Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

泛癌分析确定HSPA5的预后分析和免疫浸润

卷 24, 期 1, 2024

发表于: 31 May, 2023

页: [14 - 27] 页: 14

弟呕挨: 10.2174/1568009623666230508111721

价格: $65

conference banner
摘要

背景:热休克70kDa蛋白5 (HSPA5),也称为GRP78,在大多数恶性细胞中广泛表达,并已被证明通过将大多数恶性肿瘤转移到细胞膜上,在大多数恶性肿瘤的扩散中起重要作用。高水平的HSPA5可促进肿瘤生长和迁移,抑制细胞凋亡,与预后密切相关,可作为多种恶性肿瘤的独立预后标志物。因此,利用泛癌症研究来检测HSPA5至关重要,这可能会发现新的癌症治疗靶点。 方法:GTEx和TCGA数据库都提供了HSPA5在不同组织中表达量不同的证据。临床蛋白质组学肿瘤分析联盟(CPTAC)评估了HSPA5蛋白的表达水平,而qPCR研究也评估了某些肿瘤中HSPA5 mRNA的表达。使用Kaplan-Meier方法研究HSPA5如何影响恶性肿瘤的总生存期和无病生存期。采用GEPIA2研究HSPA5表达与肿瘤临床分期的相关性。肿瘤免疫系统相互作用数据库(TISIDB)检测了HSPA5在分子和肿瘤免疫亚型中的表达。从STRING数据库中提取HSPA5共表达基因,并在TIMER数据库中鉴定出33种癌症中HSPA5共表达前5位的基因。进一步的研究检验了肿瘤突变与HSPA5之间的关系。微卫星不稳定性(MSI)和肿瘤突变负荷(TMB)是主要的研究领域。利用TIMER数据库探讨HSPA5 mRNA表达与免疫浸润的关系。此外,通过Linkedomics数据库,我们检测了胶质母细胞瘤中GO和KEGG对HSPA5的富集。最后,利用聚类分析工具进行GSEA功能富集研究。 结果:研究发现,在所有23种肿瘤组织中,HSPA5 mRNA的表达均高于同等正常组织,通过生存图观察到,在大多数癌症中,HSPA5的高表达似乎与不良预后密切相关。在肿瘤临床分期显示图中,HSPA5在大多数肿瘤中均有差异表达。HSPA5与肿瘤突变负荷(TMB)和微卫星不稳定性(MSI)密切相关。癌相关成纤维细胞(CAFs)浸润与HSPA5密切相关,9种免疫亚型恶性肿瘤和7种分子亚型恶性肿瘤也是如此。根据GO和KEGG富集分析结果,HSPA5在GBM中主要参与中性粒细胞介导的免疫和胶原代谢活动。此外,HSPA5及其相关基因的GSEA富集分析表明,HSPA5与肿瘤的免疫环境、细胞分裂和神经系统调节之间存在实质性联系。通过qPCR,我们能够进一步证实在GBM、COAD、LUAD和CESC细胞系中表达增强。 结论:我们的生物信息学研究使我们假设HSPA5可能参与免疫浸润以及肿瘤的生长和进展。此外,我们还发现HSPA5的差异表达与癌症预后不良有关,神经系统、肿瘤免疫微环境和细胞分裂是潜在的影响因素。因此,HSPA5 mRNA和相关蛋白可能被用作一系列恶性肿瘤的治疗靶点和可能的预后标志物。

关键词: 热休克70kDa蛋白5(HSPA5),癌症相关成纤维细胞,免疫浸润,微卫星不稳定性,肿瘤突变负担,细胞分裂。

图形摘要
[1]
Wisniewska, M.; Karlberg, T.; Lehtiö, L.; Johansson, I.; Kotenyova, T.; Moche, M.; Schüler, H. Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B′ and HSPA5/BiP/GRP78. PLoS One, 2010, 5(1), e8625.
[http://dx.doi.org/10.1371/journal.pone.0008625] [PMID: 20072699]
[2]
Hernandez, I.; Cohen, M. Linking cell-surface GRP78 to cancer: From basic research to clinical value of GRP78 antibodies. Cancer Lett., 2022, 524, 1-14.
[http://dx.doi.org/10.1016/j.canlet.2021.10.004] [PMID: 34637844]
[3]
Farshbaf, M.; Khosroushahi, A.Y.; Mojarad-Jabali, S.; Zarebkohan, A.; Valizadeh, H.; Walker, P.R. Cell surface GRP78: An emerging imaging marker and therapeutic target for cancer. J. Control. Release, 2020, 328, 932-941.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.055] [PMID: 33129921]
[4]
Zhang, L.H.; Zhang, X. Roles of GRP78 in physiology and cancer. J. Cell. Biochem., 2010, 110(6), 1299-1305.
[http://dx.doi.org/10.1002/jcb.22679] [PMID: 20506407]
[5]
Gopal, U.; Mowery, Y.; Young, K.; Pizzo, S.V. Targeting cell surface GRP78 enhances pancreatic cancer radiosensitivity through YAP/TAZ protein signaling. J. Biol. Chem., 2019, 294(38), 13939-13952.
[http://dx.doi.org/10.1074/jbc.RA119.009091] [PMID: 31358620]
[6]
Gopal, U.; Pizzo, S.V. Cell surface GRP78 signaling: An emerging role as a transcriptional modulator in cancer. J. Cell. Physiol., 2021, 236(4), 2352-2363.
[http://dx.doi.org/10.1002/jcp.30030] [PMID: 32864780]
[7]
Fu, R.; Yang, P.; Wu, H.L.; Li, Z.W.; Li, Z.Y. GRP78 secreted by colon cancer cells facilitates cell proliferation via PI3K/Akt signaling. Asian Pac. J. Cancer Prev., 2014, 15(17), 7245-7249.
[http://dx.doi.org/10.7314/APJCP.2014.15.17.7245] [PMID: 25227822]
[8]
Moradi-Marjaneh, R.; Paseban, M.; Moradi Marjaneh, M. Hsp70 inhibitors: Implications for the treatment of colorectal cancer. IUBMB Life, 2019, 71(12), 1834-1845.
[http://dx.doi.org/10.1002/iub.2157] [PMID: 31441584]
[9]
Suyama, K.; Watanabe, M.; Sakabe, K.; Otomo, A.; Okada, Y.; Terayama, H.; Imai, T.; Mochida, J. GRP78 suppresses lipid peroxidation and promotes cellular antioxidant levels in glial cells following hydrogen peroxide exposure. PLoS One, 2014, 9(1), e86951.
[http://dx.doi.org/10.1371/journal.pone.0086951] [PMID: 24475200]
[10]
Markouli, M.; Strepkos, D.; Papavassiliou, A.G.; Piperi, C. Targeting of Endoplasmic Reticulum (ER) stress in gliomas. Pharmacol. Res., 2020, 157, 104823.
[http://dx.doi.org/10.1016/j.phrs.2020.104823] [PMID: 32305494]
[11]
Xia, S.; Duan, W.; Liu, W.; Zhang, X.; Wang, Q. GRP78 in lung cancer. J. Transl. Med., 2021, 19(1), 118.
[http://dx.doi.org/10.1186/s12967-021-02786-6] [PMID: 33743739]
[12]
Ninkovic, S.; Harrison, S.J.; Quach, H. Glucose-Regulated Protein 78 (GRP78) as a potential novel biomarker and therapeutic target in multiple myeloma. Expert Rev. Hematol., 2020, 13(11), 1201-1210.
[http://dx.doi.org/10.1080/17474086.2020.1830372] [PMID: 32990063]
[13]
Chen, H.A.; Chang, Y.W.; Tseng, C.F.; Chiu, C.F.; Hong, C.C.; Wang, W.; Wang, M.Y.; Hsiao, M.; Ma, J.T.; Chen, C.H.; Jiang, S.S.; Wu, C.H.; Hung, M.C.; Huang, M.T.; Su, J.L. E1A-mediated inhibition of HSPA5 suppresses cell migration and invasion in triple-negative breast cancer. Ann. Surg. Oncol., 2015, 22(3), 889-898.
[http://dx.doi.org/10.1245/s10434-014-4061-3] [PMID: 25212833]
[14]
Teng, Y.; Ai, Z.; Wang, Y.; Wang, J.; Luo, L. Proteomic identification of PKM2 and HSPA5 as potential biomarkers for predicting high-risk endometrial carcinoma. J. Obstet. Gynaecol. Res., 2013, 39(1), 317-325.
[http://dx.doi.org/10.1111/j.1447-0756.2012.01970.x] [PMID: 22889453]
[15]
Hamada, M.; Inaba, H.; Nishiyama, K.; Yoshida, S.; Yura, Y.; Matsumoto-Nakano, M.; Uzawa, N. Prognostic association of starvation-induced gene expression in head and neck cancer. Sci. Rep., 2021, 11(1), 19130.
[http://dx.doi.org/10.1038/s41598-021-98544-1] [PMID: 34580365]
[16]
Niu, Z.; Wang, M.; Zhou, L.; Yao, L.; Liao, Q.; Zhao, Y. Elevated GRP78 expression is associated with poor prognosis in patients with pancreatic cancer. Sci. Rep., 2015, 5(1), 16067.
[http://dx.doi.org/10.1038/srep16067] [PMID: 26530532]
[17]
Wen, X.; Chen, X.; Chen, X. Increased expression of GRP78 correlates with adverse outcome in recurrent glioblastoma multiforme patients. Turk Neurosurg., 2020, 30(1), 11-16.
[PMID: 30649790]
[18]
Zheng, H.; Takahashi, H.; Li, X.; Hara, T.; Masuda, S.; Guan, Y.; Takano, Y. Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas. Hum. Pathol., 2008, 39(7), 1042-1049.
[http://dx.doi.org/10.1016/j.humpath.2007.11.009] [PMID: 18482745]
[19]
Rui, L.; Gu, Y.; He, W.; Wang, Y.; Huang, J.; Zheng, H.; Su, R.; Luan, Z. Secreted GRP78 activates EGFR-SRC-STAT3 signaling and confers the resistance to sorafeinib in HCC cells. Oncotarget, 2017, 8(12), 19354-19364.
[20]
Bailly, C.; Waring, M.J. Pharmacological effectors of GRP78 chaperone in cancers. Biochem. Pharmacol., 2019, 163, 269-278.
[http://dx.doi.org/10.1016/j.bcp.2019.02.038] [PMID: 30831072]
[21]
Uckun, F.M.; Qazi, S.; Ozer, Z.; Garner, A.L.; Pitt, J.; Ma, H.; Janda, K.D. Inducing apoptosis in chemotherapy-resistant B-lineage acute lymphoblastic leukaemia cells by targeting HSPA5, a master regulator of the anti-apoptotic unfolded protein response signalling network. Br. J. Haematol., 2011, 153(6), 741-752.
[http://dx.doi.org/10.1111/j.1365-2141.2011.08671.x] [PMID: 21517817]
[22]
Rosati, E.; Sabatini, R.; Rampino, G.; De Falco, F.; Di Ianni, M.; Falzetti, F.; Fettucciari, K.; Bartoli, A.; Screpanti, I.; Marconi, P. Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL. Blood, 2010, 116(15), 2713-2723.
[http://dx.doi.org/10.1182/blood-2010-03-275628] [PMID: 20628148]
[23]
Roué, G.; Pérez-Galán, P.; Mozos, A.; López-Guerra, M.; Xargay-Torrent, S.; Rosich, L.; Saborit-Villarroya, I.; Normant, E.; Campo, E.; Colomer, D. The Hsp90 inhibitor IPI-504 overcomes bortezomib resistance in mantle cell lymphoma in vitro and in vivo by down-regulation of the prosurvival ER chaperone BiP/Grp78. Blood, 2011, 117(4), 1270-1279.
[http://dx.doi.org/10.1182/blood-2010-04-278853] [PMID: 21106982]
[24]
Rich, J.T.; Neely, J.G.; Paniello, R.C.; Voelker, C.C.J.; Nussenbaum, B.; Wang, E.W. A practical guide to understanding Kaplan‐Meier curves. Otolaryngol. Head Neck Surg., 2010, 143(3), 331-336.
[http://dx.doi.org/10.1016/j.otohns.2010.05.007] [PMID: 20723767]
[25]
Hess, A.S.; Hess, J.R. Kaplan–Meier survival curves. Transfusion, 2020, 60(4), 670-672.
[http://dx.doi.org/10.1111/trf.15725] [PMID: 32077507]
[26]
Li, Q.; Pan, Y.; Cao, Z.; Zhao, S. Comprehensive analysis of prognostic value and immune infiltration of chromobox family members in colorectal cancer. Front. Oncol., 2020, 10, 582667.
[http://dx.doi.org/10.3389/fonc.2020.582667] [PMID: 33014884]
[27]
Ru, B.; Wong, C.N.; Tong, Y.; Zhong, J.Y.; Zhong, S.S.W.; Wu, W.C.; Chu, K.C.; Wong, C.Y.; Lau, C.Y.; Chen, I.; Chan, N.W.; Zhang, J. TISIDB: An integrated repository portal for tumor-immune system interactions. Bioinformatics, 2019, 35(20), 4200-4202.
[http://dx.doi.org/10.1093/bioinformatics/btz210] [PMID: 30903160]
[28]
Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res., 2017, 77(21), e108-e110.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0307] [PMID: 29092952]
[29]
Mering, C.; Huynen, M.; Jaeggi, D.; Schmidt, S.; Bork, P.; Snel, B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res., 2003, 31(1), 258-261.
[http://dx.doi.org/10.1093/nar/gkg034] [PMID: 12519996]
[30]
Vasaikar, S.V.; Straub, P.; Wang, J.; Zhang, B. LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res., 2018, 46(D1), D956-D963.
[http://dx.doi.org/10.1093/nar/gkx1090] [PMID: 29136207]
[31]
Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol., 2020, 17(8), 807-821.
[http://dx.doi.org/10.1038/s41423-020-0488-6] [PMID: 32612154]
[32]
Mao, X.; Xu, J.; Wang, W.; Liang, C.; Hua, J.; Liu, J.; Zhang, B.; Meng, Q.; Yu, X.; Shi, S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol. Cancer, 2021, 20(1), 131.
[http://dx.doi.org/10.1186/s12943-021-01428-1] [PMID: 34635121]
[33]
Asif, P.J.; Longobardi, C.; Hahne, M.; Medema, J.P. The role of cancer-associated fibroblasts in cancer invasion and metastasis. Cancers (Basel), 2021, 13(18), 4720.
[http://dx.doi.org/10.3390/cancers13184720] [PMID: 34572947]
[34]
Jenifer, B.G.; Reginald, H. GRP78 influences chemoresistance and prognosis in Cancer. Curr. Drug Targets, 2017, 19(6), 701-708.
[35]
Karali, E.; Bellou, S.; Stellas, D.; Klinakis, A.; Murphy, C.; Fotsis, T. VEGF Signals through ATF6 and PERK to promote endothelial cell survival and angiogenesis in the absence of ER stress. Mol. Cell, 2014, 54(4), 559-572.
[http://dx.doi.org/10.1016/j.molcel.2014.03.022] [PMID: 24746698]
[36]
Nagelkerke, A.; Bussink, J.; Sweep, F.C.; Span, P.N. The unfolded protein response as a target for cancer therapy. Biochim. Biophys. Acta, 2014, 1846(2), 277-284.
[PMID: 25069067]
[37]
Misra, U.K.; Kaczowka, S.; Pizzo, S.V. Inhibition of NF-κB1 and NF-κB2 activation in prostate cancer cells treated with antibody against the carboxyl terminal domain of GRP78: Effect of p53 upregulation. Biochem. Biophys. Res. Commun., 2010, 392(4), 538-542.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.058] [PMID: 20097177]
[38]
Yao, X.; Liu, H.; Zhang, X.; Zhang, L.; Li, X.; Wang, C.; Sun, S. Cell surface GRP78 accelerated breast cancer cell proliferation and migration by activating STAT3. PLoS One, 2015, 10(5), e0125634.
[http://dx.doi.org/10.1371/journal.pone.0125634] [PMID: 25973748]
[39]
Dang, C.V.; O’Donnell, K.A.; Zeller, K.I.; Nguyen, T.; Osthus, R.C.; Li, F. The c-Myc target gene network. Semin. Cancer Biol., 2006, 16(4), 253-264.
[http://dx.doi.org/10.1016/j.semcancer.2006.07.014] [PMID: 16904903]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy