Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Mini-Review Article

Pumpkin Seeds (Cucurbita spp.) as a Nutraceutical Used In Various Lifestyle Disorders

Author(s): Ankita Wal, Manju Rawat Singh, Arpit Gupta, Shruti Rathore, Rupali Rupasmita Rout and Pranay Wal*

Volume 14, Issue 1, 2024

Published on: 27 June, 2023

Article ID: e160523216963 Pages: 20

DOI: 10.2174/2210315513666230516120756

Price: $65

conference banner
Abstract

Background: The pumpkin, a very well-edible plant that is a member of the Cucurbitaceae family, has long been utilised as a functional food and an herbal remedy. Pumpkins include a wealth of phytoestrogens, unsaturated fatty acids, and vitamin E in their seeds that may have medicinal, nutritional, and cosmetic benefits. In recent years, knowledge of the nutritional benefits and medicinal uses of pumpkin seeds has grown significantly. An abundant source of nutrients and a well-known multipurpose food, pumpkin has recently given scientists fresh insights. Primary and secondary metabolites, such as carbohydrates, proteins, monounsaturated fatty acids, poly saturated fatty acids, carotenoids, tocopherols, tryptophan, delta-7-sterols, & numerous other phytochemicals, are abundant in the pumpkin fruit, including the meat, seed, and peel.

Objective: In this review, the nutraceutical importance of pumpkin's seed anti-diabetic, hypoglycemic, cardiovascular preventive and anti-cancer effects are explored along with the nutraceutical effects of antidepressants, anti-helminthic and anti-oxidants effects are involved.

Methods: A comprehensive analysis of the literature search was conducted. A number of databases have been searched using the common terms "pumpkin,", "pumpkin seeds", "cucurbita,", "functional food", "phenolic compounds", "minerals,", and "phytochemicals" using PubMed and Google Scholar as search engines. The content was based on information from publications like Bentham Science, Elsevier, Taylor & Francis, Nature, Plos One, etc. We have focused on the review and research papers published between 2000 and 2023.

Result: Meanwhile, some research gaps on the biological activities of pumpkin seeds and their potential as a functional food element have been discovered in the current literature. The pharmacokinetics of Pumpkin seeds bioactives and the characterization and identification of functional molecules have received very little attention in the literature. It is necessary to conduct more studies to connect the pharmacodynamics and pharmacokinetics of Pumpkin seeds.

Conclusion: The therapeutic benefits of pumpkin seeds & the potential disease-preventing mechanisms are updated in this review article, also on the chemical make-up, nutritional value, phytochemical research, pharmacological characteristics, bioavailability, food use, & industrial applications of pumpkin.

Keywords: Pumpkin, pumpkin seeds, cucurbita, functional food, phenolic compounds, minerals, phytochemicals, pumpkin seed oil, nutraceutical.

Graphical Abstract
[1]
François, G.; Nathalie, B.; Jean-Pierre, V.; Daniel, P.; Didier, M. Effect of roasting on tocopherols of gourd seeds (Cucurbita pepo). Grasas Aceites, 2006, 57(4), 409-414.
[2]
Balbino, S.; Vincek, D.; Trtanj, I. Egređija, D.; Gajdoš-Kljusurić, J.; Kraljić, K.; Obranović, M.; Škevin, D. Assessment of Pumpkin Seed Oil Adulteration Supported by Multivariate Analysis: Comparison of GC-MS, Colourimetry and NIR Spectroscopy Data. Foods, 2022, 11(6), 835.
[http://dx.doi.org/10.3390/foods11060835] [PMID: 35327258]
[3]
Miura, Y. The biological significance of ω-oxidation of fatty acids. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2013, 89(8), 370-382.
[http://dx.doi.org/10.2183/pjab.89.370] [PMID: 24126285]
[4]
Rabrenović, B.B.; Dimić, E.B.; Novaković, M.M.; Tešević, V.V.; Basić, Z.N. The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds. Lebensm. Wiss. Technol., 2014, 55(2), 521-527.
[http://dx.doi.org/10.1016/j.lwt.2013.10.019]
[5]
Pham, T.T.; Tran, T.T.T.; Ton, N.M.N.; Le, V.V.M. Effects of pH and salt concentration on functional properties of pumpkin seed protein fractions. J. Food Process. Preserv., 2017, 41(4), e13073.
[http://dx.doi.org/10.1111/jfpp.13073]
[6]
Adams, G.G.; Imran, S.; Wang, S.; Mohammad, A.; Kok, S.; Gray, D.A.; Channell, G.A.; Morris, G.A.; Harding, S.E. The hypoglycaemic effect of pumpkins as anti-diabetic and functional medicines. Food Res. Int., 2011, 44(4), 862-867.
[http://dx.doi.org/10.1016/j.foodres.2011.03.016]
[7]
Coffey, C.S.; Steiner, D.; Baker, B.A.; Allison, D.B. A randomized double-blind placebo-controlled clinical trial of a product containing ephedrine, caffeine, and other ingredients from herbal sources for treatment of overweight and obesity in the absence of lifestyle treatment. Int. J. Obes., 2004, 28(11), 1411-1419.
[http://dx.doi.org/10.1038/sj.ijo.0802784] [PMID: 15356670]
[8]
Siano, F.; Straccia, M.C.; Paolucci, M.; Fasulo, G.; Boscaino, F.; Volpe, M.G. Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils. J. Sci. Food Agric., 2016, 96(5), 1730-1735.
[http://dx.doi.org/10.1002/jsfa.7279] [PMID: 26033409]
[9]
Broznić, D.; Jurešić, G.Č. Milin, Č. Involvement of α-, γ-and δ--tocopherol isomers from pumpkin (Cucurbita pepo L.) seed oil or oil mixtures in the biphasic DPPH disappearance kinetics. Food Technol. Biotechnol., 2016, 54(2), 200-210.
[http://dx.doi.org/10.17113/ftb.54.02.16.4063] [PMID: 27904410]
[10]
Naziri, E. Mitić, M.N.; Tsimidou, M.Z. Contribution of tocopherols and squalene to the oxidative stability of cold-pressed pumkin seed oil (Cucurbita pepo L.). Eur. J. Lipid Sci. Technol., 2016, 118(6), 898-905.
[http://dx.doi.org/10.1002/ejlt.201500261]
[11]
Abou-Zeid, S.M.; AbuBakr, H.O.; Mohamed, M.A.; El-Bahrawy, A. Ameliorative effect of pumpkin seed oil against emamectin induced toxicity in mice. Biomed. Pharmacother., 2018, 98, 242-251.
[http://dx.doi.org/10.1016/j.biopha.2017.12.040] [PMID: 29268245]
[12]
Aktaş, N.; Uzlaşır, T.; Tunçil, Y.E. Pre-roasting treatments significantly impact thermal and kinetic characteristics of pumpkin seed oil. Thermochim. Acta, 2018, 669, 109-115.
[http://dx.doi.org/10.1016/j.tca.2018.09.012]
[13]
Amin, M.Z.; Islam, T.; Uddin, M.R.; Uddin, M.J.; Rahman, M.M.; Satter, M.A. Comparative study on nutrient contents in the different parts of indigenous and hybrid varieties of pumpkin (Cucurbita maxima Linn.). Heliyon, 2019, 5(9), e02462.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02462] [PMID: 31687561]
[14]
Acorda, J.A.; Mangubat, I.Y.; Divina, B.P. Evaluation of the in vivo efficacy of pumpkin (Cucurbita pepo) seeds against gastrointestinal helminths of chickens. Turk. J. Vet. Anim. Sci., 2019, 43(2), 206-211.
[http://dx.doi.org/10.3906/vet-1807-39]
[15]
Dakeng, S.; Duangmano, S.; Jiratchariyakul, W. U-Pratya, Y.; Bögler, O.; Patmasiriwat, P. Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: Reduction of Wnt-associated proteins and reduced translocation of galectin-3-mediated β-catenin to the nucleus. J. Cell. Biochem., 2012, 113(1), 49-60.
[http://dx.doi.org/10.1002/jcb.23326] [PMID: 21866566]
[16]
Aghaei, S.; Nikzad, H.; Taghizadeh, M.; Tameh, A.A.; Taherian, A.; Moravveji, A. Protective effect of Pumpkin seed extract on sperm characteristics, biochemical parameters and epididymal histology in adult male rats treated with Cyclophosphamide. Andrologia, 2014, 46(8), 927-935.
[http://dx.doi.org/10.1111/and.12175] [PMID: 24124763]
[17]
Chonoko, U.G.; Rufai, A.B. Phytochemical screening and antibacterial activity of Cucurbita pepo (Pumpkin) against Staphylococcus aureus and Salmonella typhi. Bayero J. Pure Appl. Sci., 2011, 4(1), 145-147.
[http://dx.doi.org/10.4314/bajopas.v4i1.30]
[18]
Bharti, S.K.; Kumar, A.; Sharma, N.K.; Prakash, O.; Jaiswal, S.K.; Krishnan, S.; Gupta, A.K.; Kumar, A. Tocopherol from seeds of Cucurbita pepo against diabetes: Validation by in vivo experiments supported by computational docking. J. Formos. Med. Assoc., 2013, 112(11), 676-690.
[http://dx.doi.org/10.1016/j.jfma.2013.08.003] [PMID: 24344360]
[19]
Blaskovich, M.A.; Sun, J.; Cantor, A.; Turkson, J.; Jove, R.; Sebti, S.M. Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res., 2003, 63(6), 1270-1279.
[PMID: 12649187]
[20]
Alshehry, G.A. Preparation and nutritional properties of cookies from the partial replacement of wheat flour using pumpkin seeds powder. WORLD, 2020, 9(2), 48-56.
[21]
Adeleke, R.O.; Odedeji, J.O. Functional properties of wheat and sweet potato flour blends. Pak. J. Nutr., 2010, 9(6), 535-538.
[http://dx.doi.org/10.3923/pjn.2010.535.538]
[22]
Sun, J.; Blaskovich, M.A.; Jove, R.; Livingston, S.K.; Coppola, D.; Sebti, S.M. Cucurbitacin Q: a selective STAT3 activation inhibitor with potent antitumor activity. Oncogene, 2005, 24(20), 3236-3245.
[http://dx.doi.org/10.1038/sj.onc.1208470] [PMID: 15735720]
[23]
Hulkower, K.I.; Herber, R.L. Cell migration and invasion assays as tools for drug discovery. Pharmaceutics, 2011, 3(1), 107-124.
[http://dx.doi.org/10.3390/pharmaceutics3010107] [PMID: 24310428]
[24]
Gossell-Williams, M.; Davis, A.; O’Connor, N. Inhibition of testosterone-induced hyperplasia of the prostate of sprague-dawley rats by pumpkin seed oil. J. Med. Food, 2006, 9(2), 284-286.
[http://dx.doi.org/10.1089/jmf.2006.9.284] [PMID: 16822218]
[25]
Ren, S.; Ouyang, D.Y.; Saltis, M.; Xu, L.H.; Zha, Q.B.; Cai, J.Y.; He, X.H. Anti-proliferative effect of 23,24-dihydrocucurbitacin F on human prostate cancer cells through induction of actin aggregation and cofilin-actin rod formation. Cancer Chemother. Pharmacol., 2012, 70(3), 415-424.
[http://dx.doi.org/10.1007/s00280-012-1921-z] [PMID: 22814677]
[26]
Rakcejeva, T.; Galoburda, R.; Cude, L.; Strautniece, E. Use of dried pumpkins in wheat bread production. Procedia Food Sci., 2011, 1, 441-447.
[http://dx.doi.org/10.1016/j.profoo.2011.09.068]
[27]
Caili, F.U.; Huan, S.H.I.; Quanhong, L.I. A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods Hum. Nutr., 2006, 61(2), 70-77.
[http://dx.doi.org/10.1007/s11130-006-0016-6] [PMID: 16758316]
[28]
Kim, M.Y.; Kim, E.J.; Kim, Y.N.; Choi, C.; Lee, B.H. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutr. Res. Pract., 2012, 6(1), 21-27.
[http://dx.doi.org/10.4162/nrp.2012.6.1.21] [PMID: 22413037]
[29]
Wang, S.Y.; Huang, W.C.; Liu, C.C.; Wang, M.F.; Ho, C.S.; Huang, W.P.; Hou, C.C.; Chuang, H.L.; Huang, C.C. Pumpkin (Cucurbita moschata) fruit extract improves physical fatigue and exercise performance in mice. Molecules, 2012, 17(10), 11864-11876.
[http://dx.doi.org/10.3390/molecules171011864] [PMID: 23047485]
[30]
Isutsa, D.K.; Mallowa, S.O. Increasing leaf harvest intensity enhances edible leaf vegetable yields and decreases mature fruit yields in multi-purpose pumpkin. J. Agric. Biol. Sci., 2013, 8(8), 610-615.
[31]
Levi, A.; Thomas, C.E.; Simmons, A.M.; Thies, J.A. Analysis based on RAPD and ISSR markers reveals closer similarities among Citrullus and Cucumis species than with Praecitrullus fistulosus (Stocks). Pangalo. Genet. Resour. Crop Evol., 2005, 52(4), 465-472.
[http://dx.doi.org/10.1007/s10722-005-2260-2]
[32]
Stevenson, D.G.; Eller, F.J.; Wang, L.; Jane, J.L.; Wang, T.; Inglett, G.E. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agric. Food Chem., 2007, 55(10), 4005-4013.
[http://dx.doi.org/10.1021/jf0706979] [PMID: 17439238]
[33]
Nakić, S.N.; Rade, D.; Škevin, D.; Štrucelj, D.; Mokrovčak, Ž.; Bartolić, M. Chemical characteristics of oils from naked and husk seeds of Cucurbita pepo L. Eur. J. Lipid Sci. Technol., 2006, 108(11), 936-943.
[http://dx.doi.org/10.1002/ejlt.200600161]
[34]
Murkovic, M.; Pfannhauser, W. Stability of pumpkin seed oil. Eur. J. Lipid Sci. Technol., 2000, 102(10), 607-611.
[http://dx.doi.org/10.1002/1438-9312(200010)102:10<607:AID-EJLT607>3.0.CO;2-E]
[35]
Salehi, B.; Capanoglu, E.; Adrar, N.; Catalkaya, G.; Shaheen, S.; Jaffer, M.; Giri, L.; Suyal, R.; Jugran, A.K.; Calina, D.; Docea, A.O.; Kamiloglu, S.; Kregiel, D.; Antolak, H.; Pawlikowska, E.; Sen, S.; Acharya, K.; Selamoglu, Z.; Sharifi-Rad, J.; Martorell, M.; Rodrigues, C.F.; Sharopov, F.; Martins, N.; Capasso, R. Cucurbits plants: A key emphasis to its pharmacological potential. Molecules, 2019, 24(10), 1854.
[http://dx.doi.org/10.3390/molecules24101854] [PMID: 31091784]
[36]
Ifeduba, E.A.; Martini, S.; Akoh, C.C. Enzymatic interesterification of high oleic sunflower oil and tripalmitin or tristearin. J. Am. Oil Chem. Soc., 2016, 93(1), 61-67.
[http://dx.doi.org/10.1007/s11746-015-2756-7]
[37]
Rezig, L.; Chouaibi, M.; Meddeb, W.; Msaada, K.; Hamdi, S. Chemical composition and bioactive compounds of Cucurbitaceae seeds: Potential sources for new trends of plant oils. Process Saf. Environ. Prot., 2019, 127, 73-81.
[http://dx.doi.org/10.1016/j.psep.2019.05.005]
[38]
Hrabovski, N. Sinadinović,-Fišer, S.; Nikolovski, B.; Sovilj, M.; Borota, O. Phytosterols in pumpkin seed oil extracted by organic solvents and supercritical CO2. Eur. J. Lipid Sci. Technol., 2012, 114(10), 1204-1211.
[http://dx.doi.org/10.1002/ejlt.201200009]
[39]
Montesano, D.; Blasi, F.; Simonetti, M.; Santini, A.; Cossignani, L. Chemical and nutritional characterization of seed oil from Cucurbita maxima L. (var. Berrettina) pumpkin. Foods, 2018, 7(3), 30.
[http://dx.doi.org/10.3390/foods7030030] [PMID: 29494522]
[40]
Peričin, D.; Krimer, V.; Trivić, S.; Radulović, L. The distribution of phenolic acids in pumpkin’s hull-less seed, skin, oil cake meal, dehulled kernel and hull. Food Chem., 2009, 113(2), 450-456.
[http://dx.doi.org/10.1016/j.foodchem.2008.07.079]
[41]
Andjelkovic, M.; Van Camp, J.; Trawka, A.; Verhé, R. Phenolic compounds and some quality parameters of pumpkin seed oil. Eur. J. Lipid Sci. Technol., 2010, 112(2), 208-217.
[http://dx.doi.org/10.1002/ejlt.200900021]
[42]
Mares, J. Lutein and zeaxanthin isomers in eye health and disease. Annu. Rev. Nutr., 2016, 36(1), 571-602.
[http://dx.doi.org/10.1146/annurev-nutr-071715-051110] [PMID: 27431371]
[43]
Grune, T. Lietz, G.; Palou, A.; Ross, A.C.; Stahl, W.; Tang, G.; Thurnham, D.; Yin, S.; Biesalski, H.K. β-carotene is an important vitamin A source for humans. J. Nutr., 2010, 140(12), 2268S-2285S.
[http://dx.doi.org/10.3945/jn.109.119024] [PMID: 20980645]
[44]
Masodsai, K.; Lin, Y.Y.; Chaunchaiyakul, R.; Su, C.T.; Lee, S.D.; Yang, A.L. Twelve-week protocatechuic acid administration improves insulin-induced and insulin-like growth factor-1-induced vasorelaxation and antioxidant activities in aging spontaneously hypertensive rats. Nutrients, 2019, 11(3), 699.
[http://dx.doi.org/10.3390/nu11030699] [PMID: 30934575]
[45]
Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules, 2017, 22(3), 358.
[http://dx.doi.org/10.3390/molecules22030358] [PMID: 28245635]
[46]
Rasheeda, K.; Bharathy, H.; Nishad Fathima, N. Vanillic acid and syringic acid: Exceptionally robust aromatic moieties for inhibiting in vitro self-assembly of type I collagen. Int. J. Biol. Macromol., 2018, 113, 952-960.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.015] [PMID: 29522822]
[47]
Gamaniel, K.; Samuel, B.B.; Kapu, D.S.; Samson, A.; Wagner, H.; Okogun, J.I.; Wambebe, C. Anti-sickling, analgesic and anti-inflammatory properties of 3, 5-dimethoxy-4-hydroxy benzoic acid and 2, 3,4-trihydroxyacetophenone. Phytomedicine, 2000, 7(2), 105-110.
[http://dx.doi.org/10.1016/S0944-7113(00)80081-1] [PMID: 10839212]
[48]
Habtemariam, S. Protective effects of caffeic acid and the Alzheimer’s brain: An update. Mini Rev. Med. Chem., 2017, 17(8), 667-674.
[http://dx.doi.org/10.2174/1389557516666161130100947] [PMID: 27903226]
[49]
Ibitoye, O.B.; Ajiboye, T.O. Ferulic acid potentiates the antibacterial activity of quinolone-based antibiotics against Acinetobacter baumannii. Microb. Pathog., 2019, 126, 393-398.
[http://dx.doi.org/10.1016/j.micpath.2018.11.033] [PMID: 30476577]
[50]
Cha, H.; Lee, S.; Lee, J.H.; Park, J.W. Protective effects of p-coumaric acid against acetaminophen-induced hepatotoxicity in mice. Food Chem. Toxicol., 2018, 121, 131-139.
[http://dx.doi.org/10.1016/j.fct.2018.08.060] [PMID: 30149109]
[51]
Shahmohamady, P.; Eidi, A.; Mortazavi, P.; Panahi, N.; Minai-Tehrani, D. Effect of sinapic acid on memory deficits and neuronal degeneration induced by intracerebroventricular administration of streptozotocin in rats. Pol. J. Pathol., 2018, 69(3), 266-277.
[http://dx.doi.org/10.5114/pjp.2018.79546] [PMID: 30509053]
[52]
Budzynska, B.; Faggio, C.; Kruk-Slomka, M.; Samec, D.; Nabavi, S.F.; Sureda, A.; Devi, K.P.; Nabavi, S.M. Rutin as neuroprotective agent: From bench to bedside. Curr. Med. Chem., 2019, 26(27), 5152-5164.
[http://dx.doi.org/10.2174/0929867324666171003114154] [PMID: 28971760]
[53]
Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Shahbaz, M.; Tsouh Fokou, P.V.; Umair Arshad, M.; Khan, H.; Guerreiro, S.G.; Martins, N.; Estevinho, L.M. Kaempferol: A key emphasis to its anticancer potential. Molecules, 2019, 24(12), 2277.
[http://dx.doi.org/10.3390/molecules24122277] [PMID: 31248102]
[54]
Amado, N.G.; Predes, D.; Fonseca, B.F.; Cerqueira, D.M.; Reis, A.H.; Dudenhoeffer, A.C.; Borges, H.L.; Mendes, F.A.; Abreu, J.G. Isoquercitrin suppresses colon cancer cell growth in vitro by targeting the Wnt/β-catenin signaling pathway. J. Biol. Chem., 2014, 289(51), 35456-35467.
[http://dx.doi.org/10.1074/jbc.M114.621599] [PMID: 25359775]
[55]
Zheng, D.; Liu, D.; Liu, N.; Kuang, Y.; Tai, Q. Astragalin reduces lipopolysaccharide-induced acute lung injury in rats via induction of heme oxygenase-1. Arch. Pharm. Res., 2019, 42(8), 704-711.
[http://dx.doi.org/10.1007/s12272-019-01171-8] [PMID: 31250343]
[56]
Chen, S.; Fan, B. Myricetin protects cardiomyocytes from LPS - induced injury. Herz, 2018, 43(3), 265-274.
[http://dx.doi.org/10.1007/s00059-017-4556-3] [PMID: 28357449]
[57]
Haddad, P.; Eid, H.S.; Haddad, P. The antidiabetic potential of quercetin: Underlying mechanisms. Curr. Med. Chem., 2017, 24(4), 355-364.
[http://dx.doi.org/10.2174/0929867323666160909153707] [PMID: 27633685]
[58]
Boonnoy, P.; Karttunen, M.; Wong-ekkabut, J. Does α-tocopherol flip-flop help to protect membranes against oxidation? J. Phys. Chem. B, 2018, 122(45), 10362-10370.
[http://dx.doi.org/10.1021/acs.jpcb.8b09064] [PMID: 30354170]
[59]
Abdulla, K.A.; Um, C.Y.; Gross, M.D.; Bostick, R.M. Circulating γ-tocopherol concentrations are inversely associated with antioxidant exposures and directly associated with systemic oxidative stress and inflammation in adults. J. Nutr., 2018, 148(9), 1453-1461.
[http://dx.doi.org/10.1093/jn/nxy132] [PMID: 30184224]
[60]
Patel, S. Pumpkin (Cucurbita sp.) seeds as nutraceutic: a review on status quo and scopes. Med. J. Nutrition Metab., 2013, 6(3), 183-189.
[http://dx.doi.org/10.3233/s12349-013-0131-5]
[61]
Vorobyova, O.A.; Bolshakova, A.E.; Pegova, R.A.; Kol’chik, O.V.; Klabukova, I.N.; Krasilnikova, E.; Melnikova, N.B. Analysis of the components of pumpkin seed oil in suppositories and the possibility of its use in pharmaceuticals. J. Chem. Pharm. Res., 2014, 6(5), 1106-1116.
[62]
American Diabetes Association Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[63]
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27(5), 1047-1053.
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[64]
Xu, X.; Shan, B.; Liao, C.H.; Xie, J.H.; Wen, P.W.; Shi, J.Y. Anti-diabetic properties of Momordica charantia L. Polysaccharide in alloxan-induced diabetic mice. Int. J. Biol. Macromol., 2015, 81, 538-543.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.049] [PMID: 26318666]
[65]
Zhang, C.; Chen, H.; Bai, W. Characterization of Momordica charantia L. polysaccharide and its protective effect on pancreatic cells injury in STZ-induced diabetic mice. Int. J. Biol. Macromol., 2018, 115, 45-52.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.039] [PMID: 29649536]
[66]
Andrade-Cetto, A.; Heinrich, M. Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J. Ethnopharmacol., 2005, 99(3), 325-348.
[http://dx.doi.org/10.1016/j.jep.2005.04.019] [PMID: 15964161]
[67]
Jia, W.; Gao, W.; Tang, L. Antidiabetic herbal drugs officially approved in China. Phytother. Res., 2003, 17(10), 1127-1134.
[http://dx.doi.org/10.1002/ptr.1398] [PMID: 14669243]
[68]
Rolnik, A.; Olas, B. Vegetables from the Cucurbitaceae family and their products: Positive effect on human health. Nutrition, 2020, 78, 110788.
[http://dx.doi.org/10.1016/j.nut.2020.110788] [PMID: 32540673]
[69]
Ahmad, G.; Khan, A.A. Pumpkin: horticultural importance and its roles in various forms; a review. Int. J. Hortic. Agric., 2019, 4, 1-6.
[http://dx.doi.org/10.15226/2572-3154/4/1/00124]
[70]
Chen, J.G.; Liu, Z.Q.; Wang, Y.; Lai, W.Q.; Mei, S.; Fu, Y. Effects of sugar-removed pumpkin zymptic powders in preventing and treating the increase of blood glucose in alloxan-induced diabetic mice. Zhongguo Linchuang Kangfu, 2005, 9, 94-95.
[71]
Jaiswal, N.; Srivastava, S.P.; Bhatia, V.; Mishra, A.; Sonkar, A.K.; Narender, T.; Srivastava, A.K.; Tamrakar, A.K. Inhibition of alpha-glucosidase by acacia nilotic prevents hyperglycemia along with improvement of diabetic complications via aldose reductase inhibition. J. Diabet. Metab. S., 2012, 6(004)
[72]
Kwon, Y.I.; Apostolidis, E.; Kim, Y.C.; Shetty, K. Health benefits of traditional corn, beans, and pumpkin: In vitro studies for hyperglycemia and hypertension management. J. Med. Food, 2007, 10(2), 266-275.
[http://dx.doi.org/10.1089/jmf.2006.234] [PMID: 17651062]
[73]
Bonner-Weir, S.; Weir, G.C. New sources of pancreatic β-cells. Nat. Biotechnol., 2005, 23(7), 857-861.
[http://dx.doi.org/10.1038/nbt1115] [PMID: 16003374]
[74]
Quanhong, L.I.; Caili, F.; Yukui, R.; Guanghui, H.; Tongyi, C. Effects of protein-bound polysaccharide isolated from pumpkin on insulin in diabetic rats. Plant Foods Hum. Nutr., 2005, 60(1), 13-16.
[http://dx.doi.org/10.1007/s11130-005-2536-x] [PMID: 15898354]
[75]
Chen, X.; Qian, L.; Wang, B.; Zhang, Z.; Liu, H.; Zhang, Y.; Liu, J. Synergistic hypoglycemic effects of pumpkin polysaccharides and puerarin on type II diabetes mellitus mice. Molecules, 2019, 24(5), 955.
[http://dx.doi.org/10.3390/molecules24050955] [PMID: 30857163]
[76]
Wang, S.; Lu, A.; Zhang, L.; Shen, M.; Xu, T.; Zhan, W.; Jin, H.; Zhang, Y.; Wang, W. Extraction and purification of pumpkin polysaccharides and their hypoglycemic effect. Int. J. Biol. Macromol., 2017, 98, 182-187.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.114] [PMID: 28153462]
[77]
Procida, G.; Stancher, B.; Cateni, F.; Zacchigna, M. Chemical composition and functional characterisation of commercial pumpkin seed oil. J. Sci. Food Agric., 2013, 93(5), 1035-1041.
[http://dx.doi.org/10.1002/jsfa.5843] [PMID: 22936573]
[78]
Batool, M.; Ranjha, M.M.A.N.; Roobab, U.; Manzoor, M.F.; Farooq, U.; Nadeem, H.R.; Nadeem, M.; Kanwal, R. AbdElgawad, H.; Al Jaouni, S.K.; Selim, S.; Ibrahim, S.A. Nutritional value, phytochemical potential, and therapeutic benefits of pumpkin (Cucurbita sp.). Plants, 2022, 11(11), 1394.
[http://dx.doi.org/10.3390/plants11111394] [PMID: 35684166]
[79]
Shi, Y.; Xiong, X.; Cao, J.; Kang, M. Effect of pumpkin polysaccharide granules on glycemic control in type 2 diabetes. Cent. South Pharm., 2003, 1, 275-276.
[80]
Marcotrigiano, V.; Lanzilotti, C.; Rondinone, D.; De Giglio, O.; Caggiano, G.; Diella, G.; Orsi, G.B.; Montagna, M.T.; Napoli, C. Food labelling: Regulations and Public Health implications. Ann. Ig., 2018, 30(3), 220-228.
[PMID: 29670991]
[81]
Vaughan, A.S.; Ritchey, M.D.; Hannan, J.; Kramer, M.R.; Casper, M. Widespread recent increases in county-level heart disease mortality across age groups. Ann. Epidemiol., 2017, 27(12), 796-800.
[http://dx.doi.org/10.1016/j.annepidem.2017.10.012] [PMID: 29122432]
[82]
Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc. Diabetol., 2018, 17(1), 83.
[http://dx.doi.org/10.1186/s12933-018-0728-6] [PMID: 29884191]
[83]
Andersson, C.; Vasan, R.S. Epidemiology of cardiovascular disease in young individuals. Nat. Rev. Cardiol., 2018, 15(4), 230-240.
[http://dx.doi.org/10.1038/nrcardio.2017.154] [PMID: 29022571]
[84]
Becerra-Tomás, N.; Blanco Mejía, S.; Viguiliouk, E.; Khan, T.; Kendall, C.W.C.; Kahleova, H. Rahelić, D.; Sievenpiper, J.L.; Salas-Salvadó, J. Mediterranean diet, cardiovascular disease and mortality in diabetes: A systematic review and meta-analysis of prospective cohort studies and randomized clinical trials. Crit. Rev. Food Sci. Nutr., 2020, 60(7), 1207-1227.
[http://dx.doi.org/10.1080/10408398.2019.1565281] [PMID: 30676058]
[85]
Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease: A Cochrane review. Glob. Heart, 2020, 15(1), 56.
[http://dx.doi.org/10.5334/gh.853] [PMID: 32923349]
[86]
González, C.M.; Martínez, L.; Ros, G.; Nieto, G. Evaluation of nutritional profile and total antioxidant capacity of the Mediterranean diet of southern Spain. Food Sci. Nutr., 2019, 7(12), 3853-3862.
[http://dx.doi.org/10.1002/fsn3.1211] [PMID: 31890163]
[87]
Mensink, R.P.; Zock, P.L.; Kester, A.D.M.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr., 2003, 77(5), 1146-1155.
[http://dx.doi.org/10.1093/ajcn/77.5.1146] [PMID: 12716665]
[88]
Purcaro, G.; Barp, L.; Beccaria, M.; Conte, L.S. Fingerprinting of vegetable oil minor components by multidimensional comprehensive gas chromatography with dual detection. Anal. Bioanal. Chem., 2015, 407(1), 309-319.
[http://dx.doi.org/10.1007/s00216-014-8140-x] [PMID: 25209809]
[89]
Herkeľ, R.; Gálik, B.; Arpášová, H.; Bíro, D.; Juráček, M.; Šimko, M.; Rolinec, M. Fatty acid profile and nutritional composition of table eggs after supplementation by pumpkin and flaxseed oils. Acta Vet. Brno, 2016, 85(3), 277-283.
[http://dx.doi.org/10.2754/avb201685030277]
[90]
Hudečková, P.; Rusníková, L.; Straková, E.; Suchý, P.; Marada, P.; Macháček, M. The effect of linseed oil supplementation of the diet on the content of fatty acids in the egg yolk. Acta Vet. Brno, 2012, 81(2), 159-162.
[http://dx.doi.org/10.2754/avb201281020159]
[91]
Ali, W.S. Nutrition with pumpkin (Cucrbita pepo) cake as lowering cholesterol in rats. Middle East J. Appl. Sci., 2015, 5(1), 10.
[92]
Abuelgassim, A.O.; Al-Showayman, S.I.A. The effect of pumpkin (Cucurbita pepo L.) seeds and L-arginine supplementation on serum lipid concentrations in atherogenic rats. Afr. J. Tradit. Complement. Altern. Med., 2011, 9(1), 131-137.
[http://dx.doi.org/10.4314/ajtcam.v9i1.18] [PMID: 23983330]
[93]
Makni, M.; Fetoui, H.; Gargouri, N.K.; Garoui, E.M.; Jaber, H.; Makni, J.; Boudawara, T.; Zeghal, N. Hypolipidemic and hepatoprotective effects of flax and pumpkin seed mixture rich in ω-3 and ω-6 fatty acids in hypercholesterolemic rats. Food Chem. Toxicol., 2008, 46(12), 3714-3720.
[http://dx.doi.org/10.1016/j.fct.2008.09.057] [PMID: 18938206]
[94]
Barakat, L.; Mahmoud, R. The antiatherogenic, renal protective and immunomodulatory effects of purslane, pumpkin and flax seeds on hypercholesterolemic rats. N. Am. J. Med. Sci., 2011, 3(9), 411-417.
[http://dx.doi.org/10.4297/najms.2011.3411] [PMID: 22362450]
[95]
Nunes, C.A. Vibrational spectroscopy and chemometrics to assess authenticity, adulteration and intrinsic quality parameters of edible oils and fats. Food Res. Int., 2014, 60, 255-261.
[http://dx.doi.org/10.1016/j.foodres.2013.08.041]
[96]
Glew, R.H.; Glew, R.S.; Chuang, L.T.; Huang, Y.S.; Millson, M.; Constans, D.; Vanderjagt, D.J. Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp) and Cyperus esculentus nuts in the Republic of Niger. Plant Foods Hum. Nutr., 2006, 61(2), 49-54.
[http://dx.doi.org/10.1007/s11130-006-0010-z] [PMID: 16770692]
[97]
Proboningsih, J.; Wirjatmadi, B.; Kuntoro, K.; Adriani, M. Expression of VCAM in male Wistar Rats (Rattus norvegicus) with hypercholesterolemia supplemented with pumpkin seeds (Cucurbita moschata Duch). Extract. Health Notions., 2018, 2(6), 648-654.
[98]
Jian, L.; Du, C.J.; Lee, A.H.; Binns, C.W. Do dietary lycopene and other carotenoids protect against prostate cancer? Int. J. Cancer, 2005, 113(6), 1010-1014.
[http://dx.doi.org/10.1002/ijc.20667] [PMID: 15514967]
[99]
Hong, H.; Kim, C.S.; Maeng, S. Effects of pumpkin seed oil and saw palmetto oil in Korean men with symptomatic benign prostatic hyperplasia. Nutr. Res. Pract., 2009, 3(4), 323-327.
[http://dx.doi.org/10.4162/nrp.2009.3.4.323] [PMID: 20098586]
[100]
Zaineddin, A.K.; Buck, K.; Vrieling, A.; Heinz, J.; Flesch-Janys, D.; Linseisen, J.; Chang-Claude, J. The association between dietary lignans, phytoestrogen-rich foods, and fiber intake and postmenopausal breast cancer risk: A German case-control study. Nutr. Cancer, 2012, 64(5), 652-665.
[http://dx.doi.org/10.1080/01635581.2012.683227] [PMID: 22591208]
[101]
Huang, X.E.; Hirose, K.; Wakai, K.; Matsuo, K.; Ito, H.; Xiang, J.; Takezaki, T.; Tajima, K. Comparison of lifestyle risk factors by family history for gastric, breast, lung and colorectal cancer. Asian Pac. J. Cancer Prev., 2004, 5(4), 419-427.
[PMID: 15546249]
[102]
Mariani, N.C.T.; de Almeida Teixeira, G.H.; de Lima, K.M.G.; Morgenstern, T.B.; Nardini, V.; Júnior, L.C.C. NIRS and iSPA-PLS for predicting total anthocyanin content in jaboticaba fruit. Food Chem., 2015, 174, 643-648.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.008] [PMID: 25529731]
[103]
Binns, C.W.; Jian, L.; Lee, A.H. The relationship between dietary carotenoids and prostate cancer risk in Southeast Chinese men. Asia Pac. J. Clin. Nutr., 2004, 13.
[104]
Pan, H.Z.; Qiu, X.H.; Li, H.; Jin, J.; Yu, C.; Zhao, J. Effect of pumpkin extracts on tumor growth inhibition in S180-bearing mice. Pract. Prev. Med., 2005, 12, 745.
[105]
Grassi, S.; Alamprese, C. Advances in NIR spectroscopy applied to process analytical technology in food industries. Curr. Opin. Food Sci., 2018, 22, 17-21.
[http://dx.doi.org/10.1016/j.cofs.2017.12.008]
[106]
Xie, J.M. Induced polarization effect of pumpkin protein on B16 cell. Fujian Med. Univ. Acta., 2004, 38(4), 394-395.
[107]
Xia, H.C.; Li, F.; Li, Z.; Zhang, Z.C. Purification and characterization of Moschatin, a novel type I ribosome-inactivating protein from the mature seeds of pumpkin (Cucurbita moschata), and preparation of its immunotoxin against human melanoma cells. Cell Res., 2003, 13(5), 369-374.
[http://dx.doi.org/10.1038/sj.cr.7290182] [PMID: 14672560]
[108]
Hou, X.; Meehan, E.J.; Xie, J.; Huang, M.; Chen, M.; Chen, L. Atomic resolution structure of cucurmosin, a novel type 1 ribosome-inactivating protein from the sarcocarp of Cucurbita moschata. J. Struct. Biol., 2008, 164(1), 81-87.
[http://dx.doi.org/10.1016/j.jsb.2008.06.011] [PMID: 18652900]
[109]
Mill, J.; Petronis, A. Molecular studies of major depressive disorder: the epigenetic perspective. Mol. Psychiatry, 2007, 12(9), 799-814.
[http://dx.doi.org/10.1038/sj.mp.4001992] [PMID: 17420765]
[110]
Potočnik, T.; Ogrinc, N.; Potočnik, D.; Košir, I.J. Fatty acid composition and δ13C isotopic ratio characterisation of pumpkin seed oil. J. Food Compos. Anal., 2016, 53, 85-90.
[http://dx.doi.org/10.1016/j.jfca.2016.09.005]
[111]
Read, J.R.; Sharpe, L.; Modini, M.; Dear, B.F. Multimorbidity and depression: A systematic review and meta-analysis. J. Affect. Disord., 2017, 221, 36-46.
[http://dx.doi.org/10.1016/j.jad.2017.06.009] [PMID: 28628766]
[112]
Kosari-Nasab, M.; Shokouhi, G.; Azarfarin, M.; Bannazadeh Amirkhiz, M.; Mesgari Abbasi, M.; Salari, A.A. Serotonin 5-HT1A receptors modulate depression-related symptoms following mild traumatic brain injury in male adult mice. Metab. Brain Dis., 2019, 34(2), 575-582.
[http://dx.doi.org/10.1007/s11011-018-0366-4] [PMID: 30607822]
[113]
Das, S. Depression: meeting the future global health challenge. J. Depress. Anxiety, 2016, 5(s1), 2167-1044.
[http://dx.doi.org/10.4172/2167-1044.S1-023]
[114]
Butinar, B. Bučar-Miklavčič M.; Valenčič V.; Raspor, P. Stereospecific analysis of triacylglycerols as a useful means to evaluate genuineness of pumpkin seed oils: lesson from virgin olive oil analyses. J. Agric. Food Chem., 2010, 58(9), 5227-5234.
[http://dx.doi.org/10.1021/jf904542z] [PMID: 20380471]
[115]
Hamid, H.A.; Ramli, A.N.M.; Yusoff, M.M. Indole alkaloids from plants as potential leads for antidepressant drugs: A mini review. Front. Pharmacol., 2017, 8, 96.
[http://dx.doi.org/10.3389/fphar.2017.00096] [PMID: 28293192]
[116]
Fajemiroye, J.O.; da Silva, D.M.; de Oliveira, D.R.; Costa, E.A. Treatment of anxiety and depression: Medicinal plants in retrospect. Fundam. Clin. Pharmacol., 2016, 30(3), 198-215.
[http://dx.doi.org/10.1111/fcp.12186] [PMID: 26851117]
[117]
Khan, H.; Perviz, S.; Sureda, A.; Nabavi, S.M.; Tejada, S. Current standing of plant derived flavonoids as an antidepressant. Food Chem. Toxicol., 2018, 119, 176-188.
[http://dx.doi.org/10.1016/j.fct.2018.04.052] [PMID: 29704578]
[118]
LaChance, L.R.; Ramsey, D. Antidepressant foods: An evidence-based nutrient profiling system for depression. World J. Psychiatry, 2018, 8(3), 97-104.
[http://dx.doi.org/10.5498/wjp.v8.i3.97] [PMID: 30254980]
[119]
Mondal, S.; Hossain, I.; Islam, M.N. Determination of antioxidant potential of Cucurbita pepo Linn. (An edible herbs of Bangladesh). J. Pharmacogn. Phytochem., 2017, 6(5), 1016-1019.
[120]
Eloziia, N.; Kumar, N.; Kothiyal, P.; Deka, P.; Nayak, B.K. A review on antidepressant plants. J. Pharm. Res., 2017, 11(5), 382-396.
[121]
George, S.; Nazni, P. Antidepressive activity of processed pumpkin (Cucurbita maxima) seeds on rats. Int. J. Pharm. Med. Bio. Sci., 2012, 1(2), 225-231.
[122]
Giuffrè, A.M.; Louadj, L. Influence of crop season and cultivar on sterol composition of monovarietal olive oils in Reggio Calabria (Italy). Czech J. Food Sci., 2013, 31(3), 256-263.
[http://dx.doi.org/10.17221/136/2012-CJFS]
[123]
Eby, G.A.; Eby, K.L. Rapid recovery from major depression using magnesium treatment. Med. Hypotheses, 2006, 67(2), 362-370.
[http://dx.doi.org/10.1016/j.mehy.2006.01.047] [PMID: 16542786]
[124]
Dhiman, A.K.; Sharma, K.D.; Attri, S. Functional constitutents and processing of pumpkin: A review. J. Food Sci. Technol., 2009, 46(5), 411.
[125]
Chye, P.L. Traditional Asian folklore medicines in sexual health. Indian J. Urol., 2006, 22(3), 241.
[http://dx.doi.org/10.4103/0970-1591.27632]
[126]
Asfaram, S.; Fakhar, M.; Mirani, N.; Derakhshani-niya, M.; Valadan, R.; Ziaei Hezarjaribi, H.; Emadi, S.N. HRM-PCR is an accurate and sensitive technique for the diagnosis of cutaneous leishmaniasis as compared with conventional PCR. Acta Parasitol., 2020, 65(2), 310-316.
[http://dx.doi.org/10.2478/s11686-019-00154-5] [PMID: 31848842]
[127]
Gadisa, E.; Jote, K. Prevalence and factors associated with intestinal parasitic infection among under-five children in and around Haro Dumal Town, Bale Zone, Ethiopia. BMC Pediatr., 2019, 19(1), 385.
[http://dx.doi.org/10.1186/s12887-019-1731-0] [PMID: 31656180]
[128]
Grzybek, M.; Kukula-Koch, W.; Strachecka, A.; Jaworska, A.; Phiri, A.; Paleolog, J.; Tomczuk, K. Evaluation of anthelmintic activity and composition of pumpkin (Cucurbita pepo L.) seed extracts—in vitro and in vivo studies. Int. J. Mol. Sci., 2016, 17(9), 1456.
[http://dx.doi.org/10.3390/ijms17091456] [PMID: 27598135]
[129]
Abdel Aziz, A.R.; AbouLaila, M.R.; Aziz, M.; Omar, M.A.; Sultan, K. In vitro and in vivo anthelmintic activity of pumpkin seeds and pomegranate peels extracts against Ascaridia galli. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7(2), 231-234.
[http://dx.doi.org/10.1016/j.bjbas.2018.02.003]
[130]
Li, T.; Ito, A.; Chen, X.; Long, C.; Okamoto, M.; Raoul, F.; Giraudoux, P.; Yanagida, T.; Nakao, M.; Sako, Y.; Xiao, N.; Craig, P.S. Usefulness of pumpkin seeds combined with areca nut extract in community-based treatment of human taeniasis in northwest Sichuan Province, China. Acta Trop., 2012, 124(2), 152-157.
[http://dx.doi.org/10.1016/j.actatropica.2012.08.002] [PMID: 22910218]
[131]
Sengupta, R.; Banik, J. Comparative studies on anthelmintic potential of cucurbita maxima (PUMPKIN) seeds and carica papaya (PAPAYA) seeds. Int. J. Res. Ayurveda Pharm., 2013, 4(4), 530-532.
[http://dx.doi.org/10.7897/2277-4343.04415]
[132]
Xia, T.; Wang, Q. Antihyperglycemic effect of Cucurbita ficifolia fruit extract in streptozotocin-induced diabetic rats. Fitoterapia, 2006, 77(7-8), 530-533.
[http://dx.doi.org/10.1016/j.fitote.2006.06.008] [PMID: 16905276]
[133]
Dang, C. Effect of pumpkin distillable subject on lipid peroxidation and the activity of antioxidative enzyme induced by Plumbum in mouse. Zhongguo Linchuang Kangfu, 2004, 8, 4378-4379.
[134]
Xu, G.H. A study of the possible antitumour effect and immunom petence of pumpkin polysaccharide. J Wuhan Prof Med Coll., 2000, 28(4), 1-4.
[135]
Gossell-Williams, M.; Hyde, C.; Hunter, T.; Simms-Stewart, D.; Fletcher, H.; McGrowder, D.; Walters, C.A. Improvement in HDL cholesterol in postmenopausal women supplemented with pumpkin seed oil: Pilot study. Climacteric, 2011, 14(5), 558-564.
[http://dx.doi.org/10.3109/13697137.2011.563882] [PMID: 21545273]
[136]
Vahlensieck, W.; Theurer, C.; Pfitzer, E.; Patz, B.; Banik, N.; Engelmann, U. Effects of pumpkin seed in men with lower urinary tract symptoms due to benign prostatic hyperplasia in the one-year, randomized, placebo-controlled GRANU study. Urol. Int., 2015, 94(3), 286-295.
[http://dx.doi.org/10.1159/000362903] [PMID: 25196580]
[137]
Abdel-Rahman, M.K. Effect of pumpkin seed (Cucurbita pepo L.) diets on benign prostatic hyperplasia (BPH): chemical and morphometric evaluation in rats. World J Chem., 2006, 1(1), 33-40.
[138]
Leibbrand, M.; Siefer, S.; Schön, C.; Perrinjaquet-Moccetti, T.; Kompek, A.; Csernich, A.; Bucar, F.; Kreuter, M.H. Effects of an oil-free hydroethanolic pumpkin seed extract on symptom frequency and severity in men with benign prostatic hyperplasia: A pilot study in humans. J. Med. Food, 2019, 22(6), 551-559.
[http://dx.doi.org/10.1089/jmf.2018.0106] [PMID: 31017505]
[139]
Shirvan, M.K.; Mahboob, M.R.; Masuminia, M.; Mohammadi, S. Pumpkin seed oil (prostafit) or prazosin? Which one is better in the treatment of symptomatic benign prostatic hyperplasia. J. Pak. Med. Assoc., 2014, 64(6), 683-685.
[PMID: 25252490]
[140]
Vadivel, V.; Ravichandran, N.; Rajalakshmi, P.; Brindha, P.; Gopal, A.; Kumaravelu, C. Microscopic, phytochemical, HPTLC, GC-MS and NIRS methods to differentiate herbal adulterants: Pepper and papaya seeds. J. Herb. Med., 2018, 11, 36-45.
[http://dx.doi.org/10.1016/j.hermed.2018.01.004]
[141]
Bonatto, F.; Polydoro, M.; Andrades, M.É.; Júnior, M.L.C.F.; Dal-Pizzol, F.; Rotta, L.N.; Souza, D.O.; Perry, M.L.; Moreira, J.C.F. Effects of maternal protein malnutrition on oxidative markers in the young rat cortex and cerebellum. Neurosci. Lett., 2006, 406(3), 281-284.
[http://dx.doi.org/10.1016/j.neulet.2006.07.052] [PMID: 16930840]
[142]
Kayode, O.T.; Kayode, A.A.; Odetola, A.A. Therapeutic effect of Telfairia occidentalis on protein energy malnutrition-induced liver damage. Res. J. Med. Plant, 2009, 3(3), 80-92.
[http://dx.doi.org/10.3923/rjmp.2009.80.92]
[143]
Potukuchi, A.; Addepally, U.; Sindhu, K.; Manchala, R. Increased total DNA damage and oxidative stress in brain are associated with decreased longevity in high sucrose diet fed WNIN/Gr-Ob obese rats. Nutr. Neurosci., 2018, 21(9), 648-656.
[http://dx.doi.org/10.1080/1028415X.2017.1332509] [PMID: 28569623]
[144]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[145]
Kayode, A.A.A.; Kayode, O.T.; Odetola, A.A. Telfairia occidentalis ameliorates oxidative brain damage in malnorished rats. Int. J. Biol. Chem., 2009, 4(1), 10-18.
[http://dx.doi.org/10.3923/ijbc.2010.10.18]
[146]
Robert, R.; Paterson, M.; Lima, N. Toxicology of mycotoxins.Molecular, clinical and environmental toxicology; Luch, E., Ed.; , 2010, pp. 31-63.
[147]
Eraslan, G.; Kanbur, M.; Aslan, Ö.; Karabacak, M. The antioxidant effects of pumpkin seed oil on subacute aflatoxin poisoning in mice. Environ. Toxicol., 2013, 28(12), 681-688.
[http://dx.doi.org/10.1002/tox.20763] [PMID: 24591108]
[148]
Kessler, R.C.; Sampson, N.A.; Berglund, P.; Gruber, M.J.; Al-Hamzawi, A.; Andrade, L.; Bunting, B.; Demyttenaere, K.; Florescu, S.; de Girolamo, G.; Gureje, O.; He, Y.; Hu, C.; Huang, Y.; Karam, E.; Kovess-Masfety, V.; Lee, S.; Levinson, D.; Medina Mora, M.E.; Moskalewicz, J.; Nakamura, Y.; Navarro-Mateu, F.; Browne, M.A.O.; Piazza, M.; Posada-Villa, J.; Slade, T.; ten Have, M.; Torres, Y.; Vilagut, G.; Xavier, M.; Zarkov, Z.; Shahly, V.; Wilcox, M.A. Anxious and non-anxious major depressive disorder in the World Health Organization World Mental Health Surveys. Epidemiol. Psychiatr. Sci., 2015, 24(3), 210-226.
[http://dx.doi.org/10.1017/S2045796015000189] [PMID: 25720357]
[149]
Akindele, A.J.; Ajao, M.Y.; Aigbe, F.R.; Enumah, U.S. Effects of Telfairia occidentalis (fluted pumpkin; Cucurbitaceae) in mouse models of convulsion, muscle relaxation, and depression. J. Med. Food, 2013, 16(9), 810-816.
[http://dx.doi.org/10.1089/jmf.2012.0211] [PMID: 24044490]
[150]
Kaur, M.; Sharma, S. Development and nutritional evaluation of pumpkin seed (Cucurbita moschata) supplemented products. Food Sci. Res. J., 2017, 8(2), 310-318.
[http://dx.doi.org/10.15740/HAS/FSRJ/8.2/310-318]
[151]
Krause, D.; Myint, A.M.; Schuett, C.; Musil, R.; Dehning, S.; Cerovecki, A.; Riedel, M.; Arolt, V.; Schwarz, M.J.; Müller, N. High kynurenine (a tryptophan metabolite) predicts remission in patients with major depression to add-on treatment with celecoxib. Front. Psychiatry, 2017, 8, 16.
[http://dx.doi.org/10.3389/fpsyt.2017.00016] [PMID: 28243208]
[152]
Nkosi, C.Z.; Opoku, A.R.; Terblanche, S.E. Effect of pumpkin seed (Cucurbita pepo) protein isolate on the activity levels of certain plasma enzymes in CCl4-induced liver injury in low-protein fed rats. Phytother. Res., 2005, 19(4), 341-345.
[http://dx.doi.org/10.1002/ptr.1685] [PMID: 16041732]
[153]
Mohamed, R.A.; Ramadan, R.S.; Ahmed, L.A. Effect of substituting pumpkin seed protein isolate for casein on serum liver enzymes, lipid profile and antioxidant enzymes in CCl4-intoxicated rats. Adv. Biol. Res. (Faisalabad), 2009, 3(1-2), 9-15.
[154]
Nkosi, C.Z.; Opoku, A.R.; Terblanche, S.E. Antioxidative effects of pumpkin seed (Cucurbita pepo) protein isolate in CCl4-Induced liver injury in low-protein fed rats. Phytother. Res., 2006, 20(11), 935-940.
[http://dx.doi.org/10.1002/ptr.1977] [PMID: 16909447]
[155]
Nkosi, C.Z.; Opoku, A.R.; Terblanche, S.E. In vitro antioxidative activity of pumpkin seed (Cucurbita pepo) protein isolate and its in vivo effect on alanine transaminase and aspartate transaminase in acetaminophen-induced liver injury in low protein fed rats. Phytother. Res., 2006, 20(9), 780-783.
[http://dx.doi.org/10.1002/ptr.1958] [PMID: 16807884]
[156]
Toma, I.; Victory, N.C.; Kabir, Y. The effect of aqueous leaf extract of fluted pumpkin on some hematological parameters and liver enzymes in 2,4-dinitrophenylhydrazine- induced anemic rats. Afr. J. Biochem. Res., 2015, 9(7), 95-98.
[http://dx.doi.org/10.5897/AJBR2014.0771]
[157]
Farid, H.E.; El-Sayed, S.M.; Abozid, M.M. Pumpkin and sunflower seeds attenuate hyperglycemia and protect liver in alloxan-induced diabetic rats. Res. J. Pharm. Biol. Chem. Sci., 2015, 6(5), 1269-1279.
[158]
Chacko, K.R.; Reinus, J. Extrahepatic complications of non-alcoholic fatty liver disease. Clin. Liver Dis., 2016, 20(2), 387-401.
[http://dx.doi.org/10.1016/j.cld.2015.10.004] [PMID: 27063276]
[159]
Ferramosca, A.; Zara, V. Modulation of hepatic steatosis by dietary fatty acids. World J. Gastroenterol., 2014, 20(7), 1746-1755.
[http://dx.doi.org/10.3748/wjg.v20.i7.1746] [PMID: 24587652]
[160]
Schwab, U.; Lauritzen, L.; Tholstrup, T.; Haldorsson, T.I.; Riserus, U.; Uusitupa, M.; Becker, W. Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: A systematic review. Food Nutr. Res., 2014, 58(1), 25145.
[http://dx.doi.org/10.3402/fnr.v58.25145] [PMID: 25045347]
[161]
Rezig, L.; Chouaibi, M.; Msaada, K.; Hamdi, S. Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Ind. Crops Prod., 2012, 37(1), 82-87.
[http://dx.doi.org/10.1016/j.indcrop.2011.12.004]
[162]
Morrison, M.C.; Mulder, P.; Stavro, P.M.; Suárez, M.; Arola-Arnal, A.; van Duyvenvoorde, W.; Kooistra, T.; Wielinga, P.Y.; Kleemann, R. Replacement of dietary saturated fat by PUFA-rich pumpkin seed oil attenuates non-alcoholic fatty liver disease and atherosclerosis development, with additional health effects of virgin over refined oil. PLoS One, 2015, 10(9), e0139196.
[http://dx.doi.org/10.1371/journal.pone.0139196] [PMID: 26405765]
[163]
Skinder, D.; Zacharia, I.; Studin, J.; Covino, J. Benign prostatic hyperplasia. JAAPA, 2016, 29(8), 19-23.
[http://dx.doi.org/10.1097/01.JAA.0000488689.58176.0a] [PMID: 27367595]
[164]
Eddy, E.O.; Ukpong, J.A.; Ebenso, E.E. Lipids Characterization and industrial potentials of pumpkin seeds (Telfairia occidentalis) and cashew nuts (Anacardium occidentale). E-J. Chem., 2011, 8(4), 1986-1992.
[http://dx.doi.org/10.1155/2011/974343]
[165]
Irnawati, I.; Riyanto, S.; Martono, S.; Rohman, A. The employment of FTIR spectroscopy and chemometrics for the classification and prediction of antioxidant activities of pumpkin seed oils from different origins. J. Appl. Pharmaceut Sci., 2021, 11(5), 100-107.
[http://dx.doi.org/10.7324/JAPS.2021.110514]
[166]
Valdez-Arjona, L.P.; Ramírez-Mella, M. Pumpkin waste as livestock feed: Impact on nutrition and animal health and on quality of meat, milk, and egg. Animals, 2019, 9(10), 769.
[http://dx.doi.org/10.3390/ani9100769] [PMID: 31597395]
[167]
Dorantes-Jiménez, J.; Flota-Bañuelos, C.; Candelaria-Martínez, B.; Ramírez-Mella, M.; Crosby-Galván, M.M. Calabaza chihua (Cucurbita argyrosperma Huber), alternativa para alimentación animal en el trópico. Agro Product., 2016, 9(9), 33-37.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy