Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Nanocarrier Mediated Intranasal Drug Delivery Systems for the Management of Parkinsonism: A Review

Author(s): Archita Kapoor, Abdul Hafeez* and Poonam Kushwaha

Volume 21, Issue 5, 2024

Published on: 16 June, 2023

Page: [709 - 725] Pages: 17

DOI: 10.2174/1567201820666230523114259

Price: $65

conference banner
Abstract

The transport of drugs to the brain becomes a key concern when treating disorders of the central nervous system. Parkinsonism is one of the major concerns across the world populations, which causes difficulty in coordination and balance. However, the blood-brain barrier is a significant barrier to achieving optimal brain concentration through oral, transdermal, and intravenous routes of administration. The intranasal route with nanocarrier-based formulations has shown potential for managing Parkinsonism disorder (PD). Direct delivery to the brain through the intranasal route is possible via the olfactory and trigeminal pathways using drug-loaded nanotechnology-based drug delivery systems. The critical analysis of reported works demonstrates dose reduction, brain targeting, safety, effectiveness, and stability for drug-loaded nanocarriers. The important aspects of intranasal drug delivery, PD details, and nanocarrier-based intranasal formulations in PD management with a discussion of physicochemical characteristics, cell line studies, and animal studies are the major topics in this review. Patent reports and clinical investigations are summarized in the last sections.

Keywords: Intranasal drug delivery, Parkinson’s disease, blood-brain barrier, polymeric nanoparticles, nanostructured lipid carriers, brain targeting.

Graphical Abstract
[1]
Kulkarni, A.D.; Vanjari, Y.H.; Sancheti, K.H.; Belgamwar, V.S.; Surana, S.J.; Pardeshi, C.V. Nanotechnology-mediated nose to brain drug delivery for Parkinson’s disease: A mini review. J. Drug Target., 2015, 23(9), 775-788.
[http://dx.doi.org/10.3109/1061186X.2015.1020809] [PMID: 25758751]
[2]
Rassu, G.; Soddu, E.; Cossu, M.; Gavini, E.; Giunchedi, P.; Dalpiaz, A. Particulate formulations based on chitosan for nose-to-brain delivery of drugs. A review. J. Drug Deliv. Sci. Technol., 2016, 32, 77-87.
[http://dx.doi.org/10.1016/j.jddst.2015.05.002]
[3]
Giunchedi, P.; Gavini, E.; Bonferoni, M.C. Nose-to-brain delivery. Pharmaceutics, 2020, 12(2), 138.
[http://dx.doi.org/10.3390/pharmaceutics12020138] [PMID: 32041344]
[4]
Liu, Y.; Weng, P.; Liu, Y.; Wu, Z.; Wang, L.; Liu, L. Citrus pectin research advances: Derived as a biomaterial in the construction and applications of micro/nano-delivery systems. Food Hydrocoll., 2022, 133, 107910.
[http://dx.doi.org/10.1016/j.foodhyd.2022.107910]
[5]
Phukan, K.; Nandy, M.; Sharma, R.B.; Sharma, H.K. Nanosized drug delivery systems for direct nose to brain targeting: a review. Recent Pat. Drug Deliv. Formul., 2016, 10(2), 156-164.
[http://dx.doi.org/10.2174/1872211310666160321123936] [PMID: 26996366]
[6]
Patel, A.; Surti, N.; Mahajan, A. Intranasal drug delivery: Novel delivery route for effective management of neurological disorders. J. Drug Deliv. Sci. Technol., 2019, 52, 130-137.
[http://dx.doi.org/10.1016/j.jddst.2019.04.017]
[7]
Awad, R.; Avital, A.; Sosnik, A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm. Sin. B, 2022, 9July, 1-45.
[http://dx.doi.org/10.1016/j.apsb.2022.07.003]
[8]
Nirale, P.; Paul, A.; Yadav, K.S. Nanoemulsions for targeting the neurodegenerative diseases: Alzheimer’s, Parkinson’s and Prion’s. Life Sci., 2020, 245, 117394.
[http://dx.doi.org/10.1016/j.lfs.2020.117394] [PMID: 32017870]
[9]
Paul, A.; Yadav, K.S. Parkinson’s disease: Current drug therapy and unraveling the prospects of nanoparticles. J. Drug Deliv. Sci. Technol., 2020, 58, 101790.
[http://dx.doi.org/10.1016/j.jddst.2020.101790]
[10]
Islam, S.U.; Shehzad, A.; Ahmed, M.B.; Lee, Y.S. Intranasal delivery of nanoformulations: A potential way of treatment for neurological disorders. Molecules, 2020, 25(8), 1929.
[http://dx.doi.org/10.3390/molecules25081929] [PMID: 32326318]
[11]
Shirsath, N.R.; Goswami, A.K. Nanocarriers based novel drug delivery as effective drug delivery: A review. Curr. Nanomater., 2019, 4(2), 71-83.
[http://dx.doi.org/10.2174/2405461504666190527101436]
[12]
Battaglia, L.; Panciani, P.P.; Muntoni, E.; Capucchio, M.T.; Biasibetti, E.; De Bonis, P.; Mioletti, S.; Fontanella, M.; Swaminathan, S. Lipid nanoparticles for intranasal administration: application to nose-to-brain delivery. Expert Opin. Drug Deliv., 2018, 15(4), 369-378.
[http://dx.doi.org/10.1080/17425247.2018.1429401] [PMID: 29338427]
[13]
Bahadur, S.; Pardhi, D.M.; Rautio, J.; Rosenholm, J.M.; Pathak, K. Intranasal nanoemulsions for direct nose-to-brain delivery of actives for cns disorders. Pharmaceutics, 2020, 12(12), 1230.
[http://dx.doi.org/10.3390/pharmaceutics12121230] [PMID: 33352959]
[14]
Bourganis, V.; Kammona, O.; Alexopoulos, A.; Kiparissides, C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur. J. Pharm. Biopharm., 2018, 128, 337-362.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.009] [PMID: 29733950]
[15]
Costa, C.P.; Moreira, J.N.; Sousa, Lobo J.M.; Silva, A.C. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta Pharm. Sin. B, 2021, 11(4), 925-940.
[http://dx.doi.org/10.1016/j.apsb.2021.02.012] [PMID: 33996407]
[16]
Pires, P.C.; Santos, A.O. Nanosystems in nose-to-brain drug delivery: A review of non-clinical brain targeting studies. J. Control. Release, 2018, 270, 89-100.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.047] [PMID: 29199063]
[17]
Vyas, T.; Shahiwala, A.; Marathe, S.; Misra, A. Intranasal drug delivery for brain targeting. Curr. Drug Deliv., 2005, 2(2), 165-175.
[http://dx.doi.org/10.2174/1567201053586047] [PMID: 16305417]
[18]
Vitorino, C.; Silva, S.; Bicker, J.; Falcão, A.; Fortuna, A. Antidepressants and nose-to-brain delivery: Drivers, restraints, opportunities and challenges. Drug Discov. Today, 2019, 24(9), 1911-1923.
[http://dx.doi.org/10.1016/j.drudis.2019.06.001] [PMID: 31181188]
[19]
Djupesland, P.G.; Messina, J.C.; Mahmoud, R.A. The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview. Ther. Deliv., 2014, 5(6), 709-733.
[http://dx.doi.org/10.4155/tde.14.41] [PMID: 25090283]
[20]
Kushwaha, S.K.S.; Kushwaha, N.; Fatma, B.; Pandey, P. Nanostructured Lipid Carriers (NLC): A Targeting Approach to the Brain via Intranasal Administration. Int. J. Pharm. Investig., 2020, 10(3), 253-256.
[http://dx.doi.org/10.5530/ijpi.2020.3.46]
[21]
Chatterjee, B.; Gorain, B.; Mohananaidu, K.; Sengupta, P.; Mandal, U.K.; Choudhury, H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int. J. Pharm., 2019, 565, 258-268.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.032] [PMID: 31095983]
[22]
Teleanu, D.; Chircov, C.; Grumezescu, A.; Volceanov, A.; Teleanu, R. Blood-brain delivery methods using nanotechnology. Pharmaceutics, 2018, 10(4), 269.
[http://dx.doi.org/10.3390/pharmaceutics10040269] [PMID: 30544966]
[23]
Zhang, Y.; Dong, L.; Liu, L.; Wu, Z.; Pan, D.; Liu, L. Recent advances of stimuli-responsive polysaccharide hydrogels in delivery systems: A review. J. Agric. Food Chem., 2022, 70(21), 6300-6316.
[http://dx.doi.org/10.1021/acs.jafc.2c01080] [PMID: 35578738]
[24]
Paul, M.; Lau, R. Potentials and challenges of Levodopa particle formulation for treatment of Parkinson’s disease through intranasal and pulmonary delivery. Adv. Powder Technol., 2020, 31(6), 2357-2365.
[http://dx.doi.org/10.1016/j.apt.2020.03.028]
[25]
Erdő F.; Bors, L.A.; Farkas, D.; Bajza, Á.; Gizurarson, S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull., 2018, 143, 155-170.
[http://dx.doi.org/10.1016/j.brainresbull.2018.10.009] [PMID: 30449731]
[26]
Khanbabaie, R.; Jahanshahi, M. Revolutionary impact of nanodrug delivery on neuroscience. Curr. Neuropharmacol., 2012, 10(4), 370-392.
[http://dx.doi.org/10.2174/157015912804499456] [PMID: 23730260]
[27]
Boyuklieva, R.; Pilicheva, B. Micro-and nanosized carriers for nose-to-brain drug delivery in neurodegenerative disorders. Biomedicines, 2022, 10(7), 1706.
[http://dx.doi.org/10.3390/biomedicines10071706] [PMID: 35885011]
[28]
Agrawal, M.; Saraf, S.; Saraf, S.; Dubey, S.K.; Puri, A.; Patel, R.J. Ajazuddin; Ravichandiran, V.; Murty, U.S.; Alexander, A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J. Control. Release, 2020, 321, 372-415.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.020] [PMID: 32061621]
[29]
Formica, M.L.; Real, D.A.; Picchio, M.L.; Catlin, E.; Donnelly, R.F.; Paredes, A.J. On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles. Appl. Mater. Today, 2022, 29, 101631.
[http://dx.doi.org/10.1016/j.apmt.2022.101631]
[30]
Md, S.; Bhattmisra, S.K.; Zeeshan, F.; Shahzad, N.; Mujtaba, M.A.; Srikanth Meka, V.; Radhakrishnan, A.; Kesharwani, P.; Baboota, S.; Ali, J. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J. Drug Deliv. Sci. Technol., 2018, 43, 295-310.
[http://dx.doi.org/10.1016/j.jddst.2017.09.022]
[31]
Sonvico, F.; Clementino, A.; Buttini, F.; Colombo, G.; Pescina, S.; Stanisçuaski Guterres, S.; Raffin Pohlmann, A.; Nicoli, S. Surface-modified nanocarriers for nose-to-brain delivery: From bioadhesion to targeting. Pharmaceutics, 2018, 10(1), 34.
[http://dx.doi.org/10.3390/pharmaceutics10010034] [PMID: 29543755]
[32]
Brunton, L.; Parker, K.; Blumenthal, D.; Buxton, I. Goodman and Gilman’s Manual of Pharmacology and Therapeutics, 11th ed; Mc-Graw-Hill: New York, 2005.
[33]
Kreuter, J.; Shamenkov, D.; Petrov, V.; Ramge, P.; Cychutek, K.; Koch-Brandt, C.; Alyautdin, R. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J. Drug Target., 2002, 10(4), 317-325.
[http://dx.doi.org/10.1080/10611860290031877] [PMID: 12164380]
[34]
Modi, G.; Pillay, V.; Choonara, Y.E.; Ndesendo, V.M.K.; du Toit, L.C.; Naidoo, D. Nanotechnological applications for the treatment of neurodegenerative disorders. Prog. Neurobiol., 2009, 88(4), 272-285.
[http://dx.doi.org/10.1016/j.pneurobio.2009.05.002] [PMID: 19486920]
[35]
Kanwar, J.R.; Sun, X.; Punj, V.; Sriramoju, B.; Mohan, R.R.; Zhou, S.F.; Chauhan, A.; Kanwar, R.K. Nanoparticles in the treatment and diagnosis of neurological disorders: Untamed dragon with fire power to heal. Nanomedicine, 2012, 8(4), 399-414.
[http://dx.doi.org/10.1016/j.nano.2011.08.006] [PMID: 21889479]
[36]
Talegaonkar, S.; Mishra, P.R. Intranasal delivery: An approach to bypass the blood brain barrier. Indian J. Pharmacol., 2004, 36(3), 140.
[37]
Harkema, J.R.; Carey, S.A.; Wagner, J.G. The nose revisited: A brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol. Pathol., 2006, 34(3), 252-269.
[http://dx.doi.org/10.1080/01926230600713475] [PMID: 16698724]
[38]
Illum, L. Transport of drugs from the nasal cavity to the central nervous system. Eur. J. Pharm. Sci., 2000, 11(1), 1-18.
[http://dx.doi.org/10.1016/S0928-0987(00)00087-7] [PMID: 10913748]
[39]
Illum, L. Is nose-to-brain transport of drugs in man a reality? J. Pharm. Pharmacol., 2010, 56(1), 3-17.
[http://dx.doi.org/10.1211/0022357022539] [PMID: 14979996]
[40]
Appasaheb, P.S.; Manohar, S.D.; Bhanudas, S.R.; Anjaneri, N. A review on intranasal drug delivery system. J. Adv. Pharm. Educ. Res., 2013, 3(4), 333-346.
[41]
Ahmad, N.; Ahmad, R.; Naqvi, A.A.; Alam, M.A.; Ashafaq, M.; Abdur Rub, R.; Ahmad, F.J. RETRACTED ARTICLE: Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 717-729.
[http://dx.doi.org/10.1080/21691401.2017.1337024] [PMID: 28604104]
[42]
Mistry, A.; Stolnik, S.; Illum, L. Nose-to-brain delivery: Investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium. Mol. Pharm., 2015, 12(8), 2755-2766.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00088] [PMID: 25997083]
[43]
Nguyen, T.T.L.; Maeng, H.J. Pharmacokinetics and pharmacodynamics of intranasal solid lipid nanoparticles and nanostructured lipid carriers for nose-to-brain delivery. Pharmaceutics, 2022, 14(3), 572.
[http://dx.doi.org/10.3390/pharmaceutics14030572] [PMID: 35335948]
[44]
Li, Y.; Peng, Y.; Shen, Y.; Zhang, Y.; Liu, L.; Yang, X. Dietary polyphenols: Regulate the advanced glycation end products-RAGE axis and the microbiota-gut-brain axis to prevent neurodegenerative diseases. Crit. Rev. Food Sci. Nutr., 2022, May 19 1-27.
[http://dx.doi.org/10.1080/10408398.2022.2076064] [PMID: 35587161]
[45]
Pardeshi, C.V.; Belgamwar, V.S. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: an excellent platform for brain targeting. Expert Opin. Drug Deliv., 2013, 10(7), 957-972.
[http://dx.doi.org/10.1517/17425247.2013.790887] [PMID: 23586809]
[46]
Casettari, L.; Illum, L. Chitosan in nasal delivery systems for therapeutic drugs. J. Control. Release, 2014, 190, 189-200.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.003] [PMID: 24818769]
[47]
Liu, L.; Jin, R.; Hao, J.; Zeng, J.; Yin, D.; Yi, Y.; Zhu, M.; Mandal, A.; Hua, Y.; Ng, C.K.; Egilmez, N.K.; Sauter, E.R.; Li, B. Consumption of the Fish Oil High-Fat Diet Uncouples Obesity and Mammary Tumor Growth through Induction of Reactive Oxygen Species in Protumor Macrophages. Cancer Res., 2020, 80(12), 2564-2574.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3184] [PMID: 32213543]
[48]
Hanson, L.R.; Frey, W.H., II Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci., 2008, 9(Suppl. 3), S5.
[http://dx.doi.org/10.1186/1471-2202-9-S3-S5] [PMID: 19091002]
[49]
Ruigrok, M.J.R.; de Lange, E.C.M. Emerging insights for translational pharmacokinetic and pharmacokinetic-pharmacodynamic studies: towards prediction of nose-to-brain transport in humans. AAPS J., 2015, 17(3), 493-505.
[http://dx.doi.org/10.1208/s12248-015-9724-x] [PMID: 25693488]
[50]
Crowe, T.P.; Greenlee, M.H.W.; Kanthasamy, A.G.; Hsu, W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci., 2018, 195, 44-52.
[http://dx.doi.org/10.1016/j.lfs.2017.12.025] [PMID: 29277310]
[51]
Dhuria, S.V.; Hanson, L.R.; Frey, W.H., II Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J. Pharm. Sci., 2010, 99(4), 1654-1673.
[http://dx.doi.org/10.1002/jps.21924] [PMID: 19877171]
[52]
Johnson, N.J.; Hanson, L.R.; Frey, W.H., II Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol. Pharm., 2010, 7(3), 884-893.
[http://dx.doi.org/10.1021/mp100029t] [PMID: 20420446]
[53]
Aderibigbe, B.; Naki, T. Design and efficacy of nanogels formulations for intranasal administration. Molecules, 2018, 23(6), 1241.
[http://dx.doi.org/10.3390/molecules23061241] [PMID: 29789506]
[54]
de Lau, L.M.L.; Breteler, M.M.B. Epidemiology of Parkinson’s disease. Lancet Neurol., 2006, 5(6), 525-535.
[http://dx.doi.org/10.1016/S1474-4422(06)70471-9] [PMID: 16713924]
[55]
Dong, J.; Cui, Y.; Li, S.; Le, W. Current pharmaceutical treatments and alternative therapies of Parkinson’s disease. Curr. Neuropharmacol., 2016, 14(4), 339-355.
[http://dx.doi.org/10.2174/1570159X14666151120123025] [PMID: 26585523]
[56]
Katzung, B.G.; Vanderah, T.W. Basic and Clinical Pharmacology, 15th ed; Mc Graw Hill: New York, 2021.
[57]
Bonnet, A.M.; Houeto, J.L. Pathophysiology of Parkinson’s disease. Biomed. Pharmacother., 1999, 53(3), 117-121.
[http://dx.doi.org/10.1016/S0753-3322(99)80076-6] [PMID: 10349507]
[58]
Choudhury, H.; Zakaria, N.F.B.; Tilang, P.A.B.; Tzeyung, A.S.; Pandey, M.; Chatterjee, B.; Alhakamy, N.A.; Bhattamishra, S.K.; Kesharwani, P.; Gorain, B.; Md, S. Formulation development and evaluation of rotigotine mucoadhesive nanoemulsion for intranasal delivery. J. Drug Deliv. Sci. Technol., 2019, 54, 101301.
[http://dx.doi.org/10.1016/j.jddst.2019.101301]
[59]
Emad, N.A.; Ahmed, B.; Alhalmi, A.; Alzobaidi, N.; Al-Kubati, S.S. Recent progress in nanocarriers for direct nose to brain drug delivery. J. Drug Deliv. Sci. Technol., 2021, 64, 102642.
[http://dx.doi.org/10.1016/j.jddst.2021.102642]
[60]
Choudhury, H.; Gorain, B.; Chatterjee, B.; Mandal, U.K.; Sengupta, P.; Tekade, R.K. Pharmacokinetic and pharmacodynamic features of nanoemulsion following oral, intravenous, topical and nasal route. Curr. Pharm. Des., 2017, 23(17), 2504-2531.
[http://dx.doi.org/10.2174/1381612822666161201143600] [PMID: 27908273]
[61]
Natesan, S.; Sugumaran, A.; Ponnusamy, C.; Thiagarajan, V.; Palanichamy, R.; Kandasamy, R. Chitosan stabilized camptothecin nanoemulsions: Development, evaluation and biodistribution in preclinical breast cancer animal mode. Int. J. Biol. Macromol., 2017, 104(Pt B), 1846-1852.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.127] [PMID: 28545970]
[62]
Rodrigues, R.F.; Costa, I.C.; Almeida, F.B.; Cruz, R.A.S.; Ferreira, A.M.; Vilhena, J.C.E.; Florentino, A.C.; Carvalho, J.C.T.; Fernandes, C.P. Development and characterization of evening primrose (Oenothera biennis) oil nanoemulsions. Rev. Bras. Farmacogn., 2015, 25(4), 422-425.
[http://dx.doi.org/10.1016/j.bjp.2015.07.014]
[63]
Mustafa, G.; Baboota, S.; Ahuja, A.; Ali, J. Formulation development of chitosan coated intra nasal ropinirole nanoemulsion for better management option of Parkinson: An in vitro ex vivo evaluation. Curr. Nanosci., 2012, 8(3), 348-360.
[http://dx.doi.org/10.2174/157341312800620331]
[64]
Mandal, S.; Das Mandal, S.; Chuttani, K.; Sawant, K.K.; Subudhi, B.B. Neuroprotective effect of ibuprofen by intranasal application of mucoadhesive nanoemulsion in MPTP induced Parkinson model. J. Pharm. Investig., 2016, 46(1), 41-53.
[http://dx.doi.org/10.1007/s40005-015-0212-1]
[65]
Kumar, S.; Dang, S.; Nigam, K.; Ali, J.; Baboota, S. Selegiline nanoformulation in attenuation of oxidative stress and upregulation of dopamine in the brain for the treatment of Parkinson’s disease. Rejuvenation Res., 2018, 21(5), 464-476.
[http://dx.doi.org/10.1089/rej.2017.2035] [PMID: 29717617]
[66]
Pardeshi, C.; Rajput, P.; Belgamwar, V.; Tekade, A.; Patil, G.; Chaudhary, K.; Sonje, A. Solid lipid based nanocarriers: An overview/Nanonosači na bazi čvrstih lipida: Pregled. Acta Pharm., 2012, 62(4), 433-472.
[http://dx.doi.org/10.2478/v10007-012-0040-z] [PMID: 23333884]
[67]
Prajapati, J.B.; Patel, G.C. Nose to brain delivery of Rotigotine loaded solid lipid nanoparticles: Quality by design based optimization and characterization. J. Drug Deliv. Sci. Technol., 2021, 63, 102377.
[http://dx.doi.org/10.1016/j.jddst.2021.102377]
[68]
Kiran, P.; Debnath, S.K.; Neekhra, S.; Pawar, V.; Khan, A.; Dias, F.; Pallod, S.; Srivastava, R. Designing nanoformulation for the nose-to-brain delivery in Parkinson’s disease: Advancements and barrier. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(1), e1768.
[http://dx.doi.org/10.1002/wnan.1768] [PMID: 34825510]
[69]
Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[70]
Chawla, S.; Kalyane, D.; Tambe, V.; Deb, P.K.; Kalia, K.; Tekade, R.K. Evolving nanoformulation strategies for diagnosis and clinical interventions for Parkinson’s disease. Drug Discov. Today, 2020, 25(2), 392-405.
[http://dx.doi.org/10.1016/j.drudis.2019.12.005] [PMID: 31877354]
[71]
Dudhipala, N. A comprehensive review on solid lipid nanoparticles as delivery vehicle for enhanced pharmacokinetic and pharmacodynamic activity of poorly soluble drugs. Int. J. Pharmaceut. Sci. Nanotechnol., 2019, 12(2), 4421-4440.
[http://dx.doi.org/10.37285/ijpsn.2019.12.2.1]
[72]
Satapathy, M.K.; Yen, T.L.; Jan, J.S.; Tang, R.D.; Wang, J.Y.; Taliyan, R.; Yang, C.H. Solid Lipid Nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB. Pharmaceutics, 2021, 13(8), 1183.
[http://dx.doi.org/10.3390/pharmaceutics13081183] [PMID: 34452143]
[73]
Jaiswal, P.; Gidwani, B.; Vyas, A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 27-40.
[http://dx.doi.org/10.3109/21691401.2014.909822] [PMID: 24813223]
[74]
Pardeshi, C.V.; Rajput, P.V.; Belgamwar, V.S.; Tekade, A.R.; Surana, S.J. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug Deliv., 2013, 20(1), 47-56.
[http://dx.doi.org/10.3109/10717544.2012.752421] [PMID: 23311653]
[75]
Nobari Azar, F.A.; Pezeshki, A.; Ghanbarzadeh, B.; Hamishehkar, H.; Mohammadi, M. Nanostructured lipid carriers: Promising delivery systems for encapsulation of food ingredients. J. Agricul. Food Res., 2020, 2, 100084.
[http://dx.doi.org/10.1016/j.jafr.2020.100084]
[76]
Patil, D.; Pattewar, S.; Palival, S.; Patil, G.; Sharma, S. Nanostructured lipid carriers: A platform to lipophilic drug for oral bioavailability enhancement. J. Drug Deliv. Ther., 2019, 9(3-s), 758-764.
[http://dx.doi.org/10.22270/jddt.v9i3-s.2750]
[77]
Salvi, V.R.; Pawar, P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol., 2019, 51, 255-267.
[http://dx.doi.org/10.1016/j.jddst.2019.02.017]
[78]
Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-128.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[79]
Pingale, A.; Gondkar, S.; Saudagar, R. Nanostructured lipid carrier (NLC): A modern approach for intranasal drug delivery. World J. Pharm. Res., 2018, 7(9), 1574-1588.
[http://dx.doi.org/10.20959/wjpr20189-12173]
[80]
Khosa, A.; Reddi, S.; Saha, R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 2018, 103, 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[81]
Weber, S.; Zimmer, A.; Pardeike, J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur. J. Pharm. Biopharm., 2014, 86(1), 7-22.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.013] [PMID: 24007657]
[82]
Iqbal, M.A.; Md, S.; Sahni, J.K.; Baboota, S.; Dang, S.; Ali, J. Nanostructured lipid carriers system: Recent advances in drug delivery. J. Drug Target., 2012, 20(10), 813-830.
[http://dx.doi.org/10.3109/1061186X.2012.716845] [PMID: 22931500]
[83]
Narang, J.K.; Khan, S.; Baboota, S.; Ali, J.; Khan, S.; Narang, R. Nanostructured lipid carriers: An emerging platform for improving oral bioavailability of lipophilic drugs. Int. J. Pharm. Investig., 2015, 5(4), 182-191.
[http://dx.doi.org/10.4103/2230-973X.167661] [PMID: 26682188]
[84]
Pardeshi, C.V.; Belgamwar, V.S. Improved brain pharmacokinetics following intranasal administration of N,N,N -trimethyl chitosan tailored mucoadhesive NLCs. Mater. Technol., 2020, 35(5), 249-266.
[http://dx.doi.org/10.1080/10667857.2019.1674522]
[85]
Gartziandia, O.; Herrán, E.; Ruiz-Ortega, J.A.; Miguelez, C.; Igartua, M.; Lafuente, J.V.; Pedraz, J.L.; Ugedo, L.; Hernández, R.M. Intranasal administration of chitosan-coated nanostructured lipid carriers loaded with GDNF improves behavioral and histological recovery in a partial lesion model of Parkinson’s disease. J. Biomed. Nanotechnol., 2016, 12(12), 2220-2280.
[http://dx.doi.org/10.1166/jbn.2016.2313] [PMID: 29372975]
[86]
Mishra, N.; Sharma, S.; Deshmukh, R.; Kumar, A.; Sharma, R. Development and characterization of nasal delivery of selegiline hydrochloride loaded nanolipid carriers for the management of Parkinson’s disease. Cent. Nerv. Syst. Agents Med. Chem., 2019, 19(1), 46-56.
[http://dx.doi.org/10.2174/1871524919666181126124846] [PMID: 30474538]
[87]
Arya, M.A.; Manoj Kumar, M.K.; Sabitha, M.; Menon, K.N.; Nair, S.C. Nanotechnology approaches for enhanced CNS delivery in treating Alzheimer’s disease. J. Drug Deliv. Sci. Technol., 2019, 51, 297-309.
[http://dx.doi.org/10.1016/j.jddst.2019.03.022]
[88]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[89]
Berg, L.; Miller, J.P.; Baty, J.; Rubin, E.H.; Morris, J.C.; Figiel, G. Mild senile dementia of the Alzheimer type. 4. Evaluation of intervention. Ann. Neurol., 1992, 31(3), 242-249.
[http://dx.doi.org/10.1002/ana.410310303] [PMID: 1637132]
[90]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[91]
Seo, M.W.; Park, T.E. Recent advances with liposomes as drug carriers for treatment of neurodegenerative diseases. Biomed. Eng. Lett., 2021, 11(3), 211-216.
[http://dx.doi.org/10.1007/s13534-021-00198-5] [PMID: 34350048]
[92]
García Esteban, E.; Cózar-Bernal, M.J.; Rabasco Álvarez, A.M.; González-Rodríguez, M.L. A comparative study of stabilising effect and antioxidant activity of different antioxidants on levodopa-loaded liposomes. J. Microencapsul., 2018, 35(4), 357-371.
[http://dx.doi.org/10.1080/02652048.2018.1487473] [PMID: 29889613]
[93]
Fan, Y.; Chen, M.; Zhang, J.; Maincent, P.; Xia, X.; Wu, W. Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases. Crit. Rev. Ther. Drug Carrier Syst., 2018, 35(5), 433-467.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018024697] [PMID: 30317945]
[94]
Kumari, B. A review on nanoparticles: Their preparation method and applications. Indian Res. J. Pharm. Sci., 2018, 5(2), 1420-1426.
[http://dx.doi.org/10.21276/irjps.2018.5.2.3]
[95]
Ghazy, E.; Rahdar, A.; Barani, M.; Kyzas, G.Z. Nanomaterials for Parkinson disease: Recent progress. J. Mol. Struct., 2021, 1231, 129698.
[http://dx.doi.org/10.1016/j.molstruc.2020.129698]
[96]
Li, Y.; Dong, L.; Mu, Z.; Liu, L.; Yang, J.; Wu, Z.; Pan, D.; Liu, L. Research advances of lactoferrin in electrostatic spinning, nano self-assembly, and immune and gut microbiota regulation. J. Agric. Food Chem., 2022, 70(33), 10075-10089.
[http://dx.doi.org/10.1021/acs.jafc.2c04241] [PMID: 35968926]
[97]
Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.; George-Hyslop, P.H.; Pericak-Vance, M.A.; Joo, S.H.; Rosi, B.L.; Gusella, J.F.; Crapper-MacLachlan, D.R.; Alberts, M.J.; Hulette, C. Association of apolipoprotein E allele ϵ 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 1993, 43(8), 1467-1472.
[http://dx.doi.org/10.1212/WNL.43.8.1467] [PMID: 8350998]
[98]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[99]
Tzeyung, A.; Md, S.; Bhattamisra, S.; Madheswaran, T.; Alhakamy, N.; Aldawsari, H.; Radhakrishnan, A. Fabrication, optimization, and evaluation of rotigotine-loaded chitosan nanoparticles for nose-to-brain delivery. Pharmaceutics, 2019, 11(1), 26.
[http://dx.doi.org/10.3390/pharmaceutics11010026] [PMID: 30634665]
[100]
Zhao, Z.; Lou, S.; Hu, Y.; Zhu, J.; Zhang, C. A nano-in-nano polymer–dendrimer nanoparticle-based nanosystem for controlled multidrug delivery. Mol. Pharm., 2017, 14(8), 2697-2710.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00219] [PMID: 28704056]
[101]
Md, S.; Khan, R.A.; Mustafa, G.; Chuttani, K.; Baboota, S.; Sahni, J.K.; Ali, J. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, Pharmacokinetic and Scintigraphy study in mice model. Eur. J. Pharm. Sci., 2013, 48(3), 393-405.
[http://dx.doi.org/10.1016/j.ejps.2012.12.007] [PMID: 23266466]
[102]
Silva, S.; Almeida, A.J.; Vale, N. Importance of nanoparticles for the delivery of antiparkinsonian drugs. Pharmaceutics, 2021, 13(4), 508.
[http://dx.doi.org/10.3390/pharmaceutics13040508] [PMID: 33917696]
[103]
Sharma, S.; Lohan, S.; Murthy, R.S.R. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev. Ind. Pharm., 2014, 40(7), 869-878.
[http://dx.doi.org/10.3109/03639045.2013.789051] [PMID: 23600649]
[104]
Jafarieh, O.; Md, S.; Ali, M.; Baboota, S.; Sahni, J.K.; Kumari, B.; Bhatnagar, A.; Ali, J. Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev. Ind. Pharm., 2015, 41(10), 1674-1681.
[http://dx.doi.org/10.3109/03639045.2014.991400] [PMID: 25496439]
[105]
Mittal, D.; Md, S.; Hasan, Q.; Fazil, M.; Ali, A.; Baboota, S.; Ali, J. Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route. Drug Deliv., 2016, 23(1), 130-139.
[http://dx.doi.org/10.3109/10717544.2014.907372] [PMID: 24786489]
[106]
Ahmad, N. Rasagiline-encapsulated chitosan-coated PLGA nanoparticles targeted to the brain in the treatment of parkinson’s disease. J. Liq. Chromatogr. Relat. Technol., 2017, 40(13), 677-690.
[http://dx.doi.org/10.1080/10826076.2017.1343735]
[107]
Arisoy, S.; Sayiner, O.; Comoglu, T.; Onal, D.; Atalay, O.; Pehlivanoglu, B. In vitro and in vivo evaluation of levodopa-loaded nanoparticles for nose to brain delivery. Pharm. Dev. Technol., 2020, 25(6), 735-747.
[http://dx.doi.org/10.1080/10837450.2020.1740257] [PMID: 32141798]
[108]
Tengse, K.A.; Avari, J.G.; Dhapke, P. Formulation and evaluation of chitosan nanoparticle based in-situ nasal gel for Parkinson’s disease. World J. Pharm. Res., 2020, 15(9), 859-880.
[http://dx.doi.org/10.20959/wjpr202015-19194]
[109]
Chatzitaki, A.T.; Jesus, S.; Karavasili, C.; Andreadis, D.; Fatouros, D.G.; Borges, O. Chitosan-coated PLGA nanoparticles for the nasal delivery of ropinirole hydrochloride: In vitro and ex vivo evaluation of efficacy and safety. Int. J. Pharm., 2020, 589, 119776.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119776] [PMID: 32818538]
[110]
Bi, C.; Wang, A.; Chu, Y.; Liu, S.; Mu, H.; Liu, W.; Wu, Z.; Sun, K.; Li, Y. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int. J. Nanomedicine, 2016, 11, 6547-6559.
[http://dx.doi.org/10.2147/IJN.S120939] [PMID: 27994458]
[111]
Yan, X.; Xu, L.; Bi, C.; Duan, D.; Chu, L.; Yu, X.; Wu, Z.; Wang, A.; Sun, K. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects. Int. J. Nanomedicine, 2018, 13, 273-281.
[http://dx.doi.org/10.2147/IJN.S151475] [PMID: 29391788]
[112]
Raj, R.; Wairkar, S.; Sridhar, V.; Gaud, R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int. J. Biol. Macromol., 2018, 109, 27-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.056] [PMID: 29247729]
[113]
Bhattamisra, S.K.; Shak, A.T.; Xi, L.W.; Safian, N.H.; Choudhury, H.; Lim, W.M.; Shahzad, N.; Alhakamy, N.A.; Anwer, M.K.; Radhakrishnan, A.K.; Md, S. Nose to brain delivery of rotigotine loaded chitosan nanoparticles in human SH-SY5Y neuroblastoma cells and animal model of Parkinson’s disease. Int. J. Pharm., 2020, 579, 119148.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119148] [PMID: 32084576]
[114]
Sridhar, V.; Gaud, R.; Bajaj, A.; Wairkar, S. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease. Nanomedicine, 2018, 14(8), 2609-2618.
[http://dx.doi.org/10.1016/j.nano.2018.08.004] [PMID: 30171904]
[115]
Ahmad, M.Z.; Sabri, A.H.B.; Anjani, Q.K.; Domínguez-Robles, J.; Abdul Latip, N.; Hamid, K.A. Design and development of levodopa loaded polymeric nanoparticles for intranasal delivery. Pharmaceuticals, 2022, 15(3), 370.
[http://dx.doi.org/10.3390/ph15030370] [PMID: 35337167]
[116]
Croy, S.; Kwon, G. Polymeric micelles for drug delivery. Curr. Pharm. Des., 2006, 12(36), 4669-4684.
[http://dx.doi.org/10.2174/138161206779026245] [PMID: 17168771]
[117]
Xu, W.; Ling, P.; Zhang, T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv., 2013, 2013, 340315.
[http://dx.doi.org/10.1155/2013/340315] [PMID: 23936656]
[118]
Kulthe, S.S.; Choudhari, Y.M.; Inamdar, N.N.; Mourya, V. Polymeric micelles: Authoritative aspects for drug delivery. Des. Monomers Polym., 2012, 15(5), 465-521.
[http://dx.doi.org/10.1080/1385772X.2012.688328]
[119]
Kumar, A.; Tiwari, S.; Singh, M.P.; Singh, S.; Singh, M.K.; Kumar, A. A comprehensive review on polymeric micelles: A promising drug delivery carrier. J. Anal. Pharm. Res., 2021, 10(3), 102-107.
[http://dx.doi.org/10.15406/japlr.2021.10.00372]
[120]
Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H.B. Polymeric micelles as drug delivery vehicles. RSC Advances, 2014, 4(33), 17028-17038.
[http://dx.doi.org/10.1039/C3RA47370H]
[121]
Kapare, H.S.; Metkar, S.R. Micellar drug delivery system: A review. Pharm. Res., 2020, 2(2), 21-26.
[PMID: 31897616]
[122]
Wang, F.; Yang, Z.; Liu, M.; Tao, Y.; Li, Z.; Wu, Z.; Gui, S. Facile nose-to-brain delivery of rotigotine-loaded polymer micelles thermosensitive hydrogels: In vitro characterization and in vivo behavior study. Int. J. Pharm., 2020, 577, 119046.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119046] [PMID: 31982559]
[123]
Fang, C.; Yixin, D.; Bing, W.; Dexiang, L.; Liuliu, Y.; Linyong, F.; Min, Z.; Yunhui, D. Sublingual film dosage of rasagiline or pharmaceutically acceptable salt thereof, and preparation method thereof and use thereof. WO Patent 2,022,083,063, 2022.
[124]
Naoyuki, U.; Satoshi, A. Ropinirole containing patch and method for improving skin permeability of ropinirole. WO Patent 2,021,054,257, 2021.
[125]
Jinhua, L.; Changpeng, Z.; Chengwu, Z. Preparation method of levodopa nanoparticles and biosensing application of levodopa nanoparticles. CN Patent 112,179,879, 2021.
[126]
Likang, W.; Huangqiang, L.; Chuanyue, W. Carbidopa-levodopa sustained release tablet and preparation method thereof. CN Patent 112,773,781, 2021.
[127]
Liang, F.; Chao, L.; Peng, Q.; Xin, Q. Rotigotine percutaneous absorption patch, and preparation and application thereof. CN Patent 110,638,792, 2020.
[128]
Shuangying, G.; Zhuanzhuan, Y.; Fangyuan, W.; Zixuan, S.; Mengli, L. Method for preparing rotigotine nose micelle temperature- sensitive gel. CN Patent 110,917,125, 2020.
[129]
Anna, N.R.; Maria, S.N.J.; Nuria, R.B.; Raul, I.B.; Oscar, H.G.; Santiago, E.G.; La, P.M.G. Sustained release composition comprising micronized tolcapone. EP Patent 3,490,535, 2019.
[130]
Yan, C.; Yong, Y. Pramipexole dihydrochloride sustained-release preparation and preparing method thereof. CN Patent 108,159,007, 2018.
[131]
Xiaolei, P.; Di, L.; Yun, Z.; Yang, Y.; Lili, T. Transdermal patch containing rotigotine and preparation method thereof. CN Patent 108,451,934, 2018.
[132]
Zengqiang, W. Composition preparation containing levodopa. CN Patent 107,951,875, 2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy