Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Biomimetic Nanovaccines: A Novel Approach in Immunization

Author(s): Javad Yaghmoorian Khojini, Benjamin Babaei, Maryam Shakarami, Mahdis Mofidi, Zahra Tahershamsi, Tahura Fayeghi Arjmand, Amir Tajbakhsh and Seyed Mohammad Gheibihayat*

Volume 29, Issue 18, 2023

Published on: 21 June, 2023

Page: [1391 - 1408] Pages: 18

DOI: 10.2174/1381612829666230529094128

Price: $65

conference banner
Abstract

As the World Health Organization (WHO) declared, vaccines prevent an average of 2-3 million deaths yearly from diseases. However, effective prophylactic and therapeutic vaccines have yet to be developed for eradicating the deadliest diseases, viz., types of cancer, malaria, human immunodeficiency virus (HIV), and most serious microbial infections. Furthermore, scores of the existing vaccines have disadvantages, such as failure to completely stimulate the immune system, in vivo instability, high toxicity, need for the cold chain, and multiple administrations. Thus, good vaccine candidates need to be designed to elicit adaptive immune responses. In this line, the integration of sciences along with the use of various technologies has led to the emergence of a new field in vaccine production called biomimetic nanovaccines (BNVs). Given that, nanotechnology can significantly contribute to the design of such vaccines, providing them with enhanced specificity and potency. Nanoparticles (NPs) and biomimetic NPs (BNPs) are now exploited as the main carriers for drug delivery systems, especially BNPs, whose biological mimicry makes them escape the immune system and transport drugs to the desired target. The drug accordingly seeks to camouflage itself with the help of NPs and the membranes taken from cells in the human body, including red blood cells (RBCs), white blood cells (WBCs), platelets, and cancer cells, for more effective and ideal delivery. As BNPs have recently become the center of attention in vaccine design, this review deliberates on the advances in BNVs.

Keywords: Biomimetic nanoparticles, nanovaccines, immunization, conventional vaccines, vaccine delivery, nano-based drug delivery system, adjuvants, cancer cell membranes.

Next »
[1]
Yang G, Chen S, Zhang J. Bioinspired and biomimetic nanotherapies for the treatment of infectious diseases. Front Pharmacol 2019; 10: 751.
[http://dx.doi.org/10.3389/fphar.2019.00751] [PMID: 31333467]
[2]
Kim MG, Park JY, Shon Y, Kim G, Shim G, Oh YK. Nanotechnology and vaccine development. Asian J Pharm Sci 2014; 9(5): 227-35.
[http://dx.doi.org/10.1016/j.ajps.2014.06.002]
[3]
Guerrini G, Magrì D, Gioria S, Medaglini D, Calzolai L. Characterization of nanoparticles-based vaccines for COVID-19. Nat Nanotechnol 2022; 17(6): 570-6.
[http://dx.doi.org/10.1038/s41565-022-01129-w] [PMID: 35710950]
[4]
Kheirollahpour M, Mehrabi M, Dounighi NM, Mohammadi M, Masoudi AJPN. Nanoparticles and vaccine development. Pharm Nanotechnol 2020; 8(1): 6-21.
[http://dx.doi.org/10.2174/2211738507666191024162042]
[5]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer RJNRDD. Engineering precision nanoparticles for drug delivery. 2021; 20: 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8]
[6]
Mohanraj V. Nanoparticles-a review. Trop J Pharm Res 2006; 5: 561-73.
[7]
Wang JJ, Zeng ZW, Xiao RZ, et al. Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine 2011; 6: 765-74.
[8]
Candas-Green D, Xie B, Huang J, et al. Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells. Nat Commun 2020; 11(1): 4591.
[http://dx.doi.org/10.1038/s41467-020-18245-7] [PMID: 32929084]
[9]
Vijayan V, Mohapatra A, Uthaman S, Park I-KJP. Recent advances in nanovaccines using biomimetic immunomodulatory materials. Pharmaceutics 2019; 11(10): 534.
[http://dx.doi.org/10.3390/pharmaceutics11100534]
[10]
Fang RH, Kroll AV, Gao W, Zhang LJAM. Cell membrane coating nanotechnology. Adv Mater 2018; 30(23): e1706759.
[http://dx.doi.org/10.1002/adma.201706759]
[11]
Rosenthal JA, Chen L, Baker JL, Putnam D. Pathogen-like particles: Biomimetic vaccine carriers engineered at the nanoscale. Curr Opin Biotechnol 2014; 28: 51-8.
[12]
Zheng B, Peng W, Guo M, Huang M, Gu Y, Wang T, et al. Inhalable nanovaccine with biomimetic coronavirus structure to trigger mucosal immunity of respiratory tract against COVID-19. Chem Eng J 2021; 418: 129392.
[http://dx.doi.org/10.1016/j.cej.2021.129392]
[13]
Dumpa N, Goel K, Guo Y, et al. Stability of vaccines. AAPS PharmSciTech 2019; 20(2): 42.
[http://dx.doi.org/10.1208/s12249-018-1254-2] [PMID: 30610415]
[14]
Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO Mol Med 2014; 6(6): 708-20.
[http://dx.doi.org/10.1002/emmm.201403876] [PMID: 24803000]
[15]
Vartak A, Sucheck S. Recent advances in subunit vaccine carriers. Vaccines 2016; 4(2): 12.
[http://dx.doi.org/10.3390/vaccines4020012] [PMID: 27104575]
[16]
Badgett MR, Auer A, Carmichael LE, Parrish CR, Bull JJ. Evolutionary dynamics of viral attenuation. J Virol 2002; 76(20): 10524-9.
[http://dx.doi.org/10.1128/JVI.76.20.10524-10529.2002] [PMID: 12239331]
[17]
Ebert D. Experimental evolution of parasites. Science 1998; 282(5393): 1432-6.
[http://dx.doi.org/10.1126/science.282.5393.1432] [PMID: 9822369]
[18]
Tretyakova I, Lukashevich IS, Glass P, Wang E, Weaver S, Pushko P. Novel vaccine against Venezuelan equine encephalitis combines advantages of DNA immunization and a live attenuated vaccine. Vaccine 2013; 31(7): 1019-25.
[http://dx.doi.org/10.1016/j.vaccine.2012.12.050] [PMID: 23287629]
[19]
Zou J, Xie X, Luo H, et al. A single-dose plasmid-launched live-attenuated Zika vaccine induces protective immunity. EBioMedicine 2018; 36: 92-102.
[http://dx.doi.org/10.1016/j.ebiom.2018.08.056] [PMID: 30201444]
[20]
Hanley KA. The double-edged sword: How evolution can make or break a live-attenuated virus vaccine. Evolution (N Y) 2011; 4(4): 635-43.
[http://dx.doi.org/10.1007/s12052-011-0365-y] [PMID: 22468165]
[21]
Plotkin SA, Orenstein W, Offit PA. Vaccines E-book. Elsevier Health Sciences 2012.
[22]
Minor PD. Live attenuated vaccines: Historical successes and current challenges. Virology 2015; 479-480: 379-92.
[http://dx.doi.org/10.1016/j.virol.2015.03.032] [PMID: 25864107]
[23]
Shimizu H, Thorley B, Paladin FJ, et al. Circulation of type 1 vaccine-derived poliovirus in the Philippines in 2001. J Virol 2004; 78(24): 13512-21.
[http://dx.doi.org/10.1128/JVI.78.24.13512-13521.2004] [PMID: 15564462]
[24]
Yadav DK, Yadav N, Khurana SMP. Vaccines: present status and applications. Animal Biotechnology. Elsevier 2020; pp. 523-42.
[http://dx.doi.org/10.1016/B978-0-12-811710-1.00024-0]
[25]
Cheuk DKL, Chiang AKS, Lee TL, Chan GCF, Ha SY. Vaccines for prophylaxis of viral infections in patients with hematological malignancies. Cochrane Libr 2011; (3): CD006505.
[http://dx.doi.org/10.1002/14651858.CD006505.pub2] [PMID: 21412895]
[26]
Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Ann Med 2018; 50(2): 110-20.
[http://dx.doi.org/10.1080/07853890.2017.1407035] [PMID: 29172780]
[27]
Sanders B, Koldijk M, Schuitemaker H. Inactivated viral vaccines.Vaccine analysis: strategies, principles, and control. Springer 2015; pp. 45-80.
[http://dx.doi.org/10.1007/978-3-662-45024-6_2]
[28]
Stauffer F, El-Bacha T, Da Poian A. Advances in the development of inactivated virus vaccines. Recent Patents Anti-Infect Drug Disc 2006; 1(3): 291-6.
[http://dx.doi.org/10.2174/157489106778777673] [PMID: 18221154]
[29]
Slifka MK, Amanna I. How advances in immunology provide insight into improving vaccine efficacy. Vaccine 2014; 32(25): 2948-57.
[http://dx.doi.org/10.1016/j.vaccine.2014.03.078] [PMID: 24709587]
[30]
Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 2021; 21(2): 83-100.
[http://dx.doi.org/10.1038/s41577-020-00479-7] [PMID: 33353987]
[31]
Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem 2013; 8(3): 360-76.
[http://dx.doi.org/10.1002/cmdc.201200487] [PMID: 23316023]
[32]
Foged C. Subunit vaccines of the future: the need for safe, customized and optimized particulate delivery systems. Ther Deliv 2011; 2(8): 1057-77.
[http://dx.doi.org/10.4155/tde.11.68] [PMID: 22826868]
[33]
Baxter D. Active and passive immunity, vaccine types, excipients and licensing. Occup Med 2007; 57(8): 552-6.
[http://dx.doi.org/10.1093/occmed/kqm110] [PMID: 18045976]
[34]
Parham P. The immune system. Garland Science 2014.
[http://dx.doi.org/10.1201/9781317511571]
[35]
Dai X, Xiong Y, Li N, Jian C. Vaccine types.Vaccines-the History and Future. IntechOpen 2019.
[http://dx.doi.org/10.5772/intechopen.84626]
[36]
Saxena . Vaccines and their production. Applied Microbiology. Springer 2015; pp. 173-8.
[http://dx.doi.org/10.1007/978-81-322-2259-0_11]
[37]
Mäkelä PH, Käyhty H. Evolution of conjugate vaccines. Expert Rev Vaccines 2002; 1(3): 399-410.
[http://dx.doi.org/10.1586/14760584.1.3.399] [PMID: 12901578]
[38]
Nascimento IP, Leite LCC. Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res 2012; 45(12): 1102-11.
[http://dx.doi.org/10.1590/S0100-879X2012007500142] [PMID: 22948379]
[39]
Khan KH. DNA vaccines: Roles against diseases. Germs 2013; 3(1): 26-35.
[http://dx.doi.org/10.11599/germs.2013.1034] [PMID: 24432284]
[40]
Robinson HL, Pertmer TM. DNA vaccines for viral infections: Basic studies and applications. Adv Virus Res 2000; 55: 1-74.
[http://dx.doi.org/10.1016/S0065-3527(00)55001-5]
[41]
Ulmer JB, Mason PW, Geall A, Mandl CW. RNA-based vaccines. Vaccine 2012; 30(30): 4414-8.
[http://dx.doi.org/10.1016/j.vaccine.2012.04.060] [PMID: 22546329]
[42]
Probst J, Brechtel S, Scheel B, et al. Characterization of the ribonuclease activity on the skin surface. Genet Vaccines Ther 2006; 4(1): 4.
[http://dx.doi.org/10.1186/1479-0556-4-4] [PMID: 16732888]
[43]
Scheel B, Teufel R, Probst J, et al. Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur J Immunol 2005; 35(5): 1557-66.
[http://dx.doi.org/10.1002/eji.200425656] [PMID: 15832293]
[44]
Karikó K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 2004; 279(13): 12542-50.
[http://dx.doi.org/10.1074/jbc.M310175200] [PMID: 14729660]
[45]
Fotin-Mleczek M, Zanzinger K, Heidenreich R, et al. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J Gene Med 2012; 14(6): 428-39.
[http://dx.doi.org/10.1002/jgm.2605] [PMID: 22262664]
[46]
Fotin-Mleczek M, Duchardt KM, Lorenz C, et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother 2011; 34(1): 1-15.
[http://dx.doi.org/10.1097/CJI.0b013e3181f7dbe8] [PMID: 21150709]
[47]
Oliu-Barton M, Pradelski BSR, Algan Y, et al. Elimination versus mitigation of SARS-CoV-2 in the presence of effective vaccines. Lancet Glob Health 2022; 10(1): e142-7.
[http://dx.doi.org/10.1016/S2214-109X(21)00494-0] [PMID: 34739862]
[48]
Harish V, Tewari D, Gaur M, et al. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials 2022; 12(3): 457.
[http://dx.doi.org/10.3390/nano12030457] [PMID: 35159802]
[49]
Gheibi Hayat SM, Darroudi M. Nanovaccine: A novel approach in immunization. J Cell Physiol 2019; 234(8): 12530-6.
[http://dx.doi.org/10.1002/jcp.28120] [PMID: 30633361]
[50]
Feng C, Li Y, Ferdows BE, et al. Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharm Sin B 2022; 12(5): 2206-23.
[http://dx.doi.org/10.1016/j.apsb.2021.12.021] [PMID: 35013704]
[51]
Goodman JL, Grabenstein JD, Braun MM. Answering key questions about COVID-19 vaccines. JAMA 2020; 324(20): 2027-8.
[http://dx.doi.org/10.1001/jama.2020.20590] [PMID: 33064145]
[52]
Heaton PM. Challenges of developing novel vaccines with particular global health importance. Front Immunol 2020; 11: 517290.
[http://dx.doi.org/10.3389/fimmu.2020.517290] [PMID: 33162972]
[53]
Chatzikleanthous D, O’Hagan DT, Adamo R. Lipid-based nanoparticles for delivery of vaccine adjuvants and antigens: toward multicomponent vaccines. Mol Pharm 2021; 18(8): 2867-88.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00447] [PMID: 34264684]
[54]
Feng G, Jiang Q, Xia M, et al. Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection. PLoS One 2013; 8(4): e61135.
[http://dx.doi.org/10.1371/journal.pone.0061135] [PMID: 23637790]
[55]
Das I, Padhi A, Mukherjee S, Dash DP, Kar S, Sonawane A. Biocompatible chitosan nanoparticles as an efficient delivery vehicle for Mycobacterium tuberculosis lipids to induce potent cytokines and antibody response through activation of γδ T cells in mice. Nanotechnology 2017; 28(16): 165101.
[http://dx.doi.org/10.1088/1361-6528/aa60fd] [PMID: 28206982]
[56]
Prego C, Paolicelli P, Díaz B, et al. Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine 2010; 28(14): 2607-14.
[http://dx.doi.org/10.1016/j.vaccine.2010.01.011] [PMID: 20096389]
[57]
Zhao K, Chen G, Shi XM, et al. Preparation and efficacy of a live newcastle disease virus vaccine encapsulated in chitosan nanoparticles. PLoS One 2012; 7(12): e53314.
[58]
Abraham E. Intranasal immunization with bacterial polysaccharide containing liposomes enhances antigen-specific pulmonary secretory antibody response. Vaccine 1992; 10(7): 461-8.
[http://dx.doi.org/10.1016/0264-410X(92)90395-Z] [PMID: 1609549]
[59]
Alving CR, Richards RL, Moss J, et al. Effectiveness of liposomes as potential carriers of vaccines: applications to cholera toxin and human malaria sporozoite antigen. Vaccine 1986; 4(3): 166-72.
[http://dx.doi.org/10.1016/0264-410X(86)90005-8] [PMID: 3532603]
[60]
Zhao W, Wu W, Xu X. Oral vaccination with liposome-encapsulated recombinant fusion peptide of urease B epitope and cholera toxin B subunit affords prophylactic and therapeutic effects against H. pylori infection in BALB/c mice. Vaccine 2007; 25(44): 7664-73.
[http://dx.doi.org/10.1016/j.vaccine.2007.08.034] [PMID: 17913305]
[61]
Kamath AT, Rochat AF, Christensen D, et al. A liposome-based mycobacterial vaccine induces potent adult and neonatal multifunctional T cells through the exquisite targeting of dendritic cells. PLoS One 2009; 4(6): e5771.
[http://dx.doi.org/10.1371/journal.pone.0005771] [PMID: 19492047]
[62]
Makidon PE, Knowlton J, Groom JV II, et al. Induction of immune response to the 17 kDa OMPA Burkholderia cenocepacia polypeptide and protection against pulmonary infection in mice after nasal vaccination with an OMP nanoemulsion-based vaccine. Med Microbiol Immunol (Berl) 2010; 199(2): 81-92.
[http://dx.doi.org/10.1007/s00430-009-0137-2] [PMID: 19967396]
[63]
Bielinska AU, Janczak KW, Landers JJ, et al. Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. Infect Immun 2007; 75(8): 4020-9.
[http://dx.doi.org/10.1128/IAI.00070-07] [PMID: 17502384]
[64]
Pierscionek BK, Li Y, Yasseen AA, Colhoun LM, Schachar RA, Chen W. Nanoceria have no genotoxic effect on human lens epithelial cells. Nanotechnology 2010; 21(3): 035102.
[http://dx.doi.org/10.1088/0957-4484/21/3/035102] [PMID: 19966402]
[65]
Tao W, Gill HS. M2e-immobilized gold nanoparticles as influenza A vaccine: Role of soluble M2e and longevity of protection. Vaccine 2015; 33(20): 2307-15.
[http://dx.doi.org/10.1016/j.vaccine.2015.03.063] [PMID: 25842219]
[66]
Xu L, Liu Y, Chen Z, et al. Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett 2012; 12(4): 2003-12.
[http://dx.doi.org/10.1021/nl300027p] [PMID: 22372996]
[67]
Ball JM, Graham DY, Opekun AR, Gilger MA, Guerrero RA, Estes MK. Recombinant norwalk virus-like particles given orally to volunteers: Phase I study. Gastroenterology 1999; 117(1): 40-8.
[http://dx.doi.org/10.1016/S0016-5085(99)70548-2] [PMID: 10381908]
[68]
Geldmacher A, Skrastina D, Borisova G, et al. A hantavirus nucleocapsid protein segment exposed on hepatitis B virus core particles is highly immunogenic in mice when applied without adjuvants or in the presence of pre-existing anti-core antibodies. Vaccine 2005; 23(30): 3973-83.
[http://dx.doi.org/10.1016/j.vaccine.2005.02.025] [PMID: 15917119]
[69]
Tyler M, Tumban E, Peabody DS, Chackerian B. The use of hybrid virus-like particles to enhance the immunogenicity of a broadly protective HPV vaccine. Biotechnol Bioeng 2014; 111(12): 2398-406.
[http://dx.doi.org/10.1002/bit.25311] [PMID: 24917327]
[70]
Ong GH, Lian BSX, Kawasaki T, Kawai T. Exploration of pattern recognition receptor agonists as candidate adjuvants. Front Cell Infect Microbiol 2021; 11: 745016.
[http://dx.doi.org/10.3389/fcimb.2021.745016] [PMID: 34692565]
[71]
Bisso S, Leroux JC. Nanopharmaceuticals: A focus on their clinical translatability. Int J Pharm 2020; 578: 119098.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119098] [PMID: 32018018]
[72]
Liang Z, Zhu H, Wang X, et al. Adjuvants for coronavirus vaccines. Front Immunol 2020; 11: 589833.
[http://dx.doi.org/10.3389/fimmu.2020.589833] [PMID: 33240278]
[73]
Zhang N, Li K, Liu Z, Nandakumar KS, Jiang S. A perspective on the roles of adjuvants in developing highly potent COVID-19 vaccines. Viruses 2022; 14(2): 387.
[http://dx.doi.org/10.3390/v14020387] [PMID: 35215980]
[74]
Tseng C, Sbrana E, Iwata-Yoshikawa N. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology when challenged with the SARS virus. PLoS One 2012; 7: e35421.
[http://dx.doi.org/10.1371/journal.pone.0035421] [PMID: 22536382]
[75]
Bai S, Dong A. Effects of immobilization onto aluminum hydroxide particles on the thermally induced conformational behavior of three model proteins. Int J Biol Macromol 2009; 45(1): 80-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.04.008] [PMID: 19397921]
[76]
Wang L, Shi W, Joyce MG, et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun 2015; 6(1): 7712.
[http://dx.doi.org/10.1038/ncomms8712] [PMID: 26218507]
[77]
Dai L, Zheng T, Xu K, Han Y, Xu L, Huang E, et al. A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell 2020; 182: 722-33.
[78]
Steinke JW. Anti–interleukin-4 therapy. Immunol Allergy Clin North Am 2004; 24(4): 599-614, vi.
[http://dx.doi.org/10.1016/j.iac.2004.06.008] [PMID: 15474861]
[79]
HogenEsch H. Mechanisms of stimulation of the immune response by aluminum adjuvants. Vaccine 2002; 20 (Suppl. 3): S34-9.
[http://dx.doi.org/10.1016/S0264-410X(02)00169-X] [PMID: 12184362]
[80]
Lindblad EB. Aluminium adjuvants—in retrospect and prospect. Vaccine 2004; 22(27-28): 3658-68.
[http://dx.doi.org/10.1016/j.vaccine.2004.03.032] [PMID: 15315845]
[81]
Orr MT, Khandhar AP, Seydoux E, et al. Reprogramming the adjuvant properties of aluminum oxyhydroxide with nanoparticle technology. NPJ Vaccines 2019; 4(1): 1.
[http://dx.doi.org/10.1038/s41541-018-0094-0] [PMID: 30622742]
[82]
Behzadi M, Vakili B, Ebrahiminezhad A, Nezafat N. Iron nanoparticles as novel vaccine adjuvants. Eur J Pharm Sci 2021; 159: 105718.
[http://dx.doi.org/10.1016/j.ejps.2021.105718] [PMID: 33465476]
[83]
Wilkins AL, Kazmin D, Napolitani G, et al. AS03-and MF59-adjuvanted influenza vaccines in children. Front Immunol 2017; 8: 1760.
[http://dx.doi.org/10.3389/fimmu.2017.01760] [PMID: 29326687]
[84]
Caillet C, Piras F, Bernard MC, et al. AF03-adjuvanted and non-adjuvanted pandemic influenza A (H1N1) 2009 vaccines induce strong antibody responses in seasonal influenza vaccine-primed and unprimed mice. Vaccine 2010; 28(18): 3076-9.
[http://dx.doi.org/10.1016/j.vaccine.2010.02.050] [PMID: 20193791]
[85]
Richardson CD. Mixing mRNA, adenoviral, and spike-adjuvant vaccines for protection against COVID-19. Lancet 2022; 399(10319): 3-5.
[http://dx.doi.org/10.1016/S0140-6736(21)02757-4] [PMID: 34883051]
[86]
Sahu T, Ratre YK, Chauhan S, Bhaskar LVKS, Nair MP, Verma HK. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol 2021; 63: 102487.
[http://dx.doi.org/10.1016/j.jddst.2021.102487]
[87]
Nunes D, Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Polymeric nanoparticles-loaded hydrogels for biomedical applications: A systematic review on in vivo findings. Polymers 2022; 14(5): 1010.
[http://dx.doi.org/10.3390/polym14051010] [PMID: 35267833]
[88]
Benko A, Medina-Cruz D, Vernet-Crua A, et al. Nanocarrier drug resistant tumor interactions: novel approaches to fight drug resistance in cancer. Cancer Drug Resist 2021; 4(2): 264-97.
[PMID: 35582024]
[89]
Halwani AA. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics 2022; 14(1): 106.
[http://dx.doi.org/10.3390/pharmaceutics14010106] [PMID: 35057002]
[90]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[91]
Lôbo GCNB, Paiva KLR, Silva ALG, Simões MM, Radicchi MA, Báo SN. Nanocarriers used in drug delivery to enhance immune system in cancer therapy. Pharmaceutics 2021; 13(8): 1167.
[http://dx.doi.org/10.3390/pharmaceutics13081167] [PMID: 34452128]
[92]
Mahmoud K, Swidan S, El-Nabarawi M, Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnology 2022; 20(1): 109.
[http://dx.doi.org/10.1186/s12951-022-01309-9] [PMID: 35248080]
[93]
Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao CX. Lipid nanoparticles for drug delivery. Adv NanoBiomed Res 2022; 2(2): 2100109.
[http://dx.doi.org/10.1002/anbr.202100109] [PMID: 35179344]
[94]
Ibaraki H, Kanazawa T. In Vivo Topical and systemic distribution kinetics of liposomes with various properties for application to drug delivery systems. Sens Mater 2022; 34(3): 987.
[http://dx.doi.org/10.18494/SAM3673]
[95]
Bangham AD, Standish MM, Weissmann G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J Mol Biol 1965; 13(1): 253-IN28.
[http://dx.doi.org/10.1016/S0022-2836(65)80094-8] [PMID: 5859040]
[96]
Niza E, Ocaña A, Castro-Osma JA, Bravo I, Alonso-Moreno C. Polyester polymeric nanoparticles as platforms in the development of novel nanomedicines for cancer treatment. Cancers 2021; 13(14): 3387.
[http://dx.doi.org/10.3390/cancers13143387] [PMID: 34298604]
[97]
Lombardo D, Kiselev MA. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics 2022; 14(3): 543.
[http://dx.doi.org/10.3390/pharmaceutics14030543] [PMID: 35335920]
[98]
Milan A, Mioc A, Prodea A, et al. The optimized delivery of triterpenes by liposomal nanoformulations: Overcoming the challenges. Int J Mol Sci 2022; 23(3): 1140.
[http://dx.doi.org/10.3390/ijms23031140] [PMID: 35163063]
[99]
Nienhaus K, Wang H, Nienhaus GU. Nanoparticles for biomedical applications: exploring and exploiting molecular interactions at the nano-bio interface. Materials Today Advances 2020; 5: 100036.
[http://dx.doi.org/10.1016/j.mtadv.2019.100036]
[100]
Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol 2020; 8: 990-0.
[http://dx.doi.org/10.3389/fbioe.2020.00990] [PMID: 32903562]
[101]
António M, Nogueira J, Vitorino R, Daniel-da-Silva A. Functionalized gold nanoparticles for the detection of c-reactive protein. Nanomaterials 2018; 8(4): 200.
[http://dx.doi.org/10.3390/nano8040200] [PMID: 29597295]
[102]
Xie X, Liao J, Shao X, Li Q, Lin Y. The Effect of shape on Cellular Uptake of Gold Nanoparticles in the forms of Stars, Rods, and Triangles. Sci Rep 2017; 7(1): 3827.
[http://dx.doi.org/10.1038/s41598-017-04229-z] [PMID: 28630477]
[103]
Amina SJ, Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomedicine 2020; 15: 9823-57.
[http://dx.doi.org/10.2147/IJN.S279094] [PMID: 33324054]
[104]
Kaushik S. Polymeric and ceramic nanoparticles: Possible role in biomedical applications.Handbook of Polymer and Ceramic Nanotechnology. Cham: Springer International Publishing 2019; pp. 1-17.
[105]
Karlsson J, Vaughan HJ, Green JJ. Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Annu Rev Chem Biomol Eng 2018; 9(1): 105-27.
[http://dx.doi.org/10.1146/annurev-chembioeng-060817-084055] [PMID: 29579402]
[106]
Krishnamoorthy K, Mahalingam M. Selection of a suitable method for the preparation of polymeric nanoparticles: multi-criteria decision making approach. Adv Pharm Bull 2015; 5(1): 57-67.
[PMID: 25789220]
[107]
Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 2015; 13(10): 605-19.
[http://dx.doi.org/10.1038/nrmicro3525] [PMID: 26373371]
[108]
Lappann M, Otto A, Becher D, Vogel U. Comparative proteome analysis of spontaneous outer membrane vesicles and purified outer membranes of Neisseria meningitidis. J Bacteriol 2013; 195(19): 4425-35.
[http://dx.doi.org/10.1128/JB.00625-13] [PMID: 23893116]
[109]
Sharpe SW, Kuehn MJ, Mason KM. Elicitation of epithelial cell-derived immune effectors by outer membrane vesicles of nontypeable Haemophilus influenzae. Infect Immun 2011; 79(11): 4361-9.
[http://dx.doi.org/10.1128/IAI.05332-11] [PMID: 21875967]
[110]
Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin Immunol 2017; 34: 123-32.
[http://dx.doi.org/10.1016/j.smim.2017.08.014] [PMID: 28887001]
[111]
Bishop AL, Tarique AA, Patimalla B, Calderwood SB, Qadri F, Camilli A. Immunization of mice with vibrio cholerae outer-membrane vesicles protects against hyperinfectious challenge and blocks transmission. J Infect Dis 2012; 205(3): 412-21.
[http://dx.doi.org/10.1093/infdis/jir756] [PMID: 22147790]
[112]
Tariq H, Batool S, Asif S, Ali M, Abbasi BH. Virus-like particles: Revolutionary platforms for developing vaccines against emerging infectious diseases. Front Microbiol 2022; 12: 790121.
[http://dx.doi.org/10.3389/fmicb.2021.790121] [PMID: 35046918]
[113]
Gupta R, Arora K, Roy SS, et al. Platforms, advances, and technical challenges in virus-like particles-based vaccines. Front Immunol 2023; 14: 1123805.
[http://dx.doi.org/10.3389/fimmu.2023.1123805] [PMID: 36845125]
[114]
Mancini F, Micoli F, Necchi F, Pizza M, Berlanda Scorza F, Rossi O. GMMA-based vaccines: The known and the unknown. Front Immunol 2021; 12: 715393.
[http://dx.doi.org/10.3389/fimmu.2021.715393] [PMID: 34413858]
[115]
Raso MM, Gasperini G, Alfini R, et al. GMMA and glycoconjugate approaches compared in mice for the development of a vaccine against Shigella flexneri serotype 6. Vaccines 2020; 8(2): 160.
[http://dx.doi.org/10.3390/vaccines8020160] [PMID: 32260067]
[116]
Micoli F, Rondini S, Alfini R, et al. Comparative immunogenicity and efficacy of equivalent outer membrane vesicle and glycoconjugate vaccines against nontyphoidal Salmonella. Proc Natl Acad Sci USA 2018; 115(41): 10428-33.
[http://dx.doi.org/10.1073/pnas.1807655115] [PMID: 30262653]
[117]
Micoli F, Alfini R, Di Benedetto R, et al. GMMA is a versatile platform to design effective multivalent combination vaccines. Vaccines 2020; 8(3): 540.
[http://dx.doi.org/10.3390/vaccines8030540] [PMID: 32957610]
[118]
Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front Immunol 2018; 9: 2224.
[http://dx.doi.org/10.3389/fimmu.2018.02224] [PMID: 30337923]
[119]
Yadav HKS, Dibi M, Mohammad A, Srouji AE. Nanovaccines formulation and applications-a review. J Drug Deliv Sci Technol 2018; 44: 380-7.
[http://dx.doi.org/10.1016/j.jddst.2018.01.015]
[120]
Ernst L, Casals E, Italiani P, Boraschi D, Puntes V. The interactions between nanoparticles and the innate immune system from a nanotechnologist perspective. Nanomaterials 2021; 11(11): 2991.
[http://dx.doi.org/10.3390/nano11112991] [PMID: 34835755]
[121]
Moon JJ, Suh H, Li AV, Ockenhouse CF, Yadava A, Irvine DJ. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand T fh cells and promote germinal center induction. Proc Natl Acad Sci USA 2012; 109(4): 1080-5.
[http://dx.doi.org/10.1073/pnas.1112648109] [PMID: 22247289]
[122]
Zhao L, Seth A, Wibowo N, et al. Nanoparticle vaccines. Vaccine 2014; 32(3): 327-37.
[http://dx.doi.org/10.1016/j.vaccine.2013.11.069] [PMID: 24295808]
[123]
Reddy ST, van der Vlies AJ, Simeoni E, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 2007; 25(10): 1159-64.
[http://dx.doi.org/10.1038/nbt1332] [PMID: 17873867]
[124]
Kreuter J. Possibilities of using nanoparticles as carriers for drugs and vaccines. J Microencapsul 1988; 5(2): 115-27.
[http://dx.doi.org/10.3109/02652048809056475] [PMID: 3058924]
[125]
Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-based vaccines against respiratory viruses. Front Immunol 2019; 10: 22.
[http://dx.doi.org/10.3389/fimmu.2019.00022] [PMID: 30733717]
[126]
Liu Y, Hardie J, Zhang X, Rotello VM. Effects of engineered nanoparticles on the innate immune system. Seminars in immunology. Elsevier 2017; pp. 25-32.
[http://dx.doi.org/10.1016/j.smim.2017.09.011]
[127]
Li X, Gao J, Yang Y, et al. Nanomaterials in the application of tumor vaccines: advantages and disadvantages. OncoTargets Ther 2013; 6: 629-34.
[PMID: 23776336]
[128]
Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine 2008.
[http://dx.doi.org/10.2217/17435889.3.5.703]
[129]
Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: The need of the hour. Toxicol Appl Pharmacol 2012; 258(2): 151-65.
[http://dx.doi.org/10.1016/j.taap.2011.11.010] [PMID: 22178382]
[130]
Diaz-Arévalo D, Zeng M. Nanoparticle-based vaccines: Opportunities and limitations. Nanopharmaceuticals. Elsevier 2020; pp. 135-50.
[131]
Hwang J, Jeong Y, Park JM, Lee KH, Hong JW, Choi J. Biomimetics: forecasting the future of science, engineering, and medicine. Int J Nanomedicine 2015; 10: 5701-13.
[PMID: 26388692]
[132]
Chen X, Shi T, Yang C, et al. Scalable biomimetic SARS-CoV‑2 nanovaccines with robust protective immune responses. Signal Transduct Target Ther 2022; 7(1): 96.
[http://dx.doi.org/10.1038/s41392-022-00942-y] [PMID: 35338114]
[133]
Cai JX, Liu JH, Wu JY, et al. Hybrid cell membrane-functionalized biomimetic nanoparticles for targeted therapy of osteosarcoma. Int J Nanomedicine 2022; 17: 837-54.
[http://dx.doi.org/10.2147/IJN.S346685] [PMID: 35228800]
[134]
Liu Y, Wang T, Ren Y, Li S. Study on biomimetic nano tumor targeted delivery system for chemotherapy-laser immunotherapy. Eur J Pharm Biopharm 2022.
[135]
Mills JA, Liu F, Jarrett TR, Fletcher NL, Thurecht KJ. Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomater Sci 2022; 10(12): 3029-53.
[http://dx.doi.org/10.1039/D2BM00181K] [PMID: 35419582]
[136]
Oroojalian F, Beygi M, Baradaran B, Mokhtarzadeh A, Shahbazi MA. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small 2021; 17(12): 2006484.
[http://dx.doi.org/10.1002/smll.202006484] [PMID: 33577127]
[137]
Zhang M, Cheng S, Jin Y, Zhang N, Wang Y. Membrane engineering of cell membrane biomimetic nanoparticles for nanoscale therapeutics. Clin Transl Med 2021; 11(2): e292.
[http://dx.doi.org/10.1002/ctm2.292] [PMID: 33635002]
[138]
Hu CMJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 2011; 108(27): 10980-5.
[http://dx.doi.org/10.1073/pnas.1106634108] [PMID: 21690347]
[139]
Jin J, Bhujwalla ZM. Biomimetic nanoparticles camouflaged in cancer cell membranes and their applications in cancer theranostics. Front Oncol 2020; 9: 1560.
[http://dx.doi.org/10.3389/fonc.2019.01560] [PMID: 32039028]
[140]
Beh CY, Prajnamitra RP, Chen LL, Hsieh PCH. Advances in biomimetic nanoparticles for targeted cancer therapy and diagnosis. Molecules 2021; 26(16): 5052.
[http://dx.doi.org/10.3390/molecules26165052] [PMID: 34443638]
[141]
Vincy A, Mazumder S, Amrita IB, Banerjee I, Hwang KC, Vankayala R. Recent progress in red blood cells-derived particles as novel bioinspired drug delivery systems: Challenges and strategies for clinical translation. Front Chem 2022; 10: 905256.
[http://dx.doi.org/10.3389/fchem.2022.905256] [PMID: 35572105]
[142]
Zhao X, Yan C. Research progress of cell membrane biomimetic nanoparticles for tumor therapy. Nanoscale Res Lett 2022; 17(1): 36.
[http://dx.doi.org/10.1186/s11671-022-03673-9] [PMID: 35316443]
[143]
Nathanael AJ, Oh TH. Biopolymer coatings for biomedical applications. Polymers 2020; 12(12): 3061.
[http://dx.doi.org/10.3390/polym12123061] [PMID: 33371349]
[144]
Han H, Bártolo R, Li J, Shahbazi MA, Santos HA. Biomimetic platelet membrane-coated nanoparticles for targeted therapy. Eur J Pharm Biopharm 2022; 172: 1-15.
[http://dx.doi.org/10.1016/j.ejpb.2022.01.004] [PMID: 35074554]
[145]
Jiao X, Yu X, Gong C, et al. Erythrocyte-cancer hybrid membrane-camouflaged mesoporous silica nanoparticles loaded with Gboxin for glioma-targeting therapy. Curr Pharm Biotechnol 2022; 23(6): 835-46.
[http://dx.doi.org/10.2174/1389201022666210719164538] [PMID: 34825635]
[146]
Hayat SMG, Bianconi V, Pirro M, Jaafari MR, Hatamipour M, Sahebkar A. CD47: role in the immune system and application to cancer therapy. Cell Oncol (Dordr) 2020; 43(1): 19-30.
[http://dx.doi.org/10.1007/s13402-019-00469-5] [PMID: 31485984]
[147]
Zhang W, Huang Q, Xiao W, et al. Advances in anti-tumor treatments targeting the CD47/SIRPα axis. Front Immunol 2020; 11: 18-8.
[http://dx.doi.org/10.3389/fimmu.2020.00018] [PMID: 32082311]
[148]
Shen Y, Guo D, Ji X, et al. Homotypic targeting of immunomodulatory nanoparticles for enhanced peripheral and central immunity. Cell Prolif 2022; 55(3): e13192.
[http://dx.doi.org/10.1111/cpr.13192] [PMID: 35084069]
[149]
Wang Q, Cheng H, Peng H, Zhou H, Li PY, Langer R. Non-genetic engineering of cells for drug delivery and cell-based therapy. Adv Drug Deliv Rev 2015; 91: 125-40.
[http://dx.doi.org/10.1016/j.addr.2014.12.003] [PMID: 25543006]
[150]
Sackstein R, Merzaban JS, Cain DW, et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 2008; 14(2): 181-7.
[http://dx.doi.org/10.1038/nm1703] [PMID: 18193058]
[151]
Chen I, Howarth M, Lin W, Ting AY. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2005; 2(2): 99-104.
[http://dx.doi.org/10.1038/nmeth735] [PMID: 15782206]
[152]
Popp MW, Antos JM, Grotenbreg GM, Spooner E, Ploegh HL. Sortagging: a versatile method for protein labeling. Nat Chem Biol 2007; 3(11): 707-8.
[http://dx.doi.org/10.1038/nchembio.2007.31] [PMID: 17891153]
[153]
Luk BT, Jack Hu C-M, Fang RH, et al. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 2014; 6(5): 2730-7.
[http://dx.doi.org/10.1039/C3NR06371B] [PMID: 24463706]
[154]
Zhou H, Fan Z, Lemons PK, Cheng H. A facile approach to functionalize cell membrane-coated nanoparticles. Theranostics 2016; 6(7): 1012-22.
[http://dx.doi.org/10.7150/thno.15095] [PMID: 27217834]
[155]
Holstein SA, Lunning MA. CAR T-cell therapy in hematologic malignancies: a voyage in progress. Clin Pharmacol Ther 2020; 107(1): 112-22.
[http://dx.doi.org/10.1002/cpt.1674] [PMID: 31622496]
[156]
Jiang Z, Jiang X, Chen S, et al. Anti-GPC3-CAR T cells suppress the growth of tumor cells in patient-derived xenografts of hepatocellular carcinoma. Front Immunol 2017; 7: 690.
[http://dx.doi.org/10.3389/fimmu.2016.00690] [PMID: 28123387]
[157]
Ma W, Zhu D, Li J, et al. Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment. Theranostics 2020; 10(3): 1281-95.
[http://dx.doi.org/10.7150/thno.40291] [PMID: 31938065]
[158]
Tian H, Luo Z, Liu L, et al. Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance. Adv Funct Mater 2017; 27(38): 1703197.
[http://dx.doi.org/10.1002/adfm.201703197]
[159]
Zhang Z, Qian H, Huang J, et al. Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to enhance targeting and antitumor ability in colorectal cancer treatment. Int J Nanomedicine 2018; 13: 4961-75.
[http://dx.doi.org/10.2147/IJN.S170148] [PMID: 30214200]
[160]
Chen H, Sha H, Zhang L, et al. Lipid insertion enables targeted functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein. Int J Nanomedicine 2018; 13: 5347-59.
[http://dx.doi.org/10.2147/IJN.S165109] [PMID: 30254439]
[161]
Han Y, Pan H, Li W, et al. T cell membrane mimicking nanoparticles with bioorthogonal targeting and immune recognition for enhanced photothermal therapy. Adv Sci (Weinh) 2019; 6(15): 1900251.
[http://dx.doi.org/10.1002/advs.201900251] [PMID: 31406665]
[162]
Yang R, Xu J, Xu L, et al. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano 2018; 12(6): 5121-9.
[http://dx.doi.org/10.1021/acsnano.7b09041] [PMID: 29771487]
[163]
Guo Y, Wang D, Song Q, et al. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano 2015; 9(7): 6918-33.
[http://dx.doi.org/10.1021/acsnano.5b01042] [PMID: 26153897]
[164]
Han X, Shen S, Fan Q, et al. Red blood cell–derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Sci Adv 2019; 5(10): eaaw6870.
[http://dx.doi.org/10.1126/sciadv.aaw6870] [PMID: 31681841]
[165]
Fang RH, Hu CMJ, Chen KNH, et al. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale 2013; 5(19): 8884-8.
[http://dx.doi.org/10.1039/c3nr03064d] [PMID: 23907698]
[166]
Xu J, Zhang Y, Xu J, et al. Engineered nanoplatelets for targeted delivery of plasminogen activators to reverse thrombus in multiple mouse thrombosis models. Adv Mater 2020; 32(4): 1905145.
[http://dx.doi.org/10.1002/adma.201905145] [PMID: 31788896]
[167]
Pereira-Silva M, Chauhan G, Shin MD, et al. Unleashing the potential of cell membrane-based nanoparticles for COVID-19 treatment and vaccination. Expert Opin Drug Deliv 2021; 18(10): 1395-414.
[http://dx.doi.org/10.1080/17425247.2021.1922387] [PMID: 33944644]
[168]
Guido C, Maiorano G, Cortese B, D’Amone S, Palamà IE. Biomimetic nanocarriers for cancer target therapy. Bioengineering 2020; 7(3): 111.
[http://dx.doi.org/10.3390/bioengineering7030111] [PMID: 32937963]
[169]
Tian W, Lu J, Jiao D. Stem cell membrane vesicle-coated nanoparticles for efficient tumor-targeted therapy of orthotopic breast cancer. Polym Adv Technol 2019; 30(4): 1051-60.
[http://dx.doi.org/10.1002/pat.4538]
[170]
Dai J, Chen Z, Wang S, Xia F, Lou X. Erythrocyte membrane-camouflaged nanoparticles as effective and biocompatible platform: Either autologous or allogeneic erythrocyte-derived. Mater Today Bio 2022; 15: 100279.
[http://dx.doi.org/10.1016/j.mtbio.2022.100279] [PMID: 35601893]
[171]
Zhao C, Chen Q, Li W, Zhang J, Yang C, Chen D. Multi-functional platelet membrane-camouflaged nanoparticles reduce neuronal apoptosis and regulate microglial phenotype during ischemic injury. Appl Mater Today 2022; 27: 101412.
[http://dx.doi.org/10.1016/j.apmt.2022.101412]
[172]
Sadek SH, Rubio M, Lima R, Vega EJ. Blood particulate analogue fluids: A review. Materials 2021; 14(9): 2451.
[http://dx.doi.org/10.3390/ma14092451] [PMID: 34065125]
[173]
Idris SA, Firdayanti F, Susanti S, Setiawan MA. The correlation results of examination of hemoglobin and the erythrocyte index in patients with suspected COVID-19 in the hospital of kendari city. Indonesian J Med Lab Sci Technol 2022; 4(1): 71-80.
[http://dx.doi.org/10.33086/ijmlst.v4i1.2105]
[174]
Ben-Akiva E, Meyer RA, Yu H, Smith JT, Pardoll DM, Green JJ. Biomimetic anisotropic polymeric nanoparticles coated with red blood cell membranes for enhanced circulation and toxin removal. Sci Adv 2020; 6(16): eaay9035.
[http://dx.doi.org/10.1126/sciadv.aay9035] [PMID: 32490199]
[175]
Zhang L, Wang Z, Zhang Y, et al. Erythrocyte membrane cloaked metal–organic framework nanoparticle as biomimetic nanoreactor for starvation-activated colon cancer therapy. ACS Nano 2018; 12(10): 10201-11.
[http://dx.doi.org/10.1021/acsnano.8b05200] [PMID: 30265804]
[176]
Zhang Z, Qian H, Yang M, et al. Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment. Int J Nanomedicine 2017; 12: 1593-605.
[http://dx.doi.org/10.2147/IJN.S127256] [PMID: 28280328]
[177]
Hottz ED, Quirino-Teixeira AC, Merij LB, et al. Platelet–leukocyte interactions in the pathogenesis of viral infections. Platelets 2022; 33(2): 200-7.
[http://dx.doi.org/10.1080/09537104.2021.1952179] [PMID: 34260328]
[178]
Ebermeyer T, Cognasse F, Berthelot P, Mismetti P, Garraud O, Hamzeh-Cognasse H. Platelet innate immune receptors and TLRs: A double-edged sword. Int J Mol Sci 2021; 22(15): 7894.
[http://dx.doi.org/10.3390/ijms22157894] [PMID: 34360659]
[179]
Cloutier N, Allaeys I, Marcoux G, et al. Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration. Proc Natl Acad Sci USA 2018; 115(7): E1550-9.
[http://dx.doi.org/10.1073/pnas.1720553115] [PMID: 29386381]
[180]
Gianazza E, Brioschi M, Baetta R, Mallia A, Banfi C, Tremoli E. Platelets in healthy and disease states: From biomarkers discovery to drug targets identification by proteomics. Int J Mol Sci 2020; 21(12): 4541.
[http://dx.doi.org/10.3390/ijms21124541] [PMID: 32630608]
[181]
Li L, Cong B, Yu X, et al. The expression of membrane-bound complement regulatory proteins CD46, CD55 and CD59 in oral lichen planus. Arch Oral Biol 2021; 124: 105064.
[http://dx.doi.org/10.1016/j.archoralbio.2021.105064] [PMID: 33529836]
[182]
Hu Q, Sun W, Qian C, Wang C, Bomba HN, Gu Z. Anticancer platelet-mimicking nanovehicles. Adv Mater 2015; 27(44): 7043-50.
[http://dx.doi.org/10.1002/adma.201503323] [PMID: 26416431]
[183]
Dahlberg CIM, Sarhan D, Chrobok M, Duru AD, Alici E. Natural killer cell-based therapies targeting cancer: possible strategies to gain and sustain anti-tumor activity. Front Immunol 2015; 6: 605.
[http://dx.doi.org/10.3389/fimmu.2015.00605] [PMID: 26648934]
[184]
Jing L, Qu H, Wu D, et al. Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy. Theranostics 2018; 8(10): 2683-95.
[http://dx.doi.org/10.7150/thno.23654] [PMID: 29774068]
[185]
Morrell CN, Sun H, Swaim AM, Baldwin WM III. Platelets an inflammatory force in transplantation. Am J Transplant 2007; 7(11): 2447-54.
[http://dx.doi.org/10.1111/j.1600-6143.2007.01958.x] [PMID: 17927608]
[186]
Langer HF, Daub K, Braun G, et al. Platelets recruit human dendritic cells via Mac-1/JAM-C interaction and modulate dendritic cell function in vitro. Arterioscler Thromb Vasc Biol 2007; 27(6): 1463-70.
[http://dx.doi.org/10.1161/ATVBAHA.107.141515] [PMID: 17379836]
[187]
Al-Dulaimi KAK, Banks J, Chandran V, Tomeo-Reyes I, Nguyen Thanh K. Chapter 8: Classification of white blood cell types from microscope images: Techniques and challenges.Microscopy Science: Last Approaches on Educational Programs and Applied Research. Formatex Research Center 2018.
[188]
Zhang M, Du Y, Wang S, Chen B. A review of biomimetic nanoparticle drug delivery systems based on cell membranes. Drug Des Devel Ther 2020; 14: 5495-503.
[http://dx.doi.org/10.2147/DDDT.S282368] [PMID: 33363358]
[189]
Parodi A, Quattrocchi N, van de Ven AL, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 2013; 8(1): 61-8.
[http://dx.doi.org/10.1038/nnano.2012.212] [PMID: 23241654]
[190]
Krishnamurthy S, Gnanasammandhan MK, Xie C, Huang K, Cui MY, Chan JM. Monocyte cell membrane-derived nanoghosts for targeted cancer therapy. Nanoscale 2016; 8(13): 6981-5.
[http://dx.doi.org/10.1039/C5NR07588B] [PMID: 26975904]
[191]
Chen Q, Zhang XHF, Massagué J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 2011; 20(4): 538-49.
[http://dx.doi.org/10.1016/j.ccr.2011.08.025] [PMID: 22014578]
[192]
Pitchaimani A, Nguyen TDT, Aryal S. Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials 2018; 160: 124-37.
[http://dx.doi.org/10.1016/j.biomaterials.2018.01.018] [PMID: 29407341]
[193]
Murata Y, Kotani T, Ohnishi H, Matozaki T. The CD47-SIRP signalling system: its physiological roles and therapeutic application. J Biochem 2014; 155(6): 335-44.
[http://dx.doi.org/10.1093/jb/mvu017] [PMID: 24627525]
[194]
De Pasquale D, Marino A, Tapeinos C, et al. Homotypic targeting and drug delivery in glioblastoma cells through cell membrane-coated boron nitride nanotubes. Mater Des 2020; 192: 108742-2.
[http://dx.doi.org/10.1016/j.matdes.2020.108742] [PMID: 32394995]
[195]
Sun H, Su J, Meng Q, et al. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv Mater 2016; 28(43): 9581-8.
[http://dx.doi.org/10.1002/adma.201602173] [PMID: 27628433]
[196]
Chen Z, Zhao P, Luo Z, et al. Cancer cell membrane–biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 2016; 10(11): 10049-57.
[http://dx.doi.org/10.1021/acsnano.6b04695] [PMID: 27934074]
[197]
Glenny AT, Pope CG, Waddington H, Wallace U. Immunological notes. XVII-XXIV. J Pathol Bacteriol 1926; 29(1): 31-40.
[http://dx.doi.org/10.1002/path.1700290106]
[198]
Opie EL, Freund J. An experimental study of protective inoculation with heat killed tubercle bacilli. J Exp Med 1937; 66(6): 761-88.
[http://dx.doi.org/10.1084/jem.66.6.761] [PMID: 19870697]
[199]
Bishop CJ, Kozielski KL, Green JJ. Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles. J Control Release 2015; 219: 488-99.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.046] [PMID: 26433125]
[200]
Wang F, Fang RH, Luk BT, et al. Nanoparticle-Based antivirulence vaccine for the management of methicillin-resistant Staphylococcus aureus skin infection. Adv Funct Mater 2016; 26(10): 1628-35.
[http://dx.doi.org/10.1002/adfm.201505231] [PMID: 27325913]
[201]
Chen P, Liu X, Sun Y, Zhou P, Wang Y, Zhang Y. Dendritic cell targeted vaccines: Recent progresses and challenges. Hum Vaccin Immunother 2016; 12(3): 612-22.
[http://dx.doi.org/10.1080/21645515.2015.1105415] [PMID: 26513200]
[202]
Rao M. Stem cells for therapy. Tissue Eng Regen Med 2013; 10(5): 223-9.
[http://dx.doi.org/10.1007/s13770-013-1081-1]
[203]
Li S, Rizzo MA, Bhattacharya S, Huang L. Characterization of cationic lipid-protamine–DNA (LPD) complexes for intravenous gene delivery. Gene Ther 1998; 5(7): 930-7.
[http://dx.doi.org/10.1038/sj.gt.3300683] [PMID: 9813664]
[204]
Zhou S, Huang Y, Chen Y, et al. Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy. Biomaterials 2020; 235: 119795.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119795] [PMID: 32014739]
[205]
Savina A, Amigorena S. Phagocytosis and antigen presentation in dendritic cells. Immunol Rev 2007; 219(1): 143-56.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00552.x] [PMID: 17850487]
[206]
Seth L, Bingham Ferlez KM, Kaba SA, et al. Development of a self-assembling protein nanoparticle vaccine targeting Plasmodium falciparum circumsporozoite protein delivered in three army liposome formulation adjuvants. Vaccine 2017; 35(41): 5448-54.
[http://dx.doi.org/10.1016/j.vaccine.2017.02.040] [PMID: 28274638]
[207]
von Hoegen P. Synthetic biomimetic supra molecular Biovector™ (SMBV™) particles for nasal vaccine delivery. Adv Drug Deliv Rev 2001; 51(1-3): 113-25.
[http://dx.doi.org/10.1016/S0169-409X(01)00175-2] [PMID: 11516783]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy