Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Oral Insulin Delivery: A Review on Recent Advancements and Novel Strategies

Author(s): Ashkan Barfar, Helia Alizadeh, Salar Masoomzadeh and Yousef Javadzadeh*

Volume 21, Issue 6, 2024

Published on: 21 June, 2023

Page: [887 - 900] Pages: 14

DOI: 10.2174/1567201820666230518161330

Price: $65

conference banner
Abstract

Background: Due to the lifestyle of people in the community in recent years, the prevalence of diabetes mellitus has increased, so New drugs and related treatments are also being developed.

Introduction: One of the essential treatments for diabetes today is injectable insulin forms, which have their problems and limitations, such as invasive and less admission of patients and high cost of production. According to the mentioned issues, Theoretically, Oral insulin forms can solve many problems of injectable forms.

Methods: Many efforts have been made to design and introduce Oral delivery systems of insulin, such as lipid-based, synthetic polymer-based, and polysaccharide-based nano/microparticle formulations. The present study reviewed these novel formulations and strategies in the past five years and checked their properties and results.

Results: According to peer-reviewed research, insulin-transporting particles may preserve insulin in the acidic and enzymatic medium and decrease peptide degradation; in fact, they could deliver appropriate insulin levels to the intestinal environment and then to blood. Some of the studied systems increase the permeability of insulin to the absorption membrane in cellular models. In most investigations, in vivo results revealed a lower ability of formulations to reduce BGL than subcutaneous form, despite promising results in in vitro and stability testing.

Conclusion: Although taking insulin orally currently seems unfeasible, future systems may be able to overcome mentioned obstacles, making oral insulin delivery feasible and producing acceptable bioavailability and treatment effects in comparison to injection forms.

Keywords: Oral administration, drug delivery, bioavailability, nanoparticles, diabetes, insulin.

Graphical Abstract
[1]
Patel, D.K.; Kumar, R.; Laloo, D.; Hemalatha, S. Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac. J. Trop. Biomed., 2012, 2(5), 411-420.
[http://dx.doi.org/10.1016/S2221-1691(12)60067-7] [PMID: 23569941]
[2]
Meenakshi, P.; Bhuvaneshwari, R.; Rathi, M.A.; Thirumoorthi, L.; Guravaiah, D.C.; Jiji, M.J.; Gopalakrishnan, V.K. Antidiabetic activity of ethanolic extract of Zaleya decandra in alloxan-induced diabetic rats. Appl. Biochem. Biotechnol., 2010, 162(4), 1153-1159.
[http://dx.doi.org/10.1007/s12010-009-8871-x] [PMID: 19957208]
[3]
Nelson, D.L.; Lehninger, A.L.; Cox, M.M. Lehninger principles of biochemistry; Macmillan, 2008.
[4]
Janež, A.; Guja, C.; Mitrakou, A.; Lalic, N.; Tankova, T.; Czupryniak, L.; Tabák, A.G.; Prazny, M.; Martinka, E.; Smircic-Duvnjak, L. Insulin therapy in adults with type 1 diabetes mellitus: A narrative review. Diabetes Ther., 2020, 11(2), 387-409.
[http://dx.doi.org/10.1007/s13300-019-00743-7] [PMID: 31902063]
[5]
Sneha, T.; Mahendran, S.; Selvakumar, R. Formulation and evaluation of an injectable solution as a dosage form. J. drug deliv. ther., 8(5), 81-87.
[6]
Hu, Q.; Luo, Y. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int. J. Biol. Macromol., 2018, 120(Pt A), 775-782.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.152] [PMID: 30170057]
[7]
Ensign, L.M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev., 2012, 64(6), 557-570.
[http://dx.doi.org/10.1016/j.addr.2011.12.009] [PMID: 22212900]
[8]
Zhu, Q.; Chen, Z.; Paul, P.K.; Lu, Y.; Wu, W.; Qi, J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm. Sin. B, 2021, 11(8), 2416-2448.
[http://dx.doi.org/10.1016/j.apsb.2021.04.001] [PMID: 34522593]
[9]
Verma, S.; Goand, U.K.; Husain, A.; Katekar, R.A.; Garg, R.; Gayen, J.R. Challenges of peptide and protein drug delivery by oral route: Current strategies to improve the bioavailability. Drug Dev. Res., 2021, 82(7), 927-944.
[10]
Shaji, J.; Patole, V. Protein and peptide drug delivery: Oral approaches. Indian J. Pharm. Sci., 2008, 70(3), 269-277.
[http://dx.doi.org/10.4103/0250-474X.42967] [PMID: 20046732]
[11]
Bianchera, A.; Bettini, R. Polysaccharide nanoparticles for oral controlled drug delivery: The role of drug–polymer and interpolymer interactions. Expert Opin. Drug Deliv., 2020, 17(10), 1345-1359.
[http://dx.doi.org/10.1080/17425247.2020.1789585] [PMID: 32602795]
[12]
Uyen, N.T.T.; Hamid, Z.A.A.; Tram, N.X.T.; Ahmad, N. Fabrication of alginate microspheres for drug delivery: A review. Int. J. Biol. Macromol., 2020, 153, 1035-1046.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.233] [PMID: 31794824]
[13]
Van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review. Biomacromolecules, 2011, 12(5), 1387-1408.
[http://dx.doi.org/10.1021/bm200083n] [PMID: 21388145]
[14]
Amani, S.; Mohamadnia, Z.; Ahmadi, E.; Mahdavi, A.; Kermanian, M. Self-assembled polyelectrolyte complex nanoparticles as a potential carrier in protein delivery systems. J. Drug Deliv. Sci. Technol., 2019, 54101250.
[http://dx.doi.org/10.1016/j.jddst.2019.101250]
[15]
Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm., 2002, 28(6), 621-630.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[16]
Lopes, M.; Shrestha, N.; Correia, A.; Shahbazi, M.A.; Sarmento, B.; Hirvonen, J.; Veiga, F.; Seiça, R.; Ribeiro, A.; Santos, H.A. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J. Control. Release, 2016, 232, 29-41.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.012] [PMID: 27074369]
[17]
Lankalapalli, S.; Kolapalli, V.R.M. Polyelectrolyte complexes: A review of their applicability in drug delivery technology. Indian J. Pharm. Sci., 2009, 71(5), 481-487.
[http://dx.doi.org/10.4103/0250-474X.58165] [PMID: 20502564]
[18]
Collado-González, M.; Ferreri, M.C.; Freitas, A.R.; Santos, A.C.; Ferreira, N.R.; Carissimi, G.; Sequeira, J.A.D.; Díaz Baños, F.G.; Villora, G.; Veiga, F.; Ribeiro, A. Complex polysaccharide-based nanocomposites for oral insulin delivery. Mar. Drugs, 2020, 18(1), 55.
[http://dx.doi.org/10.3390/md18010055] [PMID: 31952203]
[19]
Cikrikci, S.; Mert, B.; Oztop, M.H. Development of pH sensitive alginate/gum tragacanth based hydrogels for oral insulin delivery. J. Agric. Food Chem., 2018, 66(44), 11784-11796.
[http://dx.doi.org/10.1021/acs.jafc.8b02525] [PMID: 30346766]
[20]
Tashima, T. Intelligent substance delivery into cells using cell-penetrating peptides. Bioorg. Med. Chem. Lett., 2017, 27(2), 121-130.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.083] [PMID: 27956345]
[21]
Stewart, M.P.; Sharei, A.; Ding, X.; Sahay, G.; Langer, R.; Jensen, K.F. In vitro and ex vivo strategies for intracellular delivery. Nature, 2016, 538(7624), 183-192.
[http://dx.doi.org/10.1038/nature19764] [PMID: 27734871]
[22]
Nakase, I.; Noguchi, K.; Aoki, A.; Takatani-Nakase, T.; Fujii, I.; Futaki, S. Arginine-rich cell-penetrating peptide-modified extracellular vesicles for active macropinocytosis induction and efficient intracellular delivery. Sci. Rep., 2017, 7(1), 1991.
[http://dx.doi.org/10.1038/s41598-017-02014-6] [PMID: 28512335]
[23]
Li, M.; Sun, Y.; Ma, C.; Hua, Y.; Zhang, L.; Shen, J. Design and investigation of penetrating mechanism of octaarginine-modified alginate nanoparticles for improving intestinal insulin delivery. J. Pharm. Sci., 2021, 110(1), 268-279.
[http://dx.doi.org/10.1016/j.xphs.2020.07.004] [PMID: 32663595]
[24]
Layek, B.; Mandal, S. Natural polysaccharides for controlled delivery of oral therapeutics: A recent update. Carbohydr. Polym., 2020, 230, 115617.
[http://dx.doi.org/10.1016/j.carbpol.2019.115617] [PMID: 31887888]
[25]
Adikwu, M.U. Evaluation of snail mucin motifs as rectal absorption enhancer for insulin in non-diabetic rat models. Biol. Pharm. Bull., 2005, 28(9), 1801-1804.
[http://dx.doi.org/10.1248/bpb.28.1801] [PMID: 16141566]
[26]
Mumuni, M.A.; Ernest, O.C.; Ebele, O.; Kenechukwu, F.C.; Salome, C.A.; Chinekwu, N.S.; Aminu, N.; Ben, A. Development and characterization of mucinated chitosan microcomposite for oral insulin delivery. Trop. J. Nat. Prod. Res., 2020, 4, 1000-1006.
[27]
Lin, F.; Jia, H.R.; Wu, F.G. Glycol chitosan: A water-soluble polymer for cell imaging and drug delivery. Molecules, 2019, 24(23), 4371.
[http://dx.doi.org/10.3390/molecules24234371] [PMID: 31795385]
[28]
Sinha, V.R.; Singh, A.; Kumar, R.V.; Singh, S.; Kumria, R.; Bhinge, J.R. Oral colon-specific drug delivery of protein and peptide drugs. Crit. Rev. Ther. Drug Carrier Syst., 2007, 24(1), 63-92.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v24.i1.30] [PMID: 17430100]
[29]
Lee, S.H.; Back, S.Y.; Song, J.G.; Han, H.K. Enhanced oral delivery of insulin via the colon-targeted nanocomposite system of organoclay/glycol chitosan/Eudragit®S100. J. Nanobiotechnology, 2020, 18(1), 104.
[http://dx.doi.org/10.1186/s12951-020-00662-x] [PMID: 32711522]
[30]
Gadade, D.D.; Pekamwar, S.S. Cyclodextrin based nanoparticles for drug delivery and theranostics. Adv. Pharm. Bull., 2020, 10(2), 166-183.
[http://dx.doi.org/10.34172/apb.2020.022] [PMID: 32373486]
[31]
Song, M.; Wang, H.; Chen, K.; Zhang, S.; Yu, L.; Elshazly, E.H.; Ke, L.; Gong, R. Oral insulin delivery by carboxymethyl-β-cyclodextrin-grafted chitosan nanoparticles for improving diabetic treatment. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup3), 774-782.
[http://dx.doi.org/10.1080/21691401.2018.1511575] [PMID: 30280608]
[32]
Jonusaite, S.; Donini, A.; Kelly, S.P. Occluding junctions of invertebrate epithelia. J. Comp. Physiol. B, 2016, 186(1), 17-43.
[http://dx.doi.org/10.1007/s00360-015-0937-1] [PMID: 26510419]
[33]
Liu, Y.; Wu, X.; Mi, Y.; Zhang, B.; Gu, S.; Liu, G.; Li, X. PLGA nanoparticles for the oral delivery of nuciferine: Preparation, physicochemical characterization and in vitro / in vivo studies. Drug Deliv., 2017, 24(1), 443-451.
[http://dx.doi.org/10.1080/10717544.2016.1261381] [PMID: 28165858]
[34]
Mašková, E.; Kubová, K.; Raimi-Abraham, B.T.; Vllasaliu, D.; Vohllídalová, E.; Turánek, J.; Mašek, J. Hypromellose – A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J. Control. Release, 2020, 324, 695-727.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.045] [PMID: 32479845]
[35]
Fang, Y.; Wang, Q.; Lin, X.; Jin, X.; Yang, D.; Gao, S.; Wang, X.; Yang, M.; Shi, K. Gastrointestinal responsive polymeric nanoparticles for oral delivery of insulin: Optimized preparation, characterization, and in vivo evaluation. J. Pharm. Sci., 2019, 108(9), 2994-3002.
[http://dx.doi.org/10.1016/j.xphs.2019.04.020] [PMID: 31047941]
[36]
Faustino, C.; Serafim, C.; Rijo, P.; Reis, C.P. Bile acids and bile acid derivatives: Use in drug delivery systems and as therapeutic agents. Expert Opin. Drug Deliv., 2016, 13(8), 1133-1148.
[http://dx.doi.org/10.1080/17425247.2016.1178233] [PMID: 27102882]
[37]
Zhang, Z.; Li, H.; Xu, G.; Yao, P. Liver-targeted delivery of insulin-loaded nanoparticles via enterohepatic circulation of bile acids. Drug Deliv., 2018, 25(1), 1224-1233.
[http://dx.doi.org/10.1080/10717544.2018.1469685] [PMID: 29791242]
[38]
Suhail, M.; Rosenholm, J.M.; Minhas, M.U.; Badshah, S.F.; Naeem, A.; Khan, K.U.; Fahad, M. Nanogels as drug-delivery systems: A comprehensive overview. Ther. Deliv., 2019, 10(11), 697-717.
[http://dx.doi.org/10.4155/tde-2019-0010] [PMID: 31789106]
[39]
Yao, R.S.; Zhang, W.; Yang, X.Z.; Liu, J.; Liu, H.T. HPMC/PAA hybrid nanogels via aqueous-phase synthesis for controlled delivery of insulin. Biomater. Sci., 2014, 2(12), 1761-1767.
[http://dx.doi.org/10.1039/C4BM00203B] [PMID: 32481954]
[40]
Haddow, P.; Kirton, S.; McAuley, W.; Cook, M. Polymers exhibiting lower critical solution temperatures as a route to thermoreversible gelators for healthcare. Adv. Funct. Mater., 2021, 31(8), 2008123.
[41]
Labelle, MA.; Ispas-Szabo, P.; Mateescu, M.A. Structure functions relationship of modified starches for pharmaceutical and biomedical applications. Stärke, 2020, 72(7-8), 2000002.
[http://dx.doi.org/10.1002/star.202000002]
[42]
Lemos, P.V.F.; Marcelino, H.R.; Cardoso, L.G.; Souza, C.O.; Druzian, J.I. Starch chemical modifications applied to drug delivery systems: From fundamentals to FDA-approved raw materials. Int. J. Biol. Macromol., 2021, 184, 218-234.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.077] [PMID: 34144062]
[43]
Lawal, M.V. Modified starches as direct compression excipients - effect of physical and chemical modifications on tablet properties: A review. Stärke, 2019, 71(1-2), 1800040.
[http://dx.doi.org/10.1002/star.201800040]
[44]
Zheng, J.L.; Wang, D.; Chen, X.; Song, H.Z.; Xiang, L.P.; Yu, H.X.; Peng, L.B.; Zhu, Q.L. Nutritional-status dependent effects of microplastics on activity and expression of alkaline phosphatase and alpha-amylase in Brachionus rotundiformis. Sci. Total Environ., 2022, 806(Pt 1), 150213.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150213] [PMID: 34571232]
[45]
Rastegari, B.; Karbalaei-Heidari, H.R.; Zeinali, S.; Sheardown, H. The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: Synthesis, characterization and cytotoxicity studies. Colloids Surf. B Biointerfaces, 2017, 158, 589-601.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.044] [PMID: 28750341]
[46]
Chen, Y.; Song, H.; Huang, K.; Guan, X. Novel porous starch/alginate hydrogels for controlled insulin release with dual response to pH and amylase. Food Funct., 2021, 12(19), 9165-9177.
[http://dx.doi.org/10.1039/D1FO01411K] [PMID: 34606530]
[47]
Ma, H.; Liu, M.; Liang, Y.; Zheng, X.; Sun, L.; Dang, W.; Li, J.; Li, L.; Liu, C. Research progress on properties of pre-gelatinized starch and its application in wheat flour products. Grain Oil Sci. Technol., 2022, 5(2), 87-97.
[http://dx.doi.org/10.1016/j.gaost.2022.01.001]
[48]
Minimol, P.F.; Paul, W.; Sharma, C.P. PEGylated starch acetate nanoparticles and its potential use for oral insulin delivery. Carbohydr. Polym., 2013, 95(1), 1-8.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.021] [PMID: 23618232]
[49]
Philip, A.; Philip, B. Colon targeted drug delivery systems: A review on primary and novel approaches. Oman Med. J., 2010, 25(2), 70-78.
[http://dx.doi.org/10.5001/omj.2010.24] [PMID: 22125706]
[50]
Osmałek, T.; Froelich, A.; Tasarek, S. Application of gellan gum in pharmacy and medicine. Int. J. Pharm., 2014, 466(1-2), 328-340.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.038] [PMID: 24657577]
[51]
Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch retrogradation: A comprehensive review. Compr. Rev. Food Sci. Food Saf., 2015, 14(5), 568-585.
[52]
Meneguin, A.B.; Beyssac, E.; Garrait, G.; Hsein, H.; Cury, B.S.F. Retrograded starch/pectin coated gellan gum-microparticles for oral administration of insulin: A technological platform for protection against enzymatic degradation and improvement of intestinal permeability. Eur. J. Pharm. Biopharm., 2018, 123, 84-94.
[http://dx.doi.org/10.1016/j.ejpb.2017.11.012] [PMID: 29175551]
[53]
Yoshii, K.; Ogasawara, M.; Yamamoto, Y.; Inouye, K. Activating effects on trypsin, α-chymotrypsin, and lipase and inhibitory effects on α-amylase and α-glucosidase as provided by low-molecular-weight compounds in the water extract of the earthworm Eisenia fetida. Enzyme Microb. Technol., 2018, 118, 20-29.
[http://dx.doi.org/10.1016/j.enzmictec.2018.06.014] [PMID: 30143195]
[54]
Freitas, C.M.P.; Coimbra, J.S.R.; Souza, V.G.L.; Sousa, R.C.S. Structure and applications of pectin in food, biomedical, and pharmaceutical industry: A review. Coatings, 2021, 11(8), 922.
[http://dx.doi.org/10.3390/coatings11080922]
[55]
D’souza, A.A.; Shegokar, R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv., 2016, 13(9), 1257-1275.
[http://dx.doi.org/10.1080/17425247.2016.1182485] [PMID: 27116988]
[56]
Lee, H. Molecular simulations of PEGylated biomolecules, liposomes, and nanoparticles for drug delivery applications. Pharmaceutics, 2020, 12(6), 533.
[http://dx.doi.org/10.3390/pharmaceutics12060533] [PMID: 32531886]
[57]
Calzoni, E.; Cesaretti, A.; Polchi, A.; Di Michele, A.; Tancini, B.; Emiliani, C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J. Funct. Biomater., 2019, 10(1), 4.
[http://dx.doi.org/10.3390/jfb10010004] [PMID: 30626094]
[58]
Martínez-Lَópez, A.L.; González-Navarro, C.J.; Aranaz, P.; Vizmanos, J.L.; Irache, J.M. In vivo testing of mucus-permeating nanoparticles for oral insulin delivery using Caenorhabditis elegans as a model under hyperglycemic conditions. Acta Pharm. Sin. B, 2021, 11(4), 989-1002.
[http://dx.doi.org/10.1016/j.apsb.2021.02.020] [PMID: 33996411]
[59]
Bouyanfif, A.; Jayarathne, S.; Koboziev, I.; Moustaid-Moussa, N. The nematode caenorhabditis elegans as a model organism to study metabolic effects of ω-3 polyunsaturated fatty acids in obesity. Adv. Nutr., 2019, 10(1), 165-178.
[http://dx.doi.org/10.1093/advances/nmy059] [PMID: 30689684]
[60]
Sarhadi, S.; Moosavian, S.A.; Mashreghi, M.; Rahiman, N.; Golmohamadzadeh, S.; Tafaghodi, M.; Sadri, K.; Chamani, J.; Jaafari, M.R. B12-functionalized PEGylated liposomes for the oral delivery of insulin: In vitro and in vivo studies. J. Drug Deliv. Sci. Technol., 2022, 69, 103141.
[http://dx.doi.org/10.1016/j.jddst.2022.103141]
[61]
Garg, R.; Garg, A. A review on applications of vitamin B12 as therapeutic carrier in drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 2020, 1, 38.
[62]
Li, J.; Qiang, H.; Yang, W.; Xu, Y.; Feng, T.; Cai, H.; Wang, S.; Liu, Z.; Zhang, Z.; Zhang, J. Oral insulin delivery by epithelium microenvironment-adaptive nanoparticles. J. Control. Release, 2022, 341, 31-43.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.020] [PMID: 34793919]
[63]
Behan, N.; Birkinshaw, C.; Clarke, N. Poly n-butyl cyanoacrylate nanoparticles: A mechanistic study of polymerisation and particle formation. Biomaterials, 2001, 22(11), 1335-1344.
[http://dx.doi.org/10.1016/S0142-9612(00)00286-6] [PMID: 11336306]
[64]
Cheng, H.; Zhang, X.; Qin, L.; Huo, Y.; Cui, Z.; Liu, C.; Sun, Y.; Guan, J.; Mao, S. Design of self-polymerized insulin loaded poly(n-butylcyanoacrylate) nanoparticles for tunable oral delivery. J. Control. Release, 2020, 321, 641-653.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.034] [PMID: 32097672]
[65]
Avcu, E.; Baştan, F.E.; Abdullah, H.Z.; Rehman, M.A.U.; Avcu, Y.Y.; Boccaccini, A.R. Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review. Prog. Mater. Sci., 2019, 103, 69-108.
[http://dx.doi.org/10.1016/j.pmatsci.2019.01.001]
[66]
Cheng, H.; Cui, Z.; Guo, S.; Zhang, X.; Huo, Y.; Mao, S. Mucoadhesive versus mucopenetrating nanoparticles for oral delivery of insulin. Acta Biomater., 2021, 135, 506-519.
[http://dx.doi.org/10.1016/j.actbio.2021.08.046] [PMID: 34487859]
[67]
Kapoor, D.N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: A unique polymer for drug delivery. Ther. Deliv., 2015, 6(1), 41-58.
[http://dx.doi.org/10.4155/tde.14.91] [PMID: 25565440]
[68]
Ghitman, J.; Biru, E.I.; Stan, R.; Iovu, H. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Mater. Des., 2020, 193, 108805.
[http://dx.doi.org/10.1016/j.matdes.2020.108805]
[69]
Jain, A.; Jain, S.K. l-Valine appended PLGA nanoparticles for oral insulin delivery. Acta Diabetol., 2015, 52(4), 663-676.
[http://dx.doi.org/10.1007/s00592-015-0714-3] [PMID: 25655131]
[70]
Narmani, A.; Rezvani, M.; Farhood, B.; Darkhor, P.; Mohammadnejad, J.; Amini, B.; Refahi, S.; Abdi Goushbolagh, N. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Dev. Res., 2019, 80(4), 404-424.
[http://dx.doi.org/10.1002/ddr.21545] [PMID: 31140629]
[71]
Hashemi, M.; Shamshiri, A.; Saeedi, M.; Tayebi, L.; Yazdian-Robati, R. Aptamer-conjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs. Arch. Biochem. Biophys., 2020, 691, 108485.
[http://dx.doi.org/10.1016/j.abb.2020.108485] [PMID: 32712288]
[72]
Xie, S.; Gong, Y.C.; Xiong, X.Y.; Li, Z.L.; Luo, Y.Y.; Li, Y.P. Targeted folate-conjugated pluronic P85/poly(lactide- co -glycolide) polymersome for the oral delivery of insulin. Nanomedicine, 2018, 13(19), 2527-2544.
[http://dx.doi.org/10.2217/nnm-2017-0372] [PMID: 30338724]
[73]
Zhi, K.; Raji, B.; Nookala, A.R.; Khan, M.M.; Nguyen, X.H.; Sakshi, S.; Pourmotabbed, T.; Yallapu, M.M.; Kochat, H.; Tadrous, E.; Pernell, S.; Kumar, S. PLGA nanoparticle-based formulations to cross the blood–brain barrier for drug delivery: From R&D to cGMP. Pharmaceutics, 2021, 13(4), 500.
[http://dx.doi.org/10.3390/pharmaceutics13040500] [PMID: 33917577]
[74]
Chawla, J.S.; Amiji, M.M. Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm., 2002, 249(1-2), 127-138.
[http://dx.doi.org/10.1016/S0378-5173(02)00483-0] [PMID: 12433441]
[75]
Mahmoud, B.S.; McConville, C. Development and optimization of irinotecan-loaded PCL nanoparticles and their cytotoxicity against primary high-grade glioma cells. Pharmaceutics, 2021, 13(4), 541.
[http://dx.doi.org/10.3390/pharmaceutics13040541] [PMID: 33924355]
[76]
Azimi, B.; Nourpanah, P.; Rabiee, M.; Arbab, S. Poly (-caprolactone) Fiber: An Overview. J. Eng. Fibers Fabrics, 2014, 9, 74-90.
[77]
Grossen, P.; Witzigmann, D.; Sieber, S.; Huwyler, J. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. J. Control. Release, 2017, 260, 46-60.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.028] [PMID: 28536049]
[78]
Kalaycioglu, G.D.; Elamin, A.A.; Kinali, H.; Aydogan, N. pH sensitive polymeric poly (ϵ‐caprolactone) core- chitosan/alginate shell particle system for oral insulin delivery. ChemistrySelect, 2021, 6(4), 695-704.
[http://dx.doi.org/10.1002/slct.202004210]
[79]
Severino, P.; da Silva, C.F.; Andrade, L.N.; de Lima Oliveira, D.; Campos, J.; Souto, E.B. Alginate nanoparticles for drug delivery and targeting. Curr. Pharm. Des., 2019, 25(11), 1312-1334.
[http://dx.doi.org/10.2174/1381612825666190425163424] [PMID: 31465282]
[80]
Kamenova, K.; Haladjova, E.; Grancharov, G.; Kyulavska, M.; Tzankova, V.; Aluani, D.; Yoncheva, K.; Pispas, S.; Petrov, P. Co-assembly of block copolymers as a tool for developing novel micellar carriers of insulin for controlled drug delivery. Eur. Polym. J., 2018, 104, 1-9.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.04.039]
[81]
Samimi, S.; Maghsoudnia, N.; Eftekhari, R.B.; Dorkoosh, F. Lipid-based nanoparticles for drug delivery systems. Characterization and Biology of Nanomaterials for Drug Delivery; Elsevier, 2019.
[http://dx.doi.org/10.1016/B978-0-12-814031-4.00003-9]
[82]
Zhang, X.; Xing, H.; Zhao, Y.; Ma, Z. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics, 2018, 10(3), 74.
[http://dx.doi.org/10.3390/pharmaceutics10030074] [PMID: 29937483]
[83]
Dumont, C.; Bourgeois, S.; Fessi, H.; Jannin, V. Lipid-based nanosuspensions for oral delivery of peptides, a critical review. Int. J. Pharm., 2018, 541(1-2), 117-135.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.038] [PMID: 29476783]
[84]
dos Santos Rodrigues, B.; Lakkadwala, S.; Kanekiyo, T.; Singh, J. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties. Int. J. Nanomedicine, 2019, 14, 6497-6517.
[http://dx.doi.org/10.2147/IJN.S215941] [PMID: 31616141]
[85]
Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J., 2012, 14(2), 282-295.
[http://dx.doi.org/10.1208/s12248-012-9339-4] [PMID: 22407288]
[86]
Salvi, V.R.; Pawar, P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol., 2019, 51, 255-267.
[http://dx.doi.org/10.1016/j.jddst.2019.02.017]
[87]
Muntoni, E.; Anfossi, L.; Milla, P.; Marini, E.; Ferraris, C.; Capucchio, M.T.; Colombino, E.; Segale, L.; Porta, M.; Battaglia, L. Glargine insulin loaded lipid nanoparticles: Oral delivery of liquid and solid oral dosage forms. Nutr. Metab. Cardiovasc. Dis., 2021, 31(2), 691-698.
[http://dx.doi.org/10.1016/j.numecd.2020.09.020] [PMID: 33131992]
[88]
Mura, P.; Maestrelli, F.; D’Ambrosio, M.; Luceri, C.; Cirri, M. Evaluation and comparison of solid lipid Nanoparticles (SLNs) and Nanostructured lipid carriers (NLCs) as vectors to develop Hydrochlorothiazide effective and safe pediatric oral liquid formulations. Pharmaceutics, 2021, 13(4), 437.
[http://dx.doi.org/10.3390/pharmaceutics13040437] [PMID: 33804945]
[89]
Das, S.; Ng, W.K.; Tan, R.B.H. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur. J. Pharm. Sci., 2012, 47(1), 139-151.
[http://dx.doi.org/10.1016/j.ejps.2012.05.010] [PMID: 22664358]
[90]
Koland, M.; Anchan, R.B.; Mukund, S.G.; Mulleria, S.S. Design and investigation of alginate coated solid lipid nanoparticles for oral insulin delivery. Indian J. Pharm. Edu. Res., 2021, 55(2), 383-394.
[http://dx.doi.org/10.5530/ijper.55.2.76]
[91]
Wei, P.; Cornel, E.J.; Du, J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv. Transl. Res., 2021, 11(4), 1323-1339.
[http://dx.doi.org/10.1007/s13346-021-00963-0] [PMID: 33761101]
[92]
Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Tan, W.K.; Kar, K.K.; Matsuda, A. Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon, 2021, 177, 304-331.
[http://dx.doi.org/10.1016/j.carbon.2021.02.091]
[93]
Pellis, A.; Malinconico, M.; Guarneri, A.; Gardossi, L. Renewable polymers and plastics: Performance beyond the green. N. Biotechnol., 2021, 60, 146-158.
[http://dx.doi.org/10.1016/j.nbt.2020.10.003] [PMID: 33068793]
[94]
Cywar, R.M.; Rorrer, N.A.; Hoyt, C.B.; Beckham, G.T.; Chen, E.Y.X. Bio-based polymers with performance-advantaged properties. Nat. Rev. Mater., 2021, 7, 1-21.
[95]
Zubair, M.; Pradhan, R.A.; Arshad, M.; Ullah, A. Recent advances in lipid derived bio-based materials for food packaging applications. Macromol. Mater. Eng., 2021, 306(7), 2000799.
[http://dx.doi.org/10.1002/mame.202000799]
[96]
Boonstra, E.; Hatano, H.; Miyahara, Y.; Uchida, S.; Goda, T.; Cabral, H. A proton/macromolecule-sensing approach distinguishes changes in biological membrane permeability during polymer/lipid-based nucleic acid delivery. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(21), 4298-4302.
[http://dx.doi.org/10.1039/D1TB00645B] [PMID: 34018540]
[97]
Sgorla, D.; Lechanteur, A.; Almeida, A.; Sousa, F.; Melo, E.; Bunhak, É.; Mainardes, R.; Khalil, N.; Cavalcanti, O.; Sarmento, B. Development and characterization of lipid-polymeric nanoparticles for oral insulin delivery. Expert Opin. Drug Deliv., 2018, 15(3), 213-222.
[http://dx.doi.org/10.1080/17425247.2018.1420050] [PMID: 29257904]
[98]
Mutlu-Agardan, N.B.; Han, S. In vitro and in vivo evaluations on nanoparticle and phospholipid hybrid nanoparticles with absorption enhancers for oral insulin delivery. Pharm. Dev. Technol., 2021, 26(2), 157-166.
[http://dx.doi.org/10.1080/10837450.2020.1849282] [PMID: 33183103]
[99]
Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm., 2021, 601, 120571.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120571] [PMID: 33812967]
[100]
Wang, T.; Shen, L.; Zhang, Y.; Li, H.; Wang, Y.; Quan, D. “Oil-soluble” reversed lipid nanoparticles for oral insulin delivery. J. Nanobiotechnology, 2020, 18(1), 98.
[http://dx.doi.org/10.1186/s12951-020-00657-8] [PMID: 32680576]
[101]
Gong, J.; Chen, M.; Zheng, Y.; Wang, S.; Wang, Y. Polymeric micelles drug delivery system in oncology. J. Control. Release, 2012, 159(3), 312-323.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.012] [PMID: 22285551]
[102]
Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release, 2021, 332, 312-336.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[103]
Santalices, I.; Vázquez-Vázquez, C.; Santander-Ortega, M.J.; Lozano, V.; Araْúْjo, F.; Sarmento, B.; Shrestha, N.; Préat, V.; Chenlo, M.; Alvarez, C.V.; Benetti, F.; Cuٌñٌarro, J.; Tovar, S.; Torres, D.; Alonso, M.J. A nanoemulsion/micelles mixed nanosystem for the oral administration of hydrophobically modified insulin. Drug Deliv. Transl. Res., 2021, 11(2), 524-545.
[http://dx.doi.org/10.1007/s13346-021-00920-x] [PMID: 33575972]
[104]
Maji, I.; Mahajan, S.; Sriram, A.; Medtiya, P.; Vasave, R.; Khatri, D.K.; Kumar, R.; Singh, S.B.; Madan, J.; Singh, P.K. Solid self emulsifying drug delivery system: Superior mode for oral delivery of hydrophobic cargos. J. Control. Release, 2021, 337, 646-660.
[http://dx.doi.org/10.1016/j.jconrel.2021.08.013] [PMID: 34384795]
[105]
Negi, J.S. Nanolipid materials for drug delivery systems: A comprehensive Review. Characterization and Biology of Nanomaterials for Drug Delivery; Elsvier, 2019, pp. 137-163.
[http://dx.doi.org/10.1016/B978-0-12-814031-4.00006-4]
[106]
Liu, J.; Hirschberg, C.; Fanّø, M.; Mu, H.; Müllertz, A. Evaluation of self-emulsifying drug delivery systems for oral insulin delivery using an in vitro model simulating the intestinal proteolysis. Eur. J. Pharm. Sci., 2020, 147, 105272.
[http://dx.doi.org/10.1016/j.ejps.2020.105272] [PMID: 32084584]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy