Kim, K.S.; Hahn, S.K. Hyaluronate-gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano, 2014, 8(5), 4790-4798.
[http://dx.doi.org/10.1021/nn500685h] [PMID: 24730974]
[85]
Homma, A.; Sato, H.; Okamachi, A.; Emura, T.; Ishizawa, T.; Kato, T.; Matsuura, T.; Sato, S.; Tamura, T.; Higuchi, Y.; Watanabe, T.; Kitamura, H.; Asanuma, K.; Yamazaki, T.; Ikemi, M.; Kitagawa, H.; Morikawa, T.; Ikeya, H.; Maeda, K.; Takahashi, K.; Nohmi, K.; Izutani, N.; Kanda, M.; Suzuki, R. Novel hyaluronic acid–methotrexate conjugates for osteoarthritis treatment. Bioorg. Med. Chem., 2009, 17(13), 4647-4656.
[http://dx.doi.org/10.1016/j.bmc.2009.04.063] [PMID: 19457673]
[86]
Zheng, Z.; Sun, Y.; Liu, Z.; Zhang, M.; Li, C.; Cai, H. The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. Drug Des. Devel. Ther., 2015, 9, 4931-4942.
[PMID: 26345159]
[87]
Sailaja, A.K.; Lola, V.S. Formulation of mefenamic acid loaded polymeric nanoparticles for the treatment of rheumatoid arthritis. J. Bionanosci, 2018, 12(2), 177-183.
[http://dx.doi.org/10.1166/jbns.2018.1525]
[88]
Yasamineh, S.; Yasamineh, P.; Ghafouri Kalajahi, H.; Gholizadeh, O.; Yekanipour, Z.; Afkhami, H.; Eslami, M.; Hossein Kheirkhah, A.; Taghizadeh, M.; Yazdani, Y.; Dadashpour, M. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int. J. Pharm., 2022, 624, 121878.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121878] [PMID: 35636629]
[89]
Ye, J.; Wang, Q.; Zhou, X.; Zhang, N. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int. J. Pharm., 2008, 352(1-2), 273-279.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.014] [PMID: 18054182]
[90]
Boechat, A.L.; de Oliveira, C.P.; Tarragô, A.M.; da Costa, A.G.; Malheiro, A.; Guterres, S.S.; Pohlmann, A.R. Methotrexate-loaded lipid-core nanocapsules are highly effective in the control of inflammation in synovial cells and a chronic arthritis model. Int. J. Nanomedicine, 2015, 10, 6603-6614.
[PMID: 26543364]
[91]
Zhou, M.; Hou, J.; Zhong, Z.; Hao, N.; Lin, Y.; Li, C. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug Deliv., 2018, 25(1), 716-722.
[http://dx.doi.org/10.1080/10717544.2018.1447050] [PMID: 29516758]
[92]
Sahin, N.O. Niosomes as Nanocarrier SystemsNanomaterials and Nanosystems for Biomedical Applications; Springer Nature: Switzerland, 2007.
[93]
Nasra, S.; Bhatia, D.; Kumar, A. Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment. Nanoscale Adv., 2022, 4(17), 3479-3494.
[http://dx.doi.org/10.1039/D2NA00229A] [PMID: 36134349]
[94]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[95]
van den Hoven, J.M.; Van Tomme, S.R.; Metselaar, J.M.; Nuijen, B.; Beijnen, J.H.; Storm, G. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol. Pharm., 2011, 8(4), 1002-1015.
[http://dx.doi.org/10.1021/mp2000742] [PMID: 21634436]
[96]
Prabhu, P.; Shetty, R.; Koland, M.; Bhat, V.K.; Vijayalakshmi, K.K.; Nairy, H.M.; Shetty, N.G. Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity. Int. J. Nanomedicine, 2012, 7, 177-186.
[http://dx.doi.org/10.2147/IJN.S25310] [PMID: 22275833]
[97]
Gottschalk, O.; Metz, P.; Dao Trong, M.L.; Altenberger, S.; Jansson, V.; Mutschler, W.; Schmitt-Sody, M. Therapeutic effect of methotrexate encapsulated in cationic liposomes (EndoMTX) in comparison to free methotrexate in an antigen-induced arthritis study in vivo. Scand. J. Rheumatol., 2015, 44(6), 456-463.
[http://dx.doi.org/10.3109/03009742.2015.1030448] [PMID: 26114440]
[98]
Kapoor, B.; Singh, S.K.; Gulati, M.; Gupta, R.; Vaidya, Y. Application of liposomes in treatment of rheumatoid arthritis: quo vadis. Sci. World J., 2014, 2014, 1-17.
[http://dx.doi.org/10.1155/2014/978351] [PMID: 24688450]
[99]
Ghosh, S.; Mukherjee, B.; Chaudhuri, S.; Roy, T.; Mukherjee, A.; Sengupta, S. Methotrexate aspasomes against rheumatoid arthritis: Optimized hydrogel loaded liposomal formulation with in vivo evaluation in wistar rats. AAPS PharmSciTech, 2018, 19(3), 1320-1336.
[http://dx.doi.org/10.1208/s12249-017-0939-2] [PMID: 29340978]
[100]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[101]
Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H-B. Polymeric micelles as drug delivery vehicles. RSC Advances, 2014, 4(33), 17028-17038.
[http://dx.doi.org/10.1039/C3RA47370H]
[102]
Sethi, V.; Rubinstein, I.; Kuzmis, A.; Kastrissios, H.; Artwohl, J.; Onyuksel, H. Novel, biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol. Pharm., 2013, 10(2), 728-738.
[http://dx.doi.org/10.1021/mp300539f] [PMID: 23211088]
[103]
Gomariz, R.P.; Juarranz, Y.; Carrión, M.; Pérez-García, S.; Villanueva-Romero, R.; González-Álvaro, I.; Gutiérrez-Cañas, I.; Lamana, A.; Martínez, C. An overview of VPAC receptors in rheumatoid arthritis: Biological role and clinical significance. Front. Endocrinol., 2019, 10, 729.
[http://dx.doi.org/10.3389/fendo.2019.00729] [PMID: 31695683]
[104]
Li, P.; Zheng, Y.; Chen, X. Drugs for autoimmune inflammatory diseases: From small molecule compounds to Anti-TNF biologics. Front. Pharmacol., 2017, 8, 460.
[http://dx.doi.org/10.3389/fphar.2017.00460] [PMID: 28785220]
[105]
Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter, 2016, 12(11), 2826-2841.
[http://dx.doi.org/10.1039/C5SM02958A] [PMID: 26924445]
[106]
Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release, 2017, 252, 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[107]
Cao, M.; Ren, L.; Chen, G. Formulation optimization and ex vivo and in vivo evaluation of celecoxib microemulsion-based gel for transdermal delivery. AAPS PharmSciTech, 2017, 18(6), 1960-1971.
[http://dx.doi.org/10.1208/s12249-016-0667-z] [PMID: 27914040]
[108]
Zhang, H.; Zhai, Y.; Wang, J.; Zhai, G. New progress and prospects: The application of nanogel in drug delivery. Mater. Sci. Eng. C, 2016, 60, 560-568.
[http://dx.doi.org/10.1016/j.msec.2015.11.041] [PMID: 26706564]
[109]
Ghasemiyeh, P.; Mohammadi-Samani, S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages. Drug Des. Devel. Ther., 2020, 14, 3271-3289.
[http://dx.doi.org/10.2147/DDDT.S264648] [PMID: 32848366]
[110]
Allegrini, S.; Garcia-Gil, M.; Pesi, R.; Camici, M.; Tozzi, M.G. The good, the bad and the new about uric acid in cancer. Cancers, 2022, 14(19), 4959.
[http://dx.doi.org/10.3390/cancers14194959] [PMID: 36230882]
[111]
Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res., 2022, 12(4), 758-791.
[http://dx.doi.org/10.1007/s13346-021-00909-6] [PMID: 33474709]
[112]
Engel, B.; Just, J.; Bleckwenn, M.; Weckbecker, K. Treatment options for Gout. Dtsch. Arztebl. Int., 2017, 114(13), 215-222.
[PMID: 28434436]
[113]
Ariamoghaddam, A.; Ebrahimi-Hosseinzadeh, B.; Hatamian-Zarmi, A.; Sahraeian, R. In vivo anti-obesity efficacy of curcumin loaded nanofibers transdermal patches in high-fat diet induced obese rats. Mater. Sci. Eng. C, 2018, 92, 161-171.
[http://dx.doi.org/10.1016/j.msec.2018.06.030] [PMID: 30184739]
[114]
Hewlings, S.; Kalman, D. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[115]
Zhang, Y.; Zhang, N.; Song, H.; Li, H.; Wen, J.; Tan, X.; Zheng, W. Design, characterization and comparison of transdermal delivery of colchicine via borneol-chemically-modified and borneol-physically-modified ethosome. Drug Deliv., 2019, 26(1), 70-77.
[http://dx.doi.org/10.1080/10717544.2018.1559258] [PMID: 30744424]
[116]
Samadi, F.; Kahrizi, M.S.; Heydari, F.; Arefnezhad, R.; Roghani-Shahraki, H.; Mokhtari Ardekani, A.; Rezaei-Tazangi, F. Quercetin and osteoarthritis: A mechanistic review on the present documents. Pharmacology, 2022, 107(9-10), 464-471.
[http://dx.doi.org/10.1159/000525494] [PMID: 35793647]
[117]
Li, Z.; Fang, X.; Yu, D. Transdermal drug delivery systems and their use in obesity treatment. Int. J. Mol. Sci., 2021, 22(23), 12754.
[http://dx.doi.org/10.3390/ijms222312754] [PMID: 34884558]
[118]
Abramoff, B.; Caldera, F.E. Osteoarthritis. Med. Clin. North Am., 2020, 104(2), 293-311.
[http://dx.doi.org/10.1016/j.mcna.2019.10.007] [PMID: 32035570]
[119]
Park, J.; Mendy, A.; Vieira, E.R. Various types of arthritis in the united states: Prevalence and age-related trends from 1999 to 2014. Am. J. Public Health, 2018, 108(2), 256-258.
[http://dx.doi.org/10.2105/AJPH.2017.304179] [PMID: 29267054]
[120]
Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; Aletaha, D.; Aringer, M.; Askling, J.; Balsa, A.; Boers, M.; den Broeder, A.A.; Buch, M.H.; Buttgereit, F.; Caporali, R.; Cardiel, M.H.; De Cock, D.; Codreanu, C.; Cutolo, M.; Edwards, C.J.; van Eijk-Hustings, Y.; Emery, P.; Finckh, A.; Gossec, L.; Gottenberg, J.E.; Hetland, M.L.; Huizinga, T.W.J.; Koloumas, M.; Li, Z.; Mariette, X.; Müller-Ladner, U.; Mysler, E.F.; da Silva, J.A.P.; Poór, G.; Pope, J.E.; Rubbert-Roth, A.; Ruyssen-Witrand, A.; Saag, K.G.; Strangfeld, A.; Takeuchi, T.; Voshaar, M.; Westhovens, R.; van der Heijde, D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis., 2020, 79(6), 685-699.
[http://dx.doi.org/10.1136/annrheumdis-2019-216655] [PMID: 31969328]
[121]
Love, B.L.; Barrons, R.; Veverka, A.; Snider, K.M. Urate-lowering therapy for gout: Focus on febuxostat. Pharmacotherapy, 2010, 30(6), 594-608.
[http://dx.doi.org/10.1592/phco.30.6.594] [PMID: 20500048]
[122]
Khanna, D.; Fitzgerald, J.D.; Khanna, P.P.; Bae, S.; Singh, M.K.; Neogi, T.; Pillinger, M.H.; Merill, J.; Lee, S.; Prakash, S.; Kaldas, M.; Gogia, M.; Perez-Ruiz, F.; Taylor, W.; Lioté, F.; Choi, H.; Singh, J.A.; Dalbeth, N.; Kaplan, S.; Niyyar, V.; Jones, D.; Yarows, S.A.; Roessler, B.; Kerr, G.; King, C.; Levy, G.; Furst, D.E.; Edwards, N.L.; Mandell, B.; Schumacher, H.R.; Robbins, M.; Wenger, N.; Terkeltaub, R. 2012 American College of Rheumatology guidelines for management of gout. Part 1: Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res., 2012, 64(10), 1431-1446.
[http://dx.doi.org/10.1002/acr.21772] [PMID: 23024028]
[123]
Mease, P.J.; Antoni, C.E.; Gladman, D.D.; Taylor, W.J. Psoriatic arthritis assessment tools in clinical trials. Ann. Rheum. Dis., 2005, 64(Suppl. 2), 49-54.
[http://dx.doi.org/10.1136/ard.2004.034165]
[124]
Cipolletta, E.; Di Battista, J.; Di Carlo, M.; Di Matteo, A.; Salaffi, F.; Grassi, W.; Filippucci, E. Sonographic estimation of monosodium urate burden predicts the fulfillment of the 2016 remission criteria for gout: A 12-month study. Arthritis Res. Ther., 2021, 23(1), 185.
[http://dx.doi.org/10.1186/s13075-021-02568-x] [PMID: 34243813]
[125]
So, A.K.; Martinon, F. Inflammation in gout: Mechanisms and therapeutic targets. Nat. Rev. Rheumatol., 2017, 13(11), 639-647.
[http://dx.doi.org/10.1038/nrrheum.2017.155] [PMID: 28959043]
[126]
Genovese, M.C.; Smolen, J.S.; Takeuchi, T.; Burmester, G.; Brinker, D.; Rooney, T.P.; Zhong, J.; Daojun, M.; Saifan, C.; Cardoso, A.; Issa, M.; Wu, W-S.; Winthrop, K.L. Safety profile of baricitinib for the treatment of rheumatoid arthritis over a median of 3 years of treatment: An updated integrated safety analysis. Lancet Rheumatol., 2020, 2(6), e347-e357.
[http://dx.doi.org/10.1016/S2665-9913(20)30032-1]
[127]
Santos, L.F.; Correia, I.J.; Silva, A.S.; Mano, J.F. Biomaterials for drug delivery patches. Eur. J. Pharm. Sci., 2018, 118, 49-66.
[http://dx.doi.org/10.1016/j.ejps.2018.03.020] [PMID: 29572160]
[128]
Papadopoulos, C.G.; Gartzonikas, I.K.; Pappa, T.K.; Markatseli, T.E.; Migkos, M.P.; Voulgari, P.V.; Drosos, A.A. Eight-year survival study of first-line tumour necrosis factor α inhibitors in rheumatoid arthritis: Real-world data from a university centre registry. Rheumatol. Adv. Pract., 2019, 3(1), rkz007.
[http://dx.doi.org/10.1093/rap/rkz007] [PMID: 31431995]
[129]
Mahmood, A.; Rapalli, V.K.; Waghule, T.; Gorantla, S.; Singhvi, G. Luliconazole loaded lyotropic liquid crystalline nanoparticles for topical delivery: QbD driven optimization, in vitro characterization and dermatokinetic assessment. Chem. Phys. Lipids, 2021, 234, 105028.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.105028] [PMID: 33309940]
[130]
Shang, H.; Younas, A.; Zhang, N. Recent advances on transdermal delivery systems for the treatment of arthritic injuries: From classical treatment to nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(3), e1778.
[http://dx.doi.org/10.1002/wnan.1778] [PMID: 35112483]
[131]
Zhang, M.; Cui, R.; Zhou, Y.; Ma, Y.; Jin, Y.; Gou, X.; Yang, J.; Wu, X. Uric acid accumulation in the kidney triggers mast cell degranulation and aggravates renal oxidative stress. Toxicology, 2023, 483, 153387.
[http://dx.doi.org/10.1016/j.tox.2022.153387] [PMID: 36464070]
[132]
Gherghina, M.E.; Peride, I.; Tiglis, M.; Neagu, T.P.; Niculae, A.; Checherita, I.A. Uric acid and oxidative stress—relationship with cardiovascular, metabolic, and renal impairment. Int. J. Mol. Sci., 2022, 23(6), 3188.
[http://dx.doi.org/10.3390/ijms23063188] [PMID: 35328614]
[133]
Hussain, A.; Singh, S.; Sharma, D.; Webster, T.; Shafaat, K.; Faruk, A. Elastic liposomes as novel carriers: Recent advances in drug delivery. Int. J. Nanomedicine, 2017, 12, 5087-5108.
[http://dx.doi.org/10.2147/IJN.S138267] [PMID: 28761343]
[134]
Romero, E.L.; Morilla, M.J. Ultradeformable phospholipid vesicles as a drug delivery system: A review. Research and Reports in Transdermal Drug Delivery, 2015, 2015, 55-69.
[http://dx.doi.org/10.2147/RRTD.S50370]
[135]
Chaturvedi, S.; Garg, A. An insight of techniques for the assessment of permeation flux across the skin for optimization of topical and transdermal drug delivery systems. J. Drug Deliv. Sci. Technol., 2021, 62, 102355.
[http://dx.doi.org/10.1016/j.jddst.2021.102355]
[136]
Chaurasiya, C.; Gupta, J.; Kumar, S. Herbal nanoemulsion in topical drug delivery and skin disorders: Green approach. J. Rep. Pharm. Sci., 2021, 10(2), 171-181.
[http://dx.doi.org/10.4103/jrptps.JRPTPS_64_20]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy