Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

A Comprehensive Review of the Docking Studies of Chalcone for the Development of Selective MAO-B Inhibitors

Author(s): Athulya Krishna, Sunil Kumar, Sachithra Thazhathuveedu Sudevan, Ashutosh Kumar Singh, Leena K. Pappachen*, T.M. Rangarajan, Mohamed A. Abdelgawad and Bijo Mathew*

Volume 23, Issue 6, 2024

Published on: 26 June, 2023

Page: [697 - 714] Pages: 18

DOI: 10.2174/1871527322666230515155000

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Monoamine oxidase B is a crucial therapeutic target for neurodegenerative disorders like Alzheimer's and Parkinson's since they assist in disintegrating neurotransmitters such as dopamine in the brain. Pursuing efficacious monoamine oxidase B inhibitors is a hot topic, as contemporary therapeutic interventions have many shortcomings. Currently available FDA-approved monoamine oxidase inhibitors like safinamide, selegiline and rasagiline also have a variety of side effects like depression and insomnia. In the quest for a potent monoamine oxidase B inhibitor, sizeable, diverse chemical entities have been uncovered, including chalcones. Chalcone is a renowned structural framework that has been intensively explored for its monoamine oxidase B inhibitory activity.The structural resemblance of chalcone (1,3-diphenyl-2-propen-1-one) based compounds and 1,4-diphenyl- 2-butene, a recognized MAO-B inhibitor, accounts for their MAO-B inhibitory activity. Therefore, multiple revisions to the chalcone scaffold have been attempted by the researchers to scrutinize the implications of substitutions onthe molecule's potency. In this work, we outline the docking investigation results of various chalcone analogues with monoamine oxidase B available in the literature until now to understand the interaction modes and influence of substituents. Here we focused on the interactions between reported chalcone derivatives and the active site of monoamine oxidase B and the influence of substitutions on those interactions. Detailed images illustrating the interactions and impact of the substituents or structural modifications on these interactions were used to support the docking results.

Keywords: Neurodegenerativedisorders, monoamine oxidase B, selective inhibitors, chalcone derivatives, docking interactions, structural modifications.

Graphical Abstract
[1]
Singer TP, Ramsay RR. Monoamine oxidases: Old friends hold many surprises. FASEB J 1995; 9(8): 605-10.
[http://dx.doi.org/10.1096/fasebj.9.8.7768351] [PMID: 7768351]
[2]
Ramsay RR. Inhibitor design for monoamine oxidases. Curr Pharm 2013; 19(14): 2529-39.
[http://dx.doi.org/10.2174/1381612811319140004] [PMID: 23116392]
[3]
Mellado M, Salas CO, Uriarte E, et al. Design, synthesis and docking calculations of prenylated chalcones as selective monoamine oxidase B inhibitors with antioxidant activity. ChemistrySelect 2019; 4(26): 7698-703.
[http://dx.doi.org/10.1002/slct.201901282]
[4]
Ramsay RR, Monoamine Oxidases R. Monoamine oxidases: The biochemistry of the proteins as targets in medicinal chemistry and drug discovery. Curr Top Med Chem 2012; 12(20): 2189-209.
[http://dx.doi.org/10.2174/156802612805219978] [PMID: 23231396]
[5]
Youdim MBH, Bakhle YS. Monoamine oxidase: Isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 2006; 147(S1) (Suppl. 1): S287-96.
[http://dx.doi.org/10.1038/sj.bjp.0706464] [PMID: 16402116]
[6]
Tipton KF. 90 years of monoamine oxidase: Some progress and some confusion. J Neural Transm (Vienna) 2018; 125(11): 1519-51.
[http://dx.doi.org/10.1007/s00702-018-1881-5] [PMID: 29637260]
[7]
Lum CT, Stahl SM. Opportunities for reversible inhibitors of monoamine oxidase-A (RIMAs) in the treatment of depression. CNS Spectr 2012; 17(3): 107-20.
[http://dx.doi.org/10.1017/S1092852912000594] [PMID: 23888494]
[8]
Naoi M, Maruyama W, Shamoto-Nagai M, Type A. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: From neurotransmitter imbalance to impaired neurogenesis. J Neural Transm (Vienna) 2018; 125(1): 53-66.
[http://dx.doi.org/10.1007/s00702-017-1709-8] [PMID: 28293733]
[9]
Youdim MBH, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 2006; 7(4): 295-309.
[http://dx.doi.org/10.1038/nrn1883] [PMID: 16552415]
[10]
Bortolato M, Chen K, Shih JC. Monoamine oxidase inactivation: From pathophysiology to therapeutics. Adv Drug Deliv Rev 2008; 60(13-14): 1527-33.
[http://dx.doi.org/10.1016/j.addr.2008.06.002] [PMID: 18652859]
[11]
Saura J, Luque JM, Cesura AM, et al. Increased monoamine oxidase b activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 1994; 62(1): 15-30.
[http://dx.doi.org/10.1016/0306-4522(94)90311-5] [PMID: 7816197]
[12]
Tripathi AC, Upadhyay S, Paliwal S, Saraf SK. Privileged scaffolds as MAO inhibitors: Retrospect and prospects. Eur J Med Chem 2018; 145: 445-97.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.003] [PMID: 29335210]
[13]
Meleddu R, Distinto S, Cirilli R, et al. Through scaffold modification to 3,5-diaryl-4,5-dihydroisoxazoles: New potent and selective inhibitors of monoamine oxidase B. J Enzyme Inhib Med Chem 2017; 32(1): 264-70.
[http://dx.doi.org/10.1080/14756366.2016.1247061] [PMID: 28097874]
[14]
Matos MJ, Vilar S, Gonzalez-Franco RM, et al. Novel (coumarin-3-yl)carbamates as selective MAO-B inhibitors: Synthesis, in vitro and in vivo assays, theoretical evaluation of ADME properties and docking study. Eur J Med Chem 2013; 63: 151-61.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.009] [PMID: 23474901]
[15]
De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A. Three-dimensional structure of human monoamine oxidase A (MAO A): Relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci USA 2005; 102(36): 12684-9.
[http://dx.doi.org/10.1073/pnas.0505975102] [PMID: 16129825]
[16]
Robakis D, Fahn S. Defining the role of the monoamine oxidase-B inhibitors for Parkinson’s disease. CNS Drugs 2015; 29(6): 433-41.
[http://dx.doi.org/10.1007/s40263-015-0249-8] [PMID: 26164425]
[17]
Binda C, Newton-Vinson P, Hubálek F, Edmondson DE, Mattevi A. Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Biol 2002; 9(1): 22-6.
[http://dx.doi.org/10.1038/nsb732] [PMID: 11753429]
[18]
Binda C, Wang J, Li M, Hubalek F, Mattevi A, Edmondson DE. Structural and mechanistic studies of arylalkylhydrazine inhibition of human monoamine oxidases A and B. Biochemistry 2008; 47(20): 5616-25.
[http://dx.doi.org/10.1021/bi8002814] [PMID: 18426226]
[19]
Edmondson DE, Binda C, Mattevi A. Structural insights into the mechanism of amine oxidation by monoamine oxidases A and B. Arch Biochem Biophys 2007; 464(2): 269-76.
[http://dx.doi.org/10.1016/j.abb.2007.05.006] [PMID: 17573034]
[20]
Binda C, Li M, Hubálek F, Restelli N, Edmondson DE, Mattevi A. Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proc Natl Acad Sci USA 2003; 100(17): 9750-5.
[http://dx.doi.org/10.1073/pnas.1633804100] [PMID: 12913124]
[21]
Gaweska H, Fitzpatrick PF. Structures and mechanism of the monoamine oxidase family. Biomol Concepts 2011; 2(5): 365-77.
[http://dx.doi.org/10.1515/BMC.2011.030] [PMID: 22022344]
[22]
Hubálek F, Binda C, Khalil A, et al. Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors. J Biol Chem 2005; 280(16): 15761-6.
[http://dx.doi.org/10.1074/jbc.M500949200] [PMID: 15710600]
[23]
Mathew B, Suresh J, Anbazghagan S, Paulraj J, Krishnan GK. Heteroaryl chalcones: Mini review about their therapeutic voyage. Biomedicine & Preventive Nutrition 2014; 4(3): 451-8.
[http://dx.doi.org/10.1016/j.bionut.2014.04.003]
[24]
Mathew B, Parambi DGT, Sivasankarapillai VS, et al. Perspective design of chalcones for the management of CNS disorders: A mini-review. CNS Neurol Disord Drug Targets 2019; 18(6): 432-45.
[http://dx.doi.org/10.2174/1871527318666190610111246] [PMID: 31187716]
[25]
Robinson SJ, Petzer JP, Petzer A, Bergh JJ, Lourens ACU. Selected furanochalcones as inhibitors of monoamine oxidase. Bioorg Med Chem Lett 2013; 23(17): 4985-9.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.050] [PMID: 23860591]
[26]
Mathew B, Haridas A, Suresh J, Mathew GE, Uçar G, Jayaprakash V. Monoamine oxidase inhibitory action of chalcones: A mini review. Cent Nerv Syst Agents Med Chem 2016; 16(2): 120-36.
[http://dx.doi.org/10.2174/1871524915666151002124443] [PMID: 26429556]
[27]
Kamal A, Prabhakar S, Janaki Ramaiah M, et al. Synthesis and anticancer activity of chalcone-pyrrolobenzodiazepine conjugates linked via 1,2,3-triazole ring side-armed with alkane spacers. Eur J Med Chem 2011; 46(9): 3820-31.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.050] [PMID: 21676506]
[28]
Luo Y, Song R, Li Y, et al. Design, synthesis, and biological evaluation of chalcone oxime derivatives as potential immunosuppressive agents. Bioorg Med Chem Lett 2012; 22(9): 3039-43.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.080] [PMID: 22494616]
[29]
Noorulhaq SSN, Baseer MA. Synthesis of new chalcone derivatives and their antimicrobial studies. AIP Conf Proc 2017; 1904(1): 020013.
[http://dx.doi.org/10.1063/1.5011870]
[30]
Pilatova M, Varinska L, Perjesi P, et al. In vitro antiproliferative and antiangiogenic effects of synthetic chalcone analogues. Toxicol In Vitro 2010; 24(5): 1347-55.
[http://dx.doi.org/10.1016/j.tiv.2010.04.013] [PMID: 20450969]
[31]
Alegaon SG, Alagawadi KR, Vinod D, Unger B, Khatib NA. Synthesis, pharmacophore modeling, and cytotoxic activity of 2-thioxothiazolidin-4-one derivatives. Med Chem Res 2014; 23(12): 5160-73.
[http://dx.doi.org/10.1007/s00044-014-1087-9]
[32]
Anto RJ, Kuttan G, Kuttan R, Sathyanarayana K, Rao MNA. Tumor-reducing and antioxidant activities of sydnone-substituted chalcones. J Clin Biochem Nutr 1994; 17(2): 73-80.
[http://dx.doi.org/10.3164/jcbn.17.73]
[33]
Polo E, Ibarra-Arellano N, Prent-Peñaloza L, et al. Ultrasound-assisted synthesis of novel chalcone, heterochalcone and bischalcone derivatives and the evaluation of their antioxidant properties and as acetylcholinesterase inhibitors. Bioorg Chem 2019; 90: 103034.
[http://dx.doi.org/10.1016/j.bioorg.2019.103034] [PMID: 31280015]
[34]
Burmaoglu S, Yilmaz AO, Polat MF, Kaya R, Gulcin İ, Algul O. Synthesis and biological evaluation of novel tris-chalcones as potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibitors. Bioorg Chem 2019; 85: 191-7.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.035] [PMID: 30622011]
[35]
Cho S, Kim S, Jin Z, et al. Isoliquiritigenin, a chalcone compound, is a positive allosteric modulator of GABAA receptors and shows hypnotic effects. Biochem Biophys Res Commun 2011; 413(4): 637-42.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.026] [PMID: 21945440]
[36]
Shalaby R, Petzer JP, Petzer A, et al. SAR and molecular mechanism studies of monoamine oxidase inhibition by selected chalcone analogs. J Enzyme Inhib Med Chem 2019; 34(1): 863-76.
[http://dx.doi.org/10.1080/14756366.2019.1593158] [PMID: 30915862]
[37]
Ferino G, Vilar S, Matos MJ, Uriarte E, Cadoni E. Monoamine oxidase inhibitors: Ten years of docking studies. Curr Top Med Chem 2012; 12(20): 2145-62.
[http://dx.doi.org/10.2174/156802612805220048] [PMID: 23231393]
[38]
Mathew B, Oh JM, Baty RS, et al. Piperazine-substituted chalcones: A new class of MAO-B, AChE, and BACE-1 inhibitors for the treatment of neurological disorders. Environ Sci Pollut Res Int 2021; 28(29): 38855-66.
[http://dx.doi.org/10.1007/s11356-021-13320-y] [PMID: 33743158]
[39]
Mathew B, Suresh J, Elizabeth Mathew G, Haridas A, Suresh G, Sabreena P. Synthesis, ADME studies, toxicity estimation, and exploration of molecular recognition of thiophene based chalcones towards monoamine oxidase-A and B. Beni Suef Univ J Basic Appl Sci 2016; 5(4): 396-401.
[http://dx.doi.org/10.1016/j.bjbas.2015.06.003]
[40]
Mathew B, Mathew GE, Uçar G, et al. Development of fluorinated methoxylated chalcones as selective monoamine oxidase-B inhibitors: Synthesis, biochemistry and molecular docking studies. Bioorg Chem 2015; 62: 22-9.
[http://dx.doi.org/10.1016/j.bioorg.2015.07.001] [PMID: 26189013]
[41]
Mathew B, Baek SC, Thomas Parambi DG, et al. Potent and highly selective dual‐targeting monoamine oxidase‐B inhibitors: Fluorinated chalcones of morpholine versus imidazole. Arch Pharm (Weinheim) 2019; 352(4): 1800309.
[http://dx.doi.org/10.1002/ardp.201800309] [PMID: 30663112]
[42]
Suresh J, Baek SC, Ramakrishnan SP, Kim H, Mathew B. Discovery of potent and reversible MAO-B inhibitors as furanochalcones. Int J Biol Macromol 2018; 108: 660-4.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.159] [PMID: 29195801]
[43]
Maliyakkal N, Baysal I, Tengli A, et al. Trimethoxy crown chalcones as multifunctional class of monoamine oxidase enzyme inhibitors. Comb Chem High Throughput Screen 2021; 24: 1-13.
[PMID: 34082669]
[44]
Reeta , Baek SC, Lee JP, et al. Ethyl acetohydroxamate incorporated chalcones: Unveiling a novel class of chalcones for multitarget monoamine oxidase-B inhibitors against Alzheimer’s disease. CNS Neurol Disord Drug Targets 2019; 18(8): 643-54.
[http://dx.doi.org/10.2174/1871527318666190906101326] [PMID: 31550216]
[45]
Parambi DGT, Oh JM, Baek SC, et al. Design, synthesis and biological evaluation of oxygenated chalcones as potent and selective MAO-B inhibitors. Bioorg Chem 2019; 93: 103335.
[http://dx.doi.org/10.1016/j.bioorg.2019.103335] [PMID: 31606547]
[46]
Mathew B, Ucar G, Yabanogclu-Ciftci S, et al. Development of fluorinated thienylchalcones as monoamine oxidase-b inhibitors: Design, synthesis, biological evaluation and molecular docking studies. Lett Org Chem 2015; 12(9): 605-13.
[http://dx.doi.org/10.2174/1570178612666150903213416]
[47]
Vishal VP, Oh JM, Khames A, et al. Trimethoxylated halogenated chalcones as dual inhibitors of MAO-B and BACE-1 for the treatment of neurodegenerative disorders. Pharmaceutics 2021; 13(6): 850.
[http://dx.doi.org/10.3390/pharmaceutics13060850] [PMID: 34201128]
[48]
Moya-Alvarado G, Yañez O, Morales N, et al. Coumarin-chalcone hybrids as inhibitors of MAO-B: Biological activity and in silico studies. Molecules 2021; 26(9): 2430.
[http://dx.doi.org/10.3390/molecules26092430] [PMID: 33921982]
[49]
Sang Z, Wang K, Shi J, Liu W, Tan Z. Design, synthesis, in-silico and biological evaluation of novel chalcone-O-carbamate derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem 2019; 178: 726-39.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.026] [PMID: 31229875]
[50]
Sasidharan R, Eom BH, Heo JH, et al. Morpholine-based chalcones as dual-acting monoamine oxidase-B and acetylcholinesterase inhibitors: Synthesis and biochemical investigations. J Enzyme Inhib Med Chem 2021; 36(1): 188-97.
[http://dx.doi.org/10.1080/14756366.2020.1842390] [PMID: 33430657]
[51]
Oh JM, Kang MG, Hong A, et al. Potent and selective inhibition of human monoamine oxidase-B by 4-dimethylaminochalcone and selected chalcone derivatives. Int J Biol Macromol 2019; 137: 426-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.167] [PMID: 31271801]
[52]
Mathew B, Uçar G, Mathew GE, et al. Monoamine oxidase inhibitory activity: Methyl- versus chlorochalcone derivatives. ChemMedChem 2016; 11(24): 2649-55.
[http://dx.doi.org/10.1002/cmdc.201600497] [PMID: 27902880]
[53]
Jeong GS, Kaipakasseri S, Lee SR, et al. Selected 1,3‐benzodioxine‐containing chalcones as multipotent oxidase and acetylcholinesterase inhibitors. ChemMedChem 2020; 15(23): 2257-63.
[http://dx.doi.org/10.1002/cmdc.202000491] [PMID: 32924264]
[54]
Mathew B, Mathew GE, Uçar G, et al. Potent and selective monoamine oxidase-B inhibitory activity: Fluoro- vs. Trifluoromethyl-4-hydroxylated chalcone derivatives. Chem Biodivers 2016; 13(8): 1046-52.
[http://dx.doi.org/10.1002/cbdv.201500367] [PMID: 27402375]
[55]
Iacovino LG, Pinzi L, Facchetti G, et al. Promising non-cytotoxic monosubstituted chalcones to target monoamine oxidase-B. ACS Med Chem Lett 2021; 12(7): 1151-8.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00238] [PMID: 34262643]
[56]
Lakshminarayanan B, Baek SC, Lee JP, et al. Ethoxylated head of chalcones as a new class of multi‐targeted MAO inhibitors. ChemistrySelect 2019; 4(21): 6614-9.
[http://dx.doi.org/10.1002/slct.201901093]
[57]
Bai P, Wang K, Zhang P, et al. Development of chalcone-O-alkylamine derivatives as multifunctional agents against Alzheimer’s disease. Eur J Med Chem 2019; 183: 111737.
[http://dx.doi.org/10.1016/j.ejmech.2019.111737] [PMID: 31581002]
[58]
Sang Z, Song Q, Cao Z, Deng Y, Tan Z, Zhang L. Design, synthesis and evaluation of novel dimethylamino chalcone-O-alkylamines derivatives as potential multifunctional agents against Alzheimer’s disease. Eur J Med Chem 2021; 216: 113310.
[http://dx.doi.org/10.1016/j.ejmech.2021.113310] [PMID: 33667847]
[59]
Zhang X, Song Q, Cao Z, et al. Design, synthesis and evaluation of chalcone Mannich base derivatives as multifunctional agents for the potential treatment of Alzheimer’s disease. Bioorg Chem 2019; 87: 395-408.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.043] [PMID: 30921741]
[60]
Kong Z, Sun D, Jiang Y, Hu Y. Design, synthesis, and evaluation of 1, 4-benzodioxan-substituted chalcones as selective and reversible inhibitors of human monoamine oxidase B. J Enzyme Inhib Med Chem 2020; 35(1): 1513-23.
[http://dx.doi.org/10.1080/14756366.2020.1797711] [PMID: 32705910]
[61]
Oh JM, Rangarajan TM, Chaudhary R, et al. Novel class of chalcone oxime ethers as potent monoamine oxidase-B and acetylcholinesterase inhibitors. Molecules 2020; 25(10): 2356.
[http://dx.doi.org/10.3390/molecules25102356] [PMID: 32443652]
[62]
Nel MS, Petzer A, Petzer JP, Legoabe LJ. 2-Heteroarylidene-1-indanone derivatives as inhibitors of monoamine oxidase. Bioorg Chem 2016; 69: 20-8.
[http://dx.doi.org/10.1016/j.bioorg.2016.09.004] [PMID: 27662218]
[63]
Tian C, Qiang X, Song Q, et al. Flurbiprofen-chalcone hybrid Mannich base derivatives as balanced multifunctional agents against Alzheimer’s disease: Design, synthesis and biological evaluation. Bioorg Chem 2020; 94: 103477.
[http://dx.doi.org/10.1016/j.bioorg.2019.103477] [PMID: 31818478]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy