Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Updates on Oncogenic Signaling of Aurora Kinases in Chemosensitive, Chemoresistant Cancers: Novel Medicinal Chemistry Approaches for Targeting Aurora Kinases

Author(s): Pooja Kumari, Narasimha Murthy Beeraka, Anandkumar Tengli*, Gurupadayya Bannimath, Ramandeep Kaur Baath and Mayuri Patil

Volume 31, Issue 23, 2024

Published on: 07 July, 2023

Page: [3502 - 3528] Pages: 27

DOI: 10.2174/0929867330666230503124408

Price: $65

conference banner
Abstract

The Aurora Kinase family (AKI) is composed of serine-threonine protein kinases involved in the modulation of the cell cycle and mitosis. These kinases are required for regulating the adherence of hereditary-related data. Members of this family can be categorized into aurora kinase A (Ark-A), aurora kinase B (Ark-B), and aurora kinase C (Ark-C), consisting of highly conserved threonine protein kinases. These kinases can modulate cell processes such as spindle assembly, checkpoint pathway, and cytokinesis during cell division. The main aim of this review is to explore recent updates on the oncogenic signaling of aurora kinases in chemosensitive/chemoresistant cancers and to explore the various medicinal chemistry approaches to target these kinases. We searched Pubmed, Scopus, NLM, Pubchem, and Relemed to obtain information pertinent to the updated signaling role of aurora kinases and medicinal chemistry approaches and discussed the recently updated roles of each aurora kinases and their downstream signaling cascades in the progression of several chemosensitive/chemoresistant cancers; subsequently, we discussed the natural products (scoulerine, Corynoline, Hesperidin Jadomycin-B, fisetin), and synthetic, medicinal chemistry molecules as aurora kinase inhibitors (AKIs). Several natural products' efficacy was explained as AKIs in chemosensitization and chemoresistant cancers. For instance, novel triazole molecules have been used against gastric cancer, whereas cyanopyridines are used against colorectal cancer and trifluoroacetate derivatives could be used for esophageal cancer. Furthermore, quinolone hydrazine derivatives can be used to target breast cancer and cervical cancer. In contrast, the indole derivatives can be preferred to target oral cancer whereas thiosemicarbazone-indole could be used against prostate cancer, as reported in an earlier investigation against cancerous cells. Moreover, these chemical derivatives can be examined as AKIs through preclinical studies. In addition, the synthesis of novel AKIs through these medicinal chemistry substrates in the laboratory using in silico and synthetic routes could be beneficial to develop prospective novel AKIs to target chemoresistant cancers. This study is beneficial to oncologists, chemists, and medicinal chemists to explore novel chemical moiety synthesis to target specifically the peptide sequences of aurora kinases in several chemoresistant cancer cell types.

Keywords: Aurora kinases, downstream signalling, carcinomas, chemosensitization, chemoresistance, natural products, medicinal chemistry.

[1]
Health enews-A news service from Advocate Aurora Health. Available from: https://www.ahchealthenews.com/(Accessed on: 2021 Jul 8).
[2]
Koh, H.M.; Jang, B.G.; Hyun, C.L.; Kim, Y.S.; Hyun, J.W.; Chang, W.Y.; Maeng, Y.H. Aurora Kinase A is a prognostic marker in colorectal adenocarcinoma. J. Pathol. Transl. Med., 2017, 51(1), 32-39.
[http://dx.doi.org/10.4132/jptm.2016.10.17] [PMID: 28013532]
[3]
Katsha, A.; Belkhiri, A.; Goff, L.; El-Rifai, W. Aurora kinase A in gastrointestinal cancers: Time to target. Mol. Cancer, 2015, 14(1), 106.
[http://dx.doi.org/10.1186/s12943-015-0375-4] [PMID: 25987188]
[4]
Goos, J.A.C.M.; Coupe, V.M.H.; Diosdado, B.; Delis-Van Diemen, P.M.; Karga, C.; Beliën, J.A.M.; Carvalho, B.; van den Tol, M.P.; Verheul, H.M.W.; Geldof, A.A.; Meijer, G.A.; Hoekstra, O.S.; Fijneman, R.J.A. Aurora kinase A (AURKA) expression in colorectal cancer liver metastasis is associated with poor prognosis. Br. J. Cancer, 2013, 109(9), 2445-2452.
[http://dx.doi.org/10.1038/bjc.2013.608] [PMID: 24104968]
[5]
Kivinummi, K.; Urbanucci, A.; Leinonen, K.; Tammela, T.L.J.; Annala, M.; Isaacs, W.B.; Bova, G.S.; Nykter, M.; Visakorpi, T. The expression of AURKA is androgen regulated in castration-resistant prostate cancer. Sci. Rep., 2017, 7(1), 17978.
[http://dx.doi.org/10.1038/s41598-017-18210-3] [PMID: 29269934]
[6]
Lo Iacono, M.; Monica, V.; Saviozzi, S.; Ceppi, P.; Bracco, E.; Papotti, M.; Scagliotti, G.V. Aurora Kinase A expression is associated with lung cancer histological-subtypes and with tumor de-differentiation. J. Transl. Med., 2011, 9(1), 100.
[http://dx.doi.org/10.1186/1479-5876-9-100] [PMID: 21718475]
[7]
D’Assoro, A.B.; Haddad, T.; Galanis, E. Aurora-A Kinase as a promising therapeutic target in cancer. Front. Oncol., 2016, 5(1), 295.
[http://dx.doi.org/10.3389/fonc.2015.00295] [PMID: 26779440]
[8]
Baldini, E; D’Armiento, M; Ulisse, S. A new aurora in anaplastic thyroid cancer therapy. Int J Endocrinol., 2014, 2014, 816430.
[http://dx.doi.org/10.1155/2014/816430]
[9]
Tang, A.; Gao, K.; Chu, L.; Zhang, R.; Yang, J.; Zheng, J. Aurora kinases: Novel therapy targets in cancers. Oncotarget, 2017, 8(14), 23937-23954.
[http://dx.doi.org/10.18632/oncotarget.14893]
[10]
Goldenson, B.; Crispino, J.D. The aurora kinases in cell cycle and leukemia. Oncogene, 2015, 34(5), 537-545.
[http://dx.doi.org/10.1038/onc.2014.14] [PMID: 24632603]
[11]
Mobley, A; Zhang, S; Bondaruk, J; Wang, Y; Majewski, T; Caraway, NP Aurora Kinase A is a biomarker for bladder cancer detection and contributes to its aggressive behavior. Sci Rep., 2017, 7, 40714.
[http://dx.doi.org/10.1038/srep40714]
[12]
Eterno, V.; Zambelli, A.; Villani, L.; Tuscano, A.; Manera, S.; Spitaleri, A.; Pavesi, L.; Amato, A. AURKA controls self-renewal of breast cancer-initiating cells promoting wnt3a stabilization through suppression of miR-128. Sci. Rep., 2016, 6(1), 28436.
[http://dx.doi.org/10.1038/srep28436] [PMID: 27341528]
[13]
Mignogna, C.; Staropoli, N.; Botta, C.; De Marco, C.; Rizzuto, A.; Morelli, M.; Di Cello, A.; Franco, R.; Camastra, C.; Presta, I.; Malara, N.; Salvino, A.; Tassone, P.; Tagliaferri, P.; Barni, T.; Donato, G.; Di Vito, A. Aurora Kinase A expression predicts platinum-resistance and adverse outcome in high-grade serous ovarian carcinoma patients. J. Ovarian Res., 2016, 9(1), 31.
[http://dx.doi.org/10.1186/s13048-016-0238-7] [PMID: 27209210]
[14]
Katsha, A.; Arras, J.; Soutto, M.; Belkhiri, A.; El-Rifai, W. AURKA regulates JAK2-STAT3 activity in human gastric and esophageal cancers. Mol. Oncol., 2014, 8(8), 1419-1428.
[http://dx.doi.org/10.1016/j.molonc.2014.05.012] [PMID: 24953013]
[15]
Zhang, H.; Bao, J.; Zhao, S.; Huo, Z.; Li, B. MicroRNA-490-3p suppresses hepatocellular carcinoma cell proliferation and migration by targeting the aurora kinase A gene (AURKA). Arch. Med. Sci., 2020, 16(2), 395-406.
[http://dx.doi.org/10.5114/aoms.2019.91351] [PMID: 32190151]
[16]
Furukawa, T.; Kanai, N.; Shiwaku, H.O.; Soga, N.; Uehara, A.; Horii, A. AURKA is one of the downstream targets of MAPK1/ERK2 in pancreatic cancer. Oncogene, 2006, 25(35), 4831-4839.
[http://dx.doi.org/10.1038/sj.onc.1209494] [PMID: 16532023]
[17]
Pokuri V.K.; Opyrchal M.; Boland P.M. Aurora Kinase A and gastrointestinal malignancies. Int. J. Cancer Res. Mol. Mech., 2015, 1(3), 1-7.
[18]
Yamada, M; Hirotsune, S; Wynshaw-Boris, A The essential role of LIS1, NDEL1 and Aurora-A in polarity formation and microtubule organization during neurogensis. Cell Adh Migr., 2010, 4(2), 180.
[19]
Wang, F.; Wang, L.; Fisher, L.A.; Li, C.; Wang, W.; Peng, A. Phosphatase 1 nuclear targeting subunit (PNUTS) regulates aurora kinases and mitotic progression. Mol. Cancer Res., 2019, 17(1), 10-19.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0670] [PMID: 30190438]
[20]
Huang, Y.; Li, T.; Ems-McClung, S.C.; Walczak, C.E.; Prigent, C.; Zhu, X.; Zhang, X.; Zheng, Y. Aurora A activation in mitosis promoted by BuGZ. J. Cell Biol., 2018, 217(1), 107-116.
[http://dx.doi.org/10.1083/jcb.201706103] [PMID: 29074706]
[21]
Liu, L.; Guo, C.; Dammann, R.; Tommasi, S.; Pfeifer, G.P. RASSF1A interacts with and activates the mitotic kinase Aurora-A. Oncogenes, 2008, 27(47), 6175-6186.
[http://dx.doi.org/10.1038/onc.2008.220]
[22]
Satinover, D.L.; Leach, C.A.; Stukenberg, P.T.; Brautigan, D.L. Activation of Aurora-A kinase by protein phosphatase inhibitor-2, a bifunctional signaling protein. Proc. Natl. Acad. Sci. USA, 2004, 101(23), 8625-8630.
[http://dx.doi.org/10.1073/pnas.0402966101] [PMID: 15173575]
[23]
Zhao, Z.; Lim, J.P.; Ng, Y.W.; Lim, L.; Manser, E. The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol. Cell, 2005, 20(2), 237-249.
[http://dx.doi.org/10.1016/j.molcel.2005.08.035] [PMID: 16246726]
[24]
Shao, S.; Wang, Y.; Jin, S.; Song, Y.; Wang, X.; Fan, W.; Zhao, Z.; Fu, M.; Tong, T.; Dong, L.; Fan, F.; Xu, N.; Zhan, Q. Gadd45a interacts with aurora-A and inhibits its kinase activity. J. Biol. Chem., 2006, 281(39), 28943-28950.
[http://dx.doi.org/10.1074/jbc.M600235200] [PMID: 16772293]
[25]
Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle. Early Detection Research Network, Available from: https://edrn.nci.nih.gov/data-and-resources/publications/11551964-interaction-and-feedback-regulation (Accessed on: 2022 Aug 22).
[26]
Sarkissian, M.; Mendez, R.; Richter, J.D. Progesterone and insulin stimulation of CPEB-dependent polyadenylation is regulated by Aurora A and glycogen synthase kinase-3. Genes Dev, 2004, 18(1), 48.
[27]
Johnson, E.O.; Chang, K.H.; de Pablo, Y.; Ghosh, S.; Mehta, R.; Badve, S.; Shah, K. PHLDA1 is a crucial negative regulator and effector of Aurora A kinase in breast cancer. J. Cell Sci., 2011, 124(16), 2711-2722.
[http://dx.doi.org/10.1242/jcs.084970] [PMID: 21807936]
[28]
Cheng, A.; Zhang, P.; Wang, B.; Yang, D.; Duan, X.; Jiang, Y.; Xu, T.; Jiang, Y.; Shi, J.; Ding, C.; Wu, G.; Sang, Z.; Wu, Q.; Wang, H.; Wu, M.; Zhang, Z.; Pan, X.; Pan, Y.; Gao, P.; Zhang, H.; Zhou, C.; Guo, J.; Yang, Z. Aurora-A mediated phosphorylation of LDHB promotes glycolysis and tumor progression by relieving the substrate-inhibition effect. Nat. Commun., 2019, 10(1), 5566.
[http://dx.doi.org/10.1038/s41467-019-13485-8] [PMID: 31804482]
[29]
Mandati, V.; Maestro, L.; Del; Dingli, F.; Lombard, B.; Loew, D.; Molinie, N. Phosphorylation of Merlin by Aurora A kinase appears necessary for mitotic progression. J. Biol. Chem., 2019, 294(35), 12992.
[30]
Wang-Bishop, L.; Chen, Z.; Gomaa, A.; Lockhart, A.C.; Salaria, S.; Wang, J.; Lewis, K.B.; Ecsedy, J.; Washington, K.; Beauchamp, R.D.; El-Rifai, W. Inhibition of AURKA reduces proliferation and survival of gastrointestinal cancer cells with activated KRAS by preventing activation of RPS6KB1. Gastroenterology, 2019, 156(3), 662-675.e7.
[http://dx.doi.org/10.1053/j.gastro.2018.10.030] [PMID: 30342037]
[31]
Shi, Y.; Solomon, L.R.; Pereda-Lopez, A.; Giranda, V.L.; Luo, Y.; Johnson, E.F.; Shoemaker, A.R.; Leverson, J.; Liu, X. Ubiquitin-specific cysteine protease 2a (USP2a) regulates the stability of Aurora-A. J. Biol. Chem., 2011, 286(45), 38960-38968.
[http://dx.doi.org/10.1074/jbc.M111.231498] [PMID: 21890637]
[32]
Zhao, J.W.; Wu, Z.H.; Guo, J.W.; Huang, M.J.; You, Y.Z.; Liu, H.M. Synthesis and anti-gastric cancer activity evaluation of novel triazole nucleobase analogues containing steroidal/coumarin/quinoline moieties. Eur J Med Chem., 2019, 181, 111520.
[33]
Xu, L.; Shi, L.; Qiu, S.; Chen, S.; Lin, M.; Xiang, Y.; Zhao, C.; Zhu, J.; Shen, L.; Zuo, Z. Design, synthesis, and evaluation of cyanopyridines as anti-colorectal cancer agents via inhibiting STAT3 pathway. Drug Des. Devel. Ther., 2019, 13, 3369-3381.
[http://dx.doi.org/10.2147/DDDT.S217800] [PMID: 31576111]
[34]
Ke, Y.; Hu, T.X.; Huo, J.F.; Yan, J.K.; Wang, J.Y.; Yang, R.H.; Xie, H.; Liu, Y.; Wang, N.; Zheng, Z.J.; Sun, Y.X.; Wang, C.; Du, J.; Liu, H.M. Synthesis and in vitro biological evaluation of novel derivatives of Flexicaulin A condensation with amino acid trifluoroacetate. Eur. J. Med. Chem., 2019, 182, 111645.
[http://dx.doi.org/10.1016/j.ejmech.2019.111645] [PMID: 31494472]
[35]
Bingul, M.; Tan, O.; Gardner, C.; Sutton, S.; Arndt, G.; Marshall, G.; Cheung, B.; Kumar, N.; Black, D. Synthesis, characterization and anti-cancer activity of hydrazide derivatives incorporating a quinoline moiety. Molecules, 2016, 21(7), 916.
[http://dx.doi.org/10.3390/molecules21070916] [PMID: 27428941]
[36]
Li, X.; Ding, J.; Li, N.; Liu, W.; Ding, F.; Zheng, H.; Ning, Y.; Wang, H.; Liu, R.; Ren, S. Synthesis and biological evaluation of celastrol derivatives as anti-ovarian cancer stem cell agents. Eur. J. Med. Chem., 2019, 179, 667-679.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.086] [PMID: 31279299]
[37]
Xu, Y.; Zhang, X.J.; Li, W.B.; Wang, X.R.; Wang, S.; Qiao, X.P.; Chen, S.W. Design, synthesis and biological evaluation of indole-2-one derivatives as potent BRD4 inhibitors. Eur. J. Med. Chem., 2020, 208, 112780.
[http://dx.doi.org/10.1016/j.ejmech.2020.112780] [PMID: 32883643]
[38]
Li, J.; Zheng, T.; Jin, Y.; Xu, J.; Yu, J.; Lv, Y. Synthesis, molecular docking and biological evaluation of quinolone derivatives as novel anticancer agents. Chem. Pharm. Bull., 2018, 66(1), 55-60.
[http://dx.doi.org/10.1248/cpb.c17-00035] [PMID: 29118308]
[39]
He, Z.X.; Huo, J.L.; Gong, Y.P.; An, Q.; Zhang, X.; Qiao, H.; Yang, F.F.; Zhang, X.H.; Jiao, L.M.; Liu, H.M.; Ma, L.Y.; Zhao, W. Design, synthesis and biological evaluation of novel thiosemicarbazone-indole derivatives targeting prostate cancer cells. Eur. J. Med. Chem., 2021, 210, 112970.
[http://dx.doi.org/10.1016/j.ejmech.2020.112970] [PMID: 33153765]
[40]
Yang, N.; Wang, C.; Wang, Z.; Zona, S.; Lin, S-X.; Wang, X.; Yan, M.; Zheng, F-M.; Li, S-S.; Xu, B.; Bella, L.; Yong, J-S.; Lam, E.W-F.; Liu, Q. FOXM1 recruits nuclear Aurora kinase A to participate in a positive feedback loop essential for the self-renewal of breast cancer stem cells. Oncogene, 2017, 36(24), 3428-3440.
[http://dx.doi.org/10.1038/onc.2016.490] [PMID: 28114286]
[41]
Tang, J.; Yang, L.; Li, Y.; Ning, X.; Chaulagain, A.; Wang, T.; Wang, D. ARID3A promotes the development of colorectal cancer by upregulating AURKA. Carcinogenesis, 2021, 42(4), 578-586.
[http://dx.doi.org/10.1093/carcin/bgaa118] [PMID: 33165575]
[42]
Long, Q.; An, X.; Chen, M.; Wang, N.; Sui, S.; Li, Y. PUF60/AURKA axis contributes to tumor progression and malignant phenotypes in bladder cancer. Front Oncol., 2020, 10, 568015.
[43]
Tanaka, M.; Ueda, A.; Kanamori, H.; Ideguchi, H.; Yang, J.; Kitajima, S.; Ishigatsubo, Y. Cell-cycle-dependent regulation of human aurora A transcription is mediated by periodic repression of E4TF1. J. Biol. Chem., 2002, 277(12), 10719-10726.
[http://dx.doi.org/10.1074/jbc.M108252200] [PMID: 11790771]
[44]
Udayakumar, T.S.; Belakavadi, M.; Choi, K.H.; Pandey, P.K.; Fondell, J.D. Regulation of Aurora-A kinase gene expression via GABP recruitment of TRAP220/MED1. J. Biol. Chem., 2006, 281(21), 14691-14699.
[http://dx.doi.org/10.1074/jbc.M600163200] [PMID: 16574658]
[45]
Hung, L.Y.; Tseng, J.T.; Lee, Y.C.; Xia, W.; Wang, Y.N.; Wu, M.L.; Chuang, Y.H.; Lai, C.H.; Chang, W.C. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res., 2008, 36(13), 4337-4351.
[http://dx.doi.org/10.1093/nar/gkn417] [PMID: 18586824]
[46]
Chou, C.H.; Yang, N.K.; Liu, T.Y.; Tai, S.K.; Hsu, D.S.S.; Chen, Y.W. Chromosome instability modulated by BMI1-AURKA signaling drives progression in head and neck cancer. Cancer Res., 2013, 73(2), 953-66.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2397]
[47]
Lai, C.H.; Huang, Y.C.; Lee, J.C.; Tseng, J.T.C.; Chang, K.C.; Chen, Y.J.; Ding, N.J.; Huang, P.H.; Chang, W.C.; Lin, B.W.; Chen, R.Y.; Wang, Y.C.; Lai, Y.C.; Hung, L.Y. Translational upregulation of Aurora-A by hnRNP Q1 contributes to cell proliferation and tumorigenesis in colorectal cancer. Cell Death Dis., 2017, 8(1), e2555.
[http://dx.doi.org/10.1038/cddis.2016.479] [PMID: 28079881]
[48]
Ice, R.J.; Mclaughlin, S.L.; Livengood, R.H.; Culp, M.V.; Eddy, E.R.; Ivanov, A.V. NEDD9 depletion destabilizes Aurora A kinase and heightens the efficacy of Aurora A inhibitors: implications for treatment of metastatic solid tumors. Cancer Res., 2013, 73(10), 3168.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4008]
[49]
Eyers, P.A.; Erikson, E.; Chen, L.G.; Maller, J.L. A novel mechanism for activation of the protein kinase Aurora A. Curr. Biol., 2003, 13(8), 691-697.
[http://dx.doi.org/10.1016/S0960-9822(03)00166-0] [PMID: 12699628]
[50]
Bayliss, R.; Sardon, T.; Vernos, I.; Conti, E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell, 2003, 12(4), 851-862.
[http://dx.doi.org/10.1016/S1097-2765(03)00392-7] [PMID: 14580337]
[51]
Giubettini, M.; Asteriti, I.A.; Scrofani, J.; De Luca, M.; Lindon, C.; Lavia, P.; Guarguaglini, G. Control of Aurora-A stability through interaction with TPX2. J. Cell Sci., 2011, 124(1), 113-122.
[http://dx.doi.org/10.1242/jcs.075457] [PMID: 21147853]
[52]
Huang, Y.H.; Wu, C.C.; Chou, C.K.; Huang, C.Y.F. A translational regulator, PUM2, promotes both protein stability and kinase activity of Aurora-A. PLoS One, 2011, 6(5), e19718.
[http://dx.doi.org/10.1371/journal.pone.0019718] [PMID: 21589936]
[53]
Johnson, E.O.; Chang, K.H.; Ghosh, S.; Venkatesh, C.; Giger, K.; Low, P.S.; Shah, K. LIMK2 is a crucial regulator and effector of Aurora-A-kinase-mediated malignancy. J. Cell Sci., 2012, 125(5), 1204-1216.
[http://dx.doi.org/10.1242/jcs.092304] [PMID: 22492986]
[54]
Wang, J.; Nikhil, K.; Viccaro, K.; Chang, L.; Jacobsen, M.; Sandusky, G.; Shah, K. Aurora A-Twist1 axis promotes highly aggressive phenotypes in pancreatic carcinoma. J. Cell Sci., 2017, 130(6), jcs.196790.
[http://dx.doi.org/10.1242/jcs.196790] [PMID: 28167680]
[55]
Nikhil, K.; Raza, A.; Haymour, H.S.; Flueckiger, B.V.; Chu, J.; Shah, K. Aurora kinase A-YBX1 synergy fuels aggressive oncogenic phenotypes and chemoresistance in castration-resistant prostate cancer. Cancers, 2020, 12(3), 660.
[http://dx.doi.org/10.3390/cancers12030660] [PMID: 32178290]
[56]
Woodruff, J.B. Phase separation of BuGZ promotes Aurora A activation and spindle assembly. J. Cell. Biol., 2018, 217(1), 9.
[57]
Hirota, T.; Kunitoku, N.; Sasayama, T.; Marumoto, T.; Zhang, D.; Nitta, M.; Hatakeyama, K.; Saya, H. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell, 2003, 114(5), 585-598.
[http://dx.doi.org/10.1016/S0092-8674(03)00642-1] [PMID: 13678582]
[58]
Zhong, Y.; Yang, J.; Xu, W.W.; Wang, Y.; Zheng, C-C.; Li, B.; He, Q-Y. KCTD12 promotes tumorigenesis by facilitating CDC25B/CDK1/Aurora A-dependent G2/M transition. Oncogene, 2017, 36(44), 6177-6189.
[http://dx.doi.org/10.1038/onc.2017.287] [PMID: 28869606]
[59]
Wu, C.; Lyu, J.; Yang, E.J.; Liu, Y.; Zhang, B.; Shim, J.S. Targeting AURKA-CDC25C axis to induce synthetic lethality in ARID1A-deficient colorectal cancer cells. Nat. Commun., 2018, 9(1), 3212.
[http://dx.doi.org/10.1038/s41467-018-05694-4] [PMID: 30097580]
[60]
Yu, Z.; Sun, Y.; She, X.; Wang, Z.; Chen, S.; Deng, Z.; Zhang, Y.; Liu, Q.; Liu, Q.; Zhao, C.; Li, P.; Liu, C.; Feng, J.; Fu, H.; Li, G.; Wu, M. SIX3, a tumor suppressor, inhibits astrocytoma tumorigenesis by transcriptional repression of AURKA/B. J. Hematol. Oncol., 2017, 10(1), 115-115.
[http://dx.doi.org/10.1186/s13045-017-0483-2] [PMID: 28595628]
[61]
Nowak, I.; Boratyn, E.; Student, S.; Bernhart, S.F.; Fallmann, J.; Durbas, M.; Stadler, P.F.; Rokita, H. MCPIP1 ribonuclease can bind and cleave AURKA mRNA in MYCN amplified neuroblastoma cells. RNA Biol., 2021, 18(1), 144-156.
[http://dx.doi.org/10.1080/15476286.2020.1804698] [PMID: 32757706]
[62]
Taguchi, S.; Honda, K.; Sugiura, K.; Yamaguchi, A.; Furukawa, K.; Urano, T. Degradation of human Aurora-A protein kinase is mediated by hCdh1. FEBS Lett., 2002, 519(1-3), 59-65.
[http://dx.doi.org/10.1016/S0014-5793(02)02711-4] [PMID: 12023018]
[63]
Park, M.T.; Oh, E.T.; Song, M.J.; Lee, H.; Choi, E.K.; Park, H.J. NQO1 prevents radiation-induced aneuploidy by interacting with Aurora-A. Carcinogenesis, 2013, 34(11), 2470-2485.
[http://dx.doi.org/10.1093/carcin/bgt225] [PMID: 23803694]
[64]
SMAD4 suppresses ARK-A-induced metastatic phenotypes via degradation of ARK-Ain a TGFbeta-independent manner. Available from: https://search.yahoo.com/search?fr=mcafee&type=E210US1316G0&p=SMAD4+suppresses+ARK-A-induced+metastatic+phenotypes+via+degradation+of+ARK-Ain+a+TGFbeta-independent+manner(Accessed on: 2022 Aug 22).
[65]
Zhang, C.; Qu, L.; Lian, S.; Meng, L.; Min, L.; Liu, J.; Song, Q.; Shen, L.; Shou, C. PRL-3 promotes ubiquitination and degradation of AURKA and colorectal cancer progression via dephosphorylation of FZR1. Cancer Res., 2019, 79(5), 928-940.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0520] [PMID: 30498084]
[66]
Irelan, J.T.; Murphy, T.J.; DeJesus, P.D.; Teo, H.; Xu, D.; Gomez-Ferreria, M.A.; Zhou, Y.; Miraglia, L.J.; Rines, D.R.; Verma, I.M.; Sharp, D.J.; Tergaonkar, V.; Chanda, S.K. A role for IκB kinase 2 in bipolar spindle assembly. Proc. Natl. Acad. Sci. USA, 2007, 104(43), 16940-16945.
[http://dx.doi.org/10.1073/pnas.0706493104] [PMID: 17939994]
[67]
Lim, S.K.; Gopalan, G. Antizyme1 mediates AURKAIP1-dependent degradation of Aurora-A. Oncogene, 2007, 26(46), 6593-6603.
[http://dx.doi.org/10.1038/sj.onc.1210482] [PMID: 17452972]
[68]
Kiat, L.S.; Hui, K.M.; Gopalan, G. Aurora-A kinase interacting protein (AIP), a novel negative regulator of human Aurora-A kinase. J. Biol. Chem., 2002, 277(47), 45558-45565.
[http://dx.doi.org/10.1074/jbc.M206820200] [PMID: 12244051]
[69]
Hasanov, E.; Chen, G.; Chowdhury, P.; Weldon, J.; Ding, Z.; Jonasch, E.; Sen, S.; Walker, C.L.; Dere, R. Ubiquitination and regulation of AURKA identifies a hypoxia-independent E3 ligase activity of VHL. Oncogene, 2017, 36(24), 3450-3463.
[http://dx.doi.org/10.1038/onc.2016.495] [PMID: 28114281]
[70]
Meehan, M.; Parthasarathi, L.; Moran, N.; Jefferies, C.A.; Foley, N.; Lazzari, E. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase A oncogene. Mol Cancer., 2012, 11, 6.
[http://dx.doi.org/10.1186/1476-4598-11-6]
[71]
Tong, Y.; Ben-Shlomo, A.; Zhou, C.; Wawrowsky, K.; Melmed, S. Pituitary tumor transforming gene 1 regulates Aurora kinase A activity. Oncogene, 2008, 27(49), 6385-6395.
[http://dx.doi.org/10.1038/onc.2008.234] [PMID: 18663361]
[72]
Kunitoku, N.; Sasayama, T.; Marumoto, T.; Zhang, D.; Honda, S.; Kobayashi, O.; Hatakeyama, K.; Ushio, Y.; Saya, H.; Hirota, T. CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev. Cell, 2003, 5(6), 853-864.
[http://dx.doi.org/10.1016/S1534-5807(03)00364-2] [PMID: 14667408]
[73]
Zheng, X.; Chi, J.; Zhi, J.; Zhang, H.; Yue, D.; Zhao, J.; Li, D.; Li, Y.; Gao, M.; Guo, J. Aurora-A-mediated phosphorylation of LKB1 compromises LKB1/AMPK signaling axis to facilitate NSCLC growth and migration. Oncogene, 2018, 37(4), 502-511.
[http://dx.doi.org/10.1038/onc.2017.354] [PMID: 28967900]
[74]
Sarkar, S.; Brautigan, D.L.; Larner, J.M. Aurora kinase A promotes AR degradation via the E3 ligase CHIP. Mol. Cancer Res., 2017, 15(8), 1063-1072.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0062] [PMID: 28536143]
[75]
Chang, S.S.; Yamaguchi, H.; Xia, W.; Lim, S.O.; Khotskaya, Y.; Wu, Y. Aurora A kinase activates YAP signaling in triple-negative breast cancer. Oncogene, 201736(9), 1265-75.
[76]
LeRoy, P.J.; Hunter, J.J.; Hoar, K.M.; Burke, K.E.; Shinde, V.; Ruan, J.; Bowman, D.; Galvin, K.; Ecsedy, J.A. Localization of human TACC3 to mitotic spindles is mediated by phosphorylation on Ser558 by Aurora A: a novel pharmacodynamic method for measuring Aurora A activity. Cancer Res., 2007, 67(11), 5362-5370.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0122] [PMID: 17545617]
[77]
Sehdev, V.; Katsha, A.; Arras, J.; Peng, D.; Soutto, M.; Ecsedy, J.; Zaika, A.; Belkhiri, A.; El-Rifai, W. HDM2 regulation by AURKA promotes cell survival in gastric cancer. Clin. Cancer Res., 2014, 20(1), 76-86.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1187] [PMID: 24240108]
[78]
Jin, S.; Wang, X.; Tong, T.; Zhang, D.; Shi, J.; Chen, J.; Zhan, Q. Aurora-A enhances malignant development of esophageal squamous cell carcinoma (ESCC) by phosphorylating β-catenin. Mol. Oncol., 2015, 9(1), 249-259.
[http://dx.doi.org/10.1016/j.molonc.2014.08.002] [PMID: 25217103]
[79]
Zheng, X.Q.; Guo, J.P.; Yang, H.; Kanai, M.; He, L.L.; Li, Y.Y.; Koomen, J.M.; Minton, S.; Gao, M.; Ren, X.B.; Coppola, D.; Cheng, J.Q. Aurora-A is a determinant of tamoxifen sensitivity through phosphorylation of ERα in breast cancer. Oncogene, 2014, 33(42), 4985-4996.
[http://dx.doi.org/10.1038/onc.2013.444] [PMID: 24166501]
[80]
Moustafa-Kamal, M.; Gamache, I.; Lu, Y.; Li, S.; Teodoro, J.G. BimEL is phosphorylated at mitosis by Aurora A and targeted for degradation by βTrCP1. Cell Death Differ., 2013, 20(10), 1393-1403.
[http://dx.doi.org/10.1038/cdd.2013.93] [PMID: 23912711]
[81]
Dar, A.A.; Belkhiri, A.; El-Rifai, W. The aurora kinase A regulates GSK-3β in gastric cancer cells. Oncogene, 2009, 28(6), 866-875.
[http://dx.doi.org/10.1038/onc.2008.434] [PMID: 19060929]
[82]
Macůrek, L.; Lindqvist, A.; Lim, D.; Lampson, M.A.; Klompmaker, R.; Freire, R.; Clouin, C.; Taylor, S.S.; Yaffe, M.B.; Medema, R.H. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature, 2008, 455(7209), 119-123.
[http://dx.doi.org/10.1038/nature07185] [PMID: 18615013]
[83]
Briassouli, P.; Chan, F.; Savage, K.; Reis-Filho, J.S.; Linardopoulos, S. Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha. Cancer Res., 2007, 67(4), 1689-1695.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2272] [PMID: 17308110]
[84]
Martin, B.; Chesnel, F.; Delcros, J.G.; Jouan, F.; Couturier, A.; Dugay, F. Correction: Identification of pVHL as a novel substrate for aurora-A in clear cell renal cell carcinoma (ccRCC). PLoS One, 2014, 9(1)
[85]
Crosio, C.; Fimia, G.M.; Loury, R.; Kimura, M.; Okano, Y.; Zhou, H.; Sen, S.; Allis, C.D.; Sassone-Corsi, P. Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol. Cell. Biol., 2002, 22(3), 874-885.
[http://dx.doi.org/10.1128/MCB.22.3.874-885.2002] [PMID: 11784863]
[86]
Alexander, K.E.; Rizkallah, R. Aurora A phosphorylation of YY1 during mitosis inactivates its DNA binding activity. Sci. Reports, 2017, 7(1), 1-13.
[http://dx.doi.org/10.1038/s41598-017-10935-5]
[87]
Du, R.; Huang, C.; Chen, H.; Liu, K.; Xiang, P.; Yao, N.; Yang, L.; Zhou, L.; Wu, Q.; Zheng, Y.; Xin, M.; Dong, Z.; Li, X. SDCBP/MDA-9/syntenin phosphorylation by AURKA promotes esophageal squamous cell carcinoma progression through the EGFR-PI3K-Akt signaling pathway. Oncogene, 2020, 39(31), 5405-5419.
[http://dx.doi.org/10.1038/s41388-020-1369-2] [PMID: 32572158]
[88]
Qi, D.; Wang, Q.; Yu, M.; Lan, R.; Li, S.; Lu, F. Mitotic phosphorylation of SOX2 mediated by Aurora kinase A is critical for the stem-cell like cell maintenance in PA-1 cells. Cell Cycle, 2016, 15(15), 2009-2018.
[http://dx.doi.org/10.1080/15384101.2016.1192729] [PMID: 27249336]
[89]
Chou, E.J.; Hung, L.Y.; Tang, C.J.C.; Hsu, W. Phosphorylation of CPAP by Aurora-A maintains spindle pole integrity during mitosis. Cell. Rep., 2016, 14(12), 2975-87.
[90]
Wu, J.C.; Chen, T.Y.; Yu, C.T.R.; Tsai, S.J.; Hsu, J.M.; Tang, M.J.; Chou, C.K.; Lin, W.J.; Yuan, C.J.; Huang, C.Y.F. Identification of V23RalA-Ser194 as a critical mediator for Aurora-A-induced cellular motility and transformation by small pool expression screening. J. Biol. Chem., 2005, 280(10), 9013-9022.
[http://dx.doi.org/10.1074/jbc.M411068200] [PMID: 15637052]
[91]
Dutertre, S.; Cazales, M.; Quaranta, M.; Froment, C.; Trabut, V.; Dozier, C.; Mirey, G.; Bouché, J.P.; Theis-Febvre, N.; Schmitt, E.; Monsarrat, B.; Prigent, C.; Ducommun, B. Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2–M transition. J. Cell Sci., 2004, 117(12), 2523-2531.
[http://dx.doi.org/10.1242/jcs.01108] [PMID: 15128871]
[92]
Kollareddy, M.; Zheleva, D.; Dzubak, P.; Brahmkshatriya, P.S.; Lepsik, M.; Hajduch, M. Aurora kinase inhibitors: Progress towards the clinic. Invest. New Drugs, 2012, 30(6), 2411-2432.
[http://dx.doi.org/10.1007/s10637-012-9798-6] [PMID: 22350019]
[93]
Portier, N.; Audhya, A.; Maddox, P.S.; Green, R.A.; Dammermann, A.; Desai, A.; Oegema, K. A microtubule-independent role for centrosomes and aurora a in nuclear envelope breakdown. Dev. Cell, 2007, 12(4), 515-529.
[http://dx.doi.org/10.1016/j.devcel.2007.01.019] [PMID: 17419991]
[94]
Li, J.; Yan, Z.; Li, H.; Shi, Q.; Ahire, V.; Zhang, S.; Nimishetti, N.; Yang, D.; Allen, T.D.; Zhang, J. The phytochemical scoulerine inhibits aurora kinase activity to induce mitotic and cytokinetic defects. J. Nat. Prod. , 2021, 84(8), 2312-2320.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00429]
[95]
Yan, Z.; Shi, Q.; Liu, X.; Li, J.; Ahire, V.; Zhang, S. The phytochemical, corynoline, diminishes Aurora kinase B activity to induce mitotic defect and polyploidy. Biomed. Pharmacother., 2022, 147, 112645.
[http://dx.doi.org/10.1016/j.biopha.2022.112645]
[96]
Hauf, S.; Cole, R.W.; LaTerra, S.; Zimmer, C.; Schnapp, G.; Walter, R.; Heckel, A.; van Meel, J.; Rieder, C.L.; Peters, J.M. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol., 2003, 161(2), 281-294.
[http://dx.doi.org/10.1083/jcb.200208092] [PMID: 12707311]
[97]
Fu, D.H.; Jiang, W.; Zheng, J.T.; Zhao, G.Y.; Li, Y.; Yi, H.; Li, Z.R.; Jiang, J.D.; Yang, K.Q.; Wang, Y.; Si, S.Y. Jadomycin B, an Aurora-B kinase inhibitor discovered through virtual screening. Mol. Cancer Ther., 2008, 7(8), 2386-2393.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0035] [PMID: 18723485]
[98]
Guo, J.; Anderson, M.G.; Tapang, P.; Palma, J.P.; Rodriguez, L.E.; Niquette, A.; Li, J.; Bouska, J.J.; Wang, G.; Semizarov, D.; Albert, D.H.; Donawho, C.K.; Glaser, K.B.; Shah, O.J. Identification of genes that confer tumor cell resistance to the Aurora B kinase inhibitor, AZD1152. Pharmacogenomics J., 2009, 9(2), 90-102.
[http://dx.doi.org/10.1038/tpj.2008.20] [PMID: 19188929]
[99]
Smith, M.L.; Murphy, K.; Doucette, C.D.; Greenshields, A.L.; Hoskin, D.W. The dietary flavonoid fisetin causes cell cycle arrest, caspase-dependent apoptosis, and enhanced cytotoxicity of chemotherapeutic drugs in triple-negative breast cancer cells. J. Cell. Biochem., 2016, 117(8), 1913-1925.
[http://dx.doi.org/10.1002/jcb.25490] [PMID: 26755433]
[100]
Lee, D.; Kim, C.; Lim, Y.; Shin, S. Aurora kinase A inhibitor TCS7010 demonstrates pro-apoptotic effect through the unfolded protein response pathway in HCT116 colon cancer cells. Oncol. Lett., 2017, 14(6), 6571-6577.
[http://dx.doi.org/10.3892/ol.2017.7023] [PMID: 29163689]
[101]
Nakashima, K.; Uematsu, T.; Takahashi, K.; Nishimura, S.; Tadokoro, Y.; Hayashi, T.; Sugino, T. Does breast cancer growth rate really depend on tumor subtype? Measurement of tumor doubling time using serial ultrasonography between diagnosis and surgery. Breast Cancer, 2019, 26(2), 206-214.
[http://dx.doi.org/10.1007/s12282-018-0914-0] [PMID: 30259332]
[102]
Ganjibakhsh, M.; Aminishakib, P.; Farzaneh, P.; Karimi, A.; Fazeli, S.A.S.; Rajabi, M.; Nasimian, A.; Naini, F.B.; Rahmati, H.; Gohari, N.S.; Mohebali, N.; Asadi, M.; Gorji, Z.E.; Izadpanah, M.; Moghanjoghi, S.M.; Ashouri, S. Establishment and characterization of primary cultures from iranian oral squamous cell carcinoma patients by enzymatic method and explant culture. J. Dent. (Tehran), 2017, 14(4), 191-202.
[PMID: 29285029]
[103]
Ruddarraju, R.R.; Murugulla, A.C.; Kotla, R.; Tirumalasetty, M.C.B.; Wudayagiri, R.; Donthabakthuni, S.; Maroju, R. Design, synthesis, anticancer activity and docking studies of theophylline containing 1,2,3-triazoles with variant amide derivatives. MedChemComm, 2017, 8(1), 176-183.
[http://dx.doi.org/10.1039/C6MD00479B] [PMID: 30108703]
[104]
Shan, B; Zhao, R; Zhou, J; Zhang, M; Qi, X; Wang, T AURKA increase the chemosensitivity of colon cancer cells to oxaliplatin by inhibiting the TP53-mediated DNA damage response genes. Biomed Res Int., 2020, 2020, 8916729.
[http://dx.doi.org/10.1155/2020/8916729]
[105]
Suman, S.; Mishra, A. Network analysis revealed aurora kinase dysregulation in five gynecological types of cancer. Oncol. Lett., 2018, 15(1), 1125-1132.
[PMID: 29391900]
[106]
Oliveira, R.C.; Abrantes, A.M.; Tralhão, J.G.; Botelho, M.F. The role of mouse models in colorectal cancer research-The need and the importance of the orthotopic models. Anim. Model. Exp. Med., 2020, 3(1), 1-8.
[107]
Muniyappan, G.; Kathavarayan, S.; Balachandran, C.; Kalliyappan, E.; Mahalingam, S.M.; Ajees Abdul Salam, A.; Aoki, S.; Arumugam, N.; Almansour, A.I.; Suresh Kumar, R. Synthesis, anticancer and molecular docking studies of new class of benzoisoxazolyl-piperidinyl-1, 2, 3-triazoles. J. King Saud Univ. Sci., 2020, 32(8), 3286-3292.
[http://dx.doi.org/10.1016/j.jksus.2020.09.012]
[108]
Pandya, P.N.; Mankad, A.U.; Raval, R.M. Role of aurora kinases in cancer: A comprehensive review. 2018, 4(80), 80-93.
[109]
Napier, K.J.; Scheerer, M.; Misra, S. Esophageal cancer: A Review of epidemiology, pathogenesis, staging workup and treatment modalities. World J. Gastrointest. Oncol., 2014, 6(5), 112.
[http://dx.doi.org/10.4251/wjgo.v6.i5.112]
[110]
Yang, Y-M.; Hong, P.; Xu, W.W.; He, Q-Y.; Li, B. Advances in targeted therapy for esophageal cancer. Signal Transduct Target Ther., 2020, 5(1), 1-11.
[http://dx.doi.org/10.1038/s41392-020-00323-3]
[111]
Nemoto, T.; Ohashi, K.; Akashi, T.; Johnson, J.D.; Hirokawa, K. Overexpression of protein tyrosine kinases in human esophageal cancer. Pathobiology, 1997, 65(4), 195-203.
[http://dx.doi.org/10.1159/000164123] [PMID: 9396043]
[112]
Júnior, A.P.; Costa, N.M.; Da; Esposito, F.; Fusco, A.; Pinto, L.F.R. High Mobility Group A proteins in esophageal carcinomas. Cell Cycle, 2016, 15(18), 2410.
[113]
He, F.; Ai, B.; Tian, L. Identification of genes and pathways in esophageal adenocarcinoma using bioinformatics analysis. Biomed. Rep., 2018, 9(4), 305-312.
[http://dx.doi.org/10.3892/br.2018.1134] [PMID: 30233782]
[114]
Su, P.; Wen, S.; Zhang, Y.; Li, Y.; Xu, Y.; Zhu, Y. Identification of the key genes and pathways in esophageal carcinoma. Gastroenterol. Res. Pract., 2016, 2016, 2968106.
[http://dx.doi.org/10.1155/2016/2968106]
[115]
Clemons, N.J.; Phillips, W.A.; Lord, R.V. Signaling pathways in the molecular pathogenesis of adenocarcinomas of the esophagus and gastroesophageal junction. Cancer Biol. Ther., 2013, 14(9), 782.
[http://dx.doi.org/10.4161/cbt.25362]
[116]
Raufi, A.G.; Klempner, S.J. Immunotherapy for advanced gastric and esophageal cancer: preclinical rationale and ongoing clinical investigations. J. Gastrointest. Oncol., 2015, 6(5), 561.
[117]
Pennathur, A.; Xi, L.; Litle, V.R.; Gooding, W.E.; Krasinskas, A.; Landreneau, R.J. Gene expression profiles in esophageal adenocarcinoma predict survival after resection. J. Thoracic Cardivasc. Surg., 2013, 145(2), 505-513.
[http://dx.doi.org/10.1016/j.jtcvs.2012.10.031]
[118]
Ando, N.; Ozawa, S.; Kitagawa, Y.; Shinozawa, Y.; Kitajima, M. Improvement in the results of surgical treatment of advanced squamous esophageal carcinoma during 15 consecutive years. Ann. Surg., 2000, 232(2), 225-232.
[http://dx.doi.org/10.1097/00000658-200008000-00013] [PMID: 10903602]
[119]
Sun, S.; Zhang, H.; Wang, Y.; Gao, J.; Zhou, S.; Li, Y. Proteomic analysis of human esophageal cancer using tandem mass tag quantifications. Biomed. Res. Int., 2020, 2020, 5849323.
[http://dx.doi.org/10.1155/2020/5849323]
[120]
Ilson, D.H.; Saltz, L.; Enzinger, P.; Huang, Y.; Kornblith, A.; Gollub, M.; O'Reilly, E.; Schwartz, G.; DeGroff, J.; Gonzalez, G.; Kelsen, D.P. Phase II trial of weekly irinotecan plus cisplatin in advanced esophageal cancer. J. Clin. Oncol., 1999, 17(10), 3270-5.
[http://dx.doi.org/10.1200/JCO.1999.17.10.3270]
[121]
Xia, J.L.; Fan, W.J.; Zheng, F.M.; Zhang, W.W.; Xie, J.J.; Yang, M.Y.; Kamran, M.; Wang, P.; Teng, H.M.; Wang, C.L.; Liu, Q. Inhibition of AURKA kinase activity suppresses collective invasion in a microfluidic cell culture platform. Sci. Rep., 2017, 7(1), 2973.
[http://dx.doi.org/10.1038/s41598-017-02623-1] [PMID: 28592839]
[122]
Sehdev, V.; Peng, D.; Soutto, M.; Washington, M.K.; Revetta, F.; Ecsedy, J. The Aurora kinase A inhibitor MLN8237 enhances cisplatin-induced cell death in esophageal adenocarcinoma cells. Mol. Cancer Ther., 2012, 11(3), 763.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0623]
[123]
Liao, Y.; Liao, Y.; Li, J.; Li, J.; Fan, Y.; Xu, B. Polymorphisms in AURKA and AURKB are associated with the survival of triple-negative breast cancer patients treated with taxane-based adjuvant chemotherapy. Cancer Manag. Res., 2018, 10, 3801-3808.
[http://dx.doi.org/10.2147/CMAR.S174735] [PMID: 30288111]
[124]
Kelly, C.M. A three-gene model to robustly identify breast cancer molecular subtypes. Breast Dis., 2013, 24(1), 36-38.
[http://dx.doi.org/10.1016/j.breastdis.2013.01.022]
[125]
Opyrchal, M.; Divya, K.; Sangameswaran, G.; Khoury, T. Aurora kinase inhibitors in breast cancer treatment. Cancer, 2015, 32, 34.
[126]
Zhao, C.H.; Qu, L.; Zhang, H.; Qu, R. Identification of breast cancer-related circRNAs by analysis of microarray and RNA-sequencing data. Medicine, 2019, 98(46), e18042.
[http://dx.doi.org/10.1097/MD.0000000000018042] [PMID: 31725681]
[127]
Engin, H.B.; Guney, E.; Keskin, O.; Oliva, B.; Gursoy, A. ntegrating structure to protein-protein interaction networks that drive metastasis to brain and lung in breast cancer. PLoS One, 2013, 8(11), e81035.
[http://dx.doi.org/10.1371/journal.pone.0081035]
[128]
Lassmann, S.; Shen, Y.; Wiehle, P.; Walch, A.; Gitsch, G. Predictive Value of Aurora-A/STK15 Expression for Late Stage Epithelial Ovarian Cancer Patients Treated by Adjuvant Chemotherapy. 2007. Available from: www.aacrjournals.org
[129]
Duckworth, C.; Zhang, L.; Carroll, S.L.; Ethier, S.P.; Cheung, H.W. Overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating chemokine expression. Oncogene, 2016, 35(31), 4036-4047.
[http://dx.doi.org/10.1038/onc.2015.472] [PMID: 26657155]
[130]
Liu, X.; Gao, Y.; Zhao, B.; Li, X.; Lu, Y.; Zhang, J.; Li, D.; Li, L.; Yin, F. Discovery of microarray-identified genes associated with ovarian cancer progression. Int. J. Oncol., 2015, 46(6), 2467-2478.
[http://dx.doi.org/10.3892/ijo.2015.2971] [PMID: 25891226]
[131]
Li, W.; Liu, Z.; Liang, B.; Chen, S.; Zhang, X.; Tong, X.; Lou, W.; Le, L.; Tang, X.; Fu, F. Identification of core genes in ovarian cancer by an integrative meta-analysis. J. Ovarian Res., 2018, 11(1), 94.
[http://dx.doi.org/10.1186/s13048-018-0467-z] [PMID: 30453999]
[132]
Thorn, C.F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; Mcleod, H.; Klein, T.E. Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenet. Genomics., 2011, 21(7), 440.
[133]
Gan, X.; Zhu, H.; Jiang, X.; Obiegbusi, S.C.; Yong, M.; Long, X.; Hu, J. CircMUC16 promotes autophagy of epithelial ovarian cancer via interaction with ATG13 and miR-199a. Mol. Cancer, 2020, 19(1), 45.
[http://dx.doi.org/10.1186/s12943-020-01163-z] [PMID: 32111227]
[134]
Karnezis, A.N.; Cho, K.R. Preclinical models of ovarian cancer: pathogenesis, problems, and implications for prevention. In: Clinical Obstetrics and Gynecology; Lippincott Williams and Wilkins, 2017; 60, pp. 789-800. Available from: https://journals.lww.com/00003081- 201712000-00011
[135]
Alcaraz-Sanabria, A.; Nieto-Jim Enez, C. Cancer biology and translational studies synthetic lethality interaction between aurora kinases and chek1 inhibitors in ovarian cancer. 2017. Available from: https://www.oncomine.org/resource/ (Accessed on: 2021 Mar 13)
[136]
Carosati, E.; Tochowicz, A.; Marverti, G.; Guaitoli, G.; Benedetti, P.; Ferrari, S.; Stroud, R.M.; Finer-Moore, J.; Luciani, R.; Farina, D.; Cruciani, G.; Costi, M.P. Inhibitor of ovarian cancer cells growth by virtual screening: a new thiazole derivative targeting human thymidylate synthase. J. Med. Chem., 2012, 55(22), 10272-10276.
[http://dx.doi.org/10.1021/jm300850v] [PMID: 23075414]
[137]
An, Y.; Lee, E.; Yu, Y.; Yun, J.; Lee, M.Y.; Kang, J.S. Design and synthesis of novel benzoxazole analogs as Aurora B kinase inhibitors. Bioorganic. Med. Chem. Lett., 2016, 26(13), 3067-72.
[138]
Bavetsias, V.; Faisal, A.; Crumpler, S.; Brown, N.; Kosmopoulou, M.; Joshi, A.; Atrash, B.; Pérez-Fuertes, Y.; Schmitt, J.A.; Boxall, K.J.; Burke, R.; Sun, C.; Avery, S.; Bush, K.; Henley, A.; Raynaud, F.I.; Workman, P.; Bayliss, R.; Linardopoulos, S.; Blagg, J. Aurora isoform selectivity: design and synthesis of imidazo[4,5-b]pyridine derivatives as highly selective inhibitors of Aurora-A kinase in cells. J. Med. Chem., 2013, 56(22), 9122-9135.
[http://dx.doi.org/10.1021/jm401115g] [PMID: 24195668]
[139]
Protein-protein interaction spider of oral cancer. Available from: https://figshare.com/articles/figure/Protein-protein_interaction_spider_of_oral_cancer/6396827 (Accessed on: 2021 Mar 16)
[140]
Qi, G.; Ogawa, I.; Kudo, Y.; Miyauchi, M.; Siriwardena, B.S.M.S.; Shimamoto, F.; Tatsuka, M.; Takata, T. Aurora-B expression and its correlation with cell proliferation and metastasis in oral cancer. Virchows Archiv, 2021, 450(3), 297-302.
[http://dx.doi.org/10.1007/s00428-006-0360-9]
[141]
Wenzhao, L.; Jiangdong, N.; Deye, S.; Muliang, D.; Junjie, W.; Xianzhe, H.; Mingming, Y.; Jun, H. Dual regulatory roles of HMGB1 in inflammatory reaction of chondrocyte cells and mice. Cell Cycle, 2019, 18(18), 2268-2280.
[http://dx.doi.org/10.1080/15384101.2019.1642680] [PMID: 31313630]
[142]
Wang, Y.F.; Li, B.W.; Sun, S.; Li, X.; Su, W.; Wang, Z.H. Circular RNA expression in oral squamous cell carcinoma. Front Oncol., 2018, 8, 398.
[http://dx.doi.org/10.3389/fonc.2018.00398]
[143]
Christowitz, C.; Davis, T.; Isaacs, A.; van Niekerk, G.; Hattingh, S.; Engelbrecht, A.M. Mechanisms of doxorubicin-induced drug resistance and drug resistant tumour growth in a murine breast tumour model. BMC Cancer, 2019, 19(1), 757.
[http://dx.doi.org/10.1186/s12885-019-5939-z] [PMID: 31370818]
[144]
Saxena, V.L.; Gupta, S.; Srivastava, S. Study of ligand based virtual screening tools in computer aided drug designing for oral cancer. IOSR J. Pharm. Biol. Sci., 2010, 10, 65-74.
[145]
Bavetsias, V.; Linardopoulos, S. Aurora kinase inhibitors: Current status and outlook. Front. Oncol., 2015, 5, 278.
[146]
Twu, N.F.; Yuan, C.C.; Yen, M.S.; Lai, C.R.; Chao, K.C.; Wang, P.H.; Wu, H.H.; Chen, Y.J. Expression of Aurora kinase A and B in normal and malignant cervical tissue: High Aurora A kinase expression in squamous cervical cancer. Eur. J. Obstet. Gynecol. Reprod. Biol., 2009, 142(1), 57-63.
[http://dx.doi.org/10.1016/j.ejogrb.2008.09.012] [PMID: 19059698]
[147]
Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-78.
[148]
Wei, J; Wang, Y; Shi, K; Wang, Y. Identification of core prognosis-related candidate genes in cervical cancer via integrated bioinformatical analysis. Biomed Res Int., 2020, 2020, 8959210.
[http://dx.doi.org/10.1155/2020/8959210]
[149]
Martin, D.; Fallaha, S.; Proctor, M.; Stevenson, A.; Perrin, L.; McMillan, N.; Gabrielli, B. Inhibition of Aurora A and Aurora B is required for the sensitivity of HPV-driven cervical cancers to Aurora kinase inhibitors. Mol. Cancer Ther., 2017, 16(9), 1934-1941.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0159] [PMID: 28522591]
[150]
Khan, A.A.; A Abuderman, A.; Ashraf, M.T.; Khan, Z. Protein–protein interactions of HPV-Chlamydia trachomatis human and their potential in cervical cancer. Future Microbiol., 2020, 15(7), 509-520.
[http://dx.doi.org/10.2217/fmb-2019-0242] [PMID: 32476479]
[151]
Ager, B.J.; Gallardo-Rincón, D.; de León, D.C.; Chávez-Blanco, A.; Chuang, L.; Dueñas-González, A. Advancing clinical research globally: Cervical cancer research network from Mexico. Gynecol. Oncol. Rep., 2018, 25, 90-3.
[152]
Sagae, S.; Monk, B.J.; Pujade-Lauraine, E.; Gaffney, D.K.; Narayan, K.; Ryu, S.Y. Advances and concepts in cervical cancer trials: A road map for the future. Int. J. Gynecol. Cancer, 2016, 199-207.
[http://dx.doi.org/10.1097/IGC.0000000000000587]
[153]
Kumar, A.; Rathi, E.; Kini, S.G. E-pharmacophore modelling, virtual screening, molecular dynamics simulations and in-silico ADME analysis for identification of potential E6 inhibitors against cervical cancer. J. Mol. Struct., 2019, 1189, 299-306.
[154]
Bengtsson, E.; Malm, P. Screening for cervical cancer using automated analysis of PAP-smears. Comput Math Methods Med., 2014, 2014, 2037.
[http://dx.doi.org/10.1155/2014/842037]
[155]
How Long Does it Take for Cervical Cancer to Develop?- Moffitt. Available from: https://moffitt.org/cancers/cervical-cancer/faqs/how-long-does-it-take-for-cervical-cancer- to-develop/ (Accessed on: 2021 Mar 19).
[156]
Borah, N.A.; Reddy, M.M. Aurora kinase B inhibition: A potential therapeutic strategy for cancer. Molecules, 2021, 26(7), 1981.
[http://dx.doi.org/10.3390/molecules26071981] [PMID: 33915740]
[157]
Cai, J.; Li, L.; Hong, K.H.; Wu, X.; Chen, J.; Wang, P. Discovery of 4-aminoquinazoline-urea derivatives as Aurora kinase inhibitors with antiproliferative activity. Bioorganic Med. Chem., 2014, 22(21), 5813-23.
[158]
Chate, A.V.; Tagad, P.A.; Bondle, G.M.; Sarkate, A.P.; Tiwari, S.V.; Azad, R. Design, synthesis and biological evaluation of tetrahydrodibenzo[b,g][1,8]napthyridinones as potential anticancer agents and novel aurora kinases inhibitors. ChemistrySelect, 2021, 6(14), 3444-3452.
[http://dx.doi.org/10.1002/slct.202004666]
[159]
Merriel, S.W.D.; Funston, G.; Hamilton, W. Prostate cancer in primary care. Adv. Ther., 2018, 35, 1285-94.
[http://dx.doi.org/10.1007/s12325-018-0766-1]
[160]
Prostate cancer: Symptoms, treatment, and causes Available from: https://www.medicalnewstoday.com/articles/150086#symptoms(Accessed on: 2021 Mar 22)
[161]
Wang, B.; Hasan, M.K.; Alvarado, E.; Yuan, H.; Wu, H.; Chen, W.Y. NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response. Oncogene, 2011, 30(8), 907-921.
[http://dx.doi.org/10.1038/onc.2010.468] [PMID: 20956937]
[162]
Why Are Prostate Cancer Preclinical Models Hard to Develop? Available from: https://blog.crownbio.com/prostate-cancer-preclinical-models(Accessed on: 2021 Mar 21)
[163]
Matos, B.; Howl, J.; Jerónimo, C.; Fardilha, M. The disruption of protein-protein interactions as a therapeutic strategy for prostate cancer. Pharmacological Research. Academic Press 2020, 161, 105145. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1043661820314535(Accessed on: 2021 Mar 21).
[http://dx.doi.org/10.1016/j.phrs.2020.105145]
[164]
High-Fat Diet Linked to Prostate Cancer Metastasis - National Cancer Institute. Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2018/high- fat-diet-prostate-metastasis(Accessed on: 2021 Mar 21).
[165]
Srikantan, V.; Zou, Z.; Petrovics, G.; Xu, L.; Augustus, M.; Davis, L. PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc. Natl. Acad. Sci., 2000, 97(22), 12216-21.
[http://dx.doi.org/10.1073/pnas.97.22.12216]
[166]
Lutz, S.Z.; Hennenlotter, J.; Scharpf, M.O.; Sailer, C.; Fritsche, L.; Schmid, V.; Kantartzis, K.; Wagner, R.; Lehmann, R.; Berti, L.; Peter, A.; Staiger, H.; Fritsche, A.; Fend, F.; Todenhöfer, T.; Stenzl, A.; Häring, H.U.; Heni, M. Androgen receptor overexpression in prostate cancer in type 2 diabetes. Mol. Metab., 2018, 8, 158-166.
[http://dx.doi.org/10.1016/j.molmet.2017.11.013] [PMID: 29249638]
[167]
Arjun, H.A.; Elancheran, R.; Manikandan, N.; Lakshmithendral, K.; Ramanathan, M.; Bhattacharjee, A. Design, synthesis, and biological evaluation of (E)-N’-((1-Chloro-3,4-Dihydronaphthalen-2-yl)Methylene)benzohydrazide derivatives as anti-prostate cancer agents. Front. Chem., 2019, 7
[168]
Zhang, Y.; Xu, Q.; Liu, G.; Huang, H.; Lin, W.; Huang, Y. Effect of histone deacetylase on prostate carcinoma. Int. J. Clin. Exp. Pathol., 2015, 8(11), 15030.
[169]
Park, J.H.; Jung, Y.; Kim, T.Y.; Kim, S.G.; Jong, H.S.; Lee, J.W.; Kim, D.K.; Lee, J.S.; Kim, N.K.; Kim, T.Y.; Bang, Y.J. Class I histone deacetylase-selective novel synthetic inhibitors potently inhibit human tumor proliferation. Clin. Cancer Res., 2004, 10(15), 5271-5281.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0709] [PMID: 15297431]
[170]
Fiskus, W.; Wang, Y.; Joshi, R.; Rao, R.; Yang, Y.; Chen, J.; Kolhe, R.; Balusu, R.; Eaton, K.; Lee, P.; Ustun, C.; Jillella, A.; Buser, C.A.; Peiper, S.; Bhalla, K. Cotreatment with vorinostat enhances activity of MK-0457 (VX-680) against acute and chronic myelogenous leukemia cells. Clin. Cancer Res., 2008, 14(19), 6106-6115.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0721] [PMID: 18829489]
[171]
Dai, Y.; Chen, S.; Pei, X.Y.; Almenara, J.A.; Kramer, L.B.; Venditti, C.A.; Dent, P.; Grant, S. Interruption of the Ras/MEK/ERK signaling cascade enhances Chk1 inhibitor–induced DNA damage in vitro and in vivo in human multiple myeloma cells. Blood, 2008, 112(6), 2439-2449.
[http://dx.doi.org/10.1182/blood-2008-05-159392] [PMID: 18614762]
[172]
Fiskus, W.; Hembruff, S.L.; Rao, R.; Sharma, P.; Balusu, R.; Venkannagari, S.; Smith, J.E.; Peth, K.; Peiper, S.C.; Bhalla, K.N. Co-treatment with vorinostat synergistically enhances activity of Aurora kinase inhibitor against human breast cancer cells. Breast Cancer Res. Treat., 2012, 135(2), 433-444.
[http://dx.doi.org/10.1007/s10549-012-2171-9] [PMID: 22825030]
[173]
Kretzner, L.; Scuto, A.; Dino, P.M.; Kowolik, C.M.; Wu, J.; Ventura, P.; Jove, R.; Forman, S.J.; Yen, Y.; Kirschbaum, M.H. Combining histone deacetylase inhibitor vorinostat with aurora kinase inhibitors enhances lymphoma cell killing with repression of c-Myc, hTERT, and microRNA levels. Cancer Res., 2011, 71(11), 3912-3920.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2259] [PMID: 21502403]
[174]
Zullo, K.M.; Guo, Y.; Cooke, L.; Jirau-Serrano, X.; Mangone, M.; Scotto, L.; Amengual, J.E.; Mao, Y.; Nandakumar, R.; Cremers, S.; Duong, J.; Mahadevan, D.; O’Connor, O.A. Aurora A kinase inhibition selectively synergizes with histone deacetylase inhibitor through cytokinesis failure in T-cell lymphoma. Clin. Cancer Res., 2015, 21(18), 4097-4109.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0033] [PMID: 25878331]
[175]
Paller, C.J.; Wissing, M.D.; Mendonca, J.; Sharma, A.; Kim, E.; Kim, H.S.; Kortenhorst, M.S.Q.; Gerber, S.; Rosen, M.; Shaikh, F.; Zahurak, M.L.; Rudek, M.A.; Hammers, H.; Rudin, C.M.; Carducci, M.A.; Kachhap, S.K. Combining the pan-aurora kinase inhibitor AMG 900 with histone deacetylase inhibitors enhances antitumor activity in prostate cancer. Cancer Med., 2014, 3(5), 1322-1335.
[http://dx.doi.org/10.1002/cam4.289] [PMID: 24989836]
[176]
Shah, K.N.; Bhatt, R.; Rotow, J.; Rohrberg, J.; Olivas, V.; Wang, V.E.; Hemmati, G.; Martins, M.M.; Maynard, A.; Kuhn, J.; Galeas, J.; Donnella, H.J.; Kaushik, S.; Ku, A.; Dumont, S.; Krings, G.; Haringsma, H.J.; Robillard, L.; Simmons, A.D.; Harding, T.C.; McCormick, F.; Goga, A.; Blakely, C.M.; Bivona, T.G.; Bandyopadhyay, S. Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer. Nat. Med., 2019, 25(1), 111-118.
[http://dx.doi.org/10.1038/s41591-018-0264-7] [PMID: 30478424]
[177]
Čančer, M.; Drews, L.F.; Bengtsson, J.; Bolin, S.; Rosén, G.; Westermark, B.; Nelander, S.; Forsberg-Nilsson, K.; Uhrbom, L.; Weishaupt, H.; Swartling, F.J. BET and Aurora Kinase A inhibitors synergize against MYCN-positive human glioblastoma cells. Cell Death Dis., 2019, 10(12), 881.
[http://dx.doi.org/10.1038/s41419-019-2120-1] [PMID: 31754113]
[178]
Felgenhauer, J.; Tomino, L.; Selich-Anderson, J.; Bopp, E.; Shah, N. Dual BRD4 and AURKA inhibition is synergistic against MYCN-amplified and nonamplified neuroblastoma. Neoplasia, 2018, 20(10), 965-974.
[http://dx.doi.org/10.1016/j.neo.2018.08.002] [PMID: 30153557]
[179]
Vilgelm, A.E.; Pawlikowski, J.S.; Liu, Y.; Hawkins, O.E.; Davis, T.A.; Smith, J.; Weller, K.P.; Horton, L.W.; McClain, C.M.; Ayers, G.D.; Turner, D.C.; Essaka, D.C.; Stewart, C.F.; Sosman, J.A.; Kelley, M.C.; Ecsedy, J.A.; Johnston, J.N.; Richmond, A. Mdm2 and aurora kinase A inhibitors synergize to block melanoma growth by driving apoptosis and immune clearance of tumor cells. Cancer Res., 2015, 75(1), 181-193.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2405] [PMID: 25398437]
[180]
Kojima, K.; Konopleva, M.; Tsao, T.; Nakakuma, H.; Andreeff, M. Concomitant inhibition of Mdm2-p53 interaction and Aurora kinases activates the p53-dependent postmitotic checkpoints and synergistically induces p53-mediated mitochondrial apoptosis along with reduced endoreduplication in acute myelogenous leukemia. Blood, 2008, 112(7), 2886-2895.
[http://dx.doi.org/10.1182/blood-2008-01-128611] [PMID: 18633130]
[181]
Ratushny, V.; Pathak, H.B.; Beeharry, N.; Tikhmyanova, N.; Xiao, F.; Li, T. Dual inhibition of SRC and Aurora kinases induces postmitotic attachment defects and cell death. Oncogene, 2012, 31(10), 1217-27.
[http://dx.doi.org/10.1038/onc.2011.314]
[182]
Alcaraz-Sanabria, A.; Nieto-Jimenez, C.; Corrales- Sanchez, V.; Serrano-Oviedo, L.; Andres-Pretel, F.; Montero, J.C. Synthetic lethality interaction between aurora kinases and CHEK1 inhibitors in ovarian cancer. Mol. Cancer Ther., 2017, 16(11), 2552-2562.
[183]
Lu, Y.; Liu, L.L.; Liu, S.S.; Fang, Z.G.; Zou, Y.; Deng, X. Celecoxib suppresses autophagy and enhances cytotoxicity of imatinib in imatinib-resistant chronic myeloid leukemia cells. J. Transl. Med., 2016, 14(1), 270.
[184]
Brewer Savannah, K.J.; Demicco, E.G.; Lusby, K.; Ghadimi, M.P.H.; Belousov, R.; Young, E.; Zhang, Y.; Huang, K.L.; Lazar, A.J.; Hunt, K.K.; Pollock, R.E.; Creighton, C.J.; Anderson, M.L.; Lev, D. Dual targeting of mTOR and aurora-A kinase for the treatment of uterine Leiomyosarcoma. Clin. Cancer Res., 2012, 18(17), 4633-4645.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0436] [PMID: 22821997]
[185]
Lee, J.W.; Parameswaran, J.; Sandoval-Schaefer, T.; Eoh, K.J.; Yang, D.; Zhu, F.; Mehra, R.; Sharma, R.; Gaffney, S.G.; Perry, E.B.; Townsend, J.P.; Serebriiskii, I.G.; Golemis, E.A.; Issaeva, N.; Yarbrough, W.G.; Koo, J.S.; Burtness, B. Combined Aurora Kinase A (AURKA) and WEE1 inhibition demonstrates synergistic antitumor effect in squamous cell carcinoma of the head and neck. Clin. Cancer Res., 2019, 25(11), 3430-3442.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0440] [PMID: 30755439]
[186]
Daniele, S.; Sestito, S.; Pietrobono, D.; Giacomelli, C.; Chiellini, G.; Di Maio, D. Dual inhibition of PDK1 and aurora kinase A: An effective strategy to induce differentiation and apoptosis of human glioblastoma multiforme stem cells. ACS Chem. Neurosci, 2017, 8(1), 100-114.
[http://dx.doi.org/10.1021/acschemneuro.6b00251]
[187]
Casari, I.; Domenichini, A.; Sestito, S.; Capone, E.; Sala, G.; Rapposelli, S.; Falasca, M. Dual PDK1/Aurora kinase A inhibitors reduce pancreatic cancer cell proliferation and colony formation. Cancers, 2019, 11(11), 1695.
[http://dx.doi.org/10.3390/cancers11111695] [PMID: 31683659]
[188]
Caputo, E.; Miceli, R.; Motti, M.L.; Taté, R.; Fratangelo, F.; Botti, G.; Mozzillo, N.; Carriero, M.V.; Cavalcanti, E.; Palmieri, G.; Ciliberto, G.; Pirozzi, G.; Ascierto, P.A. AurkA inhibitors enhance the effects of B-RAF and MEK inhibitors in melanoma treatment. J. Transl. Med., 2014, 12(1), 216.
[http://dx.doi.org/10.1186/s12967-014-0216-z] [PMID: 25074438]
[189]
Horwacik, I.; Durbas, M.; Boratyn, E.; Węgrzyn, P.; Rokita, H. Targeting GD2 ganglioside and aurora A kinase as a dual strategy leading to cell death in cultures of human neuroblastoma cells. Cancer Lett., 2013, 341(2), 248-264.
[http://dx.doi.org/10.1016/j.canlet.2013.08.018] [PMID: 23962557]
[190]
Durbas, M.; Pabisz, P.; Wawak, K.; Wiśniewska, A.; Boratyn, E.; Nowak, I.; Horwacik, I.; Woźnicka, O.; Rokita, H. GD2 ganglioside-binding antibody 14G2a and specific aurora A kinase inhibitor MK-5108 induce autophagy in IMR-32 neuroblastoma cells. Apoptosis, 2018, 23(9-10), 492-511.
[http://dx.doi.org/10.1007/s10495-018-1472-9] [PMID: 30027525]
[191]
Liu, Y.; Hawkins, O.E.; Vilgelm, A.E.; Pawlikowski, J.S.; Ecsedy, J.A.; Sosman, J.A.; Kelley, M.C.; Richmond, A. Combining an aurora kinase inhibitor and a death receptor ligand/agonist antibody triggers apoptosis in melanoma cells and prevents tumor growth in preclinical mouse models. Clin. Cancer Res., 2015, 21(23), 5338-5348.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0293] [PMID: 26152738]
[192]
Aurora A Inhibition Eliminates Myeloid Cell-Mediated Immunosuppression and Enhances the Efficacy of Anti-PD-L1 Therapy in Breast Cancer. Available from: https://europepmc.org/article/MED/30902796 (Accessed on: 2022 Sep 28).
[193]
Du, R.; Huang, C.; Liu, K.; Li, X.; Dong, Z. Targeting AURKA in Cancer: Molecular mechanisms and opportunities for cancer therapy. Mol. Cancer, 2021, 20(1), 15.
[http://dx.doi.org/10.1186/s12943-020-01305-3] [PMID: 33451333]
[194]
Defaux, J.; Antoine, M.; Logé, C.; Le Borgne, M.; Schuster, T.; Seipelt, I. Discovery of (7-aryl-1,5-naphthyridin-2-yl)ureas as dual inhibitors of ERK2 and Aurora B kinases with antiproliferative activity against cancer cells. Bioorganic Med. Chem. Lett., 2014, 4(16), 3748-52.
[195]
Li, J.; Hu, H.; Lang, Q.; Zhang, H.; Huang, Q.; Wu, Y.; Yu, L. A thienopyrimidine derivative induces growth inhibition and apoptosis in human cancer cell lines via inhibiting Aurora B kinase activity. Eur. J. Med. Chem., 2013, 65, 151-157.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.058] [PMID: 23707920]
[196]
Pradhan, T.; Gupta, O.; Singh, G.; Monga, V. Aurora kinase inhibitors as potential anticancer agents: Recent advances. Eur. J. Med. Chem., 2021, 221, 113495.
[http://dx.doi.org/10.1016/j.ejmech.2021.113495] [PMID: 34020340]
[197]
Boss, D.S.; Witteveen, P.O.; van der Sar, J.; Lolkema, M.P.; Voest, E.E.; Stockman, P.K.; Ataman, O.; Wilson, D.; Das, S.; Schellens, J.H. Clinical evaluation of AZD1152, an i.v. inhibitor of Aurora B kinase, in patients with solid malignant tumors. Ann. Oncol., 2011, 22(2), 431-437.
[http://dx.doi.org/10.1093/annonc/mdq344] [PMID: 20924078]
[198]
Traynor, A.M.; Hewitt, M.; Liu, G.; Flaherty, K.T.; Clark, J.; Freedman, S.J.; Scott, B.B.; Leighton, A.M.; Watson, P.A.; Zhao, B.; O’Dwyer, P.J.; Wilding, G. Phase I dose escalation study of MK-0457, a novel Aurora kinase inhibitor, in adult patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2011, 67(2), 305-314.
[http://dx.doi.org/10.1007/s00280-010-1318-9] [PMID: 20386909]
[199]
Manfredi, M.G.; Ecsedy, J.A.; Meetze, K.A.; Balani, S.K.; Burenkova, O.; Chen, W.; Galvin, K.M.; Hoar, K.M.; Huck, J.J.; LeRoy, P.J.; Ray, E.T.; Sells, T.B.; Stringer, B.; Stroud, S.G.; Vos, T.J.; Weatherhead, G.S.; Wysong, D.R.; Zhang, M.; Bolen, J.B.; Claiborne, C.F. Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc. Natl. Acad. Sci. USA, 2007, 104(10), 4106-4111.
[http://dx.doi.org/10.1073/pnas.0608798104] [PMID: 17360485]
[200]
Görgün, G.; Calabrese, E.; Hideshima, T.; Ecsedy, J.; Perrone, G.; Mani, M.; Ikeda, H.; Bianchi, G.; Hu, Y.; Cirstea, D.; Santo, L.; Tai, Y.T.; Nahar, S.; Zheng, M.; Bandi, M.; Carrasco, R.D.; Raje, N.; Munshi, N.; Richardson, P.; Anderson, K.C. A novel Aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma. Blood, 2010, 115(25), 5202-5213.
[http://dx.doi.org/10.1182/blood-2009-12-259523] [PMID: 20382844]
[201]
Soncini, C.; Carpinelli, P.; Gianellini, L.; Fancelli, D.; Vianello, P.; Rusconi, L.; Storici, P.; Zugnoni, P.; Pesenti, E.; Croci, V.; Ceruti, R.; Giorgini, M.L.; Cappella, P.; Ballinari, D.; Sola, F.; Varasi, M.; Bravo, R.; Moll, J. PHA-680632, a novel Aurora kinase inhibitor with potent antitumoral activity. Clin. Cancer Res., 2006, 12(13), 4080-4089.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1964] [PMID: 16818708]
[202]
Benten, D.; Keller, G.; Quaas, A.; Schrader, J.; Gontarewicz, A.; Balabanov, S. Aurora kinase inhibitor PHA-739358 suppresses growth of hepatocellular carcinoma in vitro and in a xenograft mouse model. Neoplasia, 200911(9), 934.
[203]
Joshi, S.; Dhingra, A.K.; Chopra, B.; Guarve, K.; Bhateja, D. Therapeutic potential and clinical evidence of hesperidin as neuroprotective agent. Cent. Nerv. Syst. Agents Med. Chem., 2022, 22(1), 5-14.
[http://dx.doi.org/10.2174/1871524922666220404164405] [PMID: 35379141]
[204]
Georgieva, I.; Koychev, D.; Wang, Y.; Holstein, J.; Hopfenmüller, W.; Zeitz, M.; Grabowski, P. ZM447439, a novel promising aurora kinase inhibitor, provokes antiproliferative and proapoptotic effects alone and in combination with bio- and chemotherapeutic agents in gastroenteropancreatic neuroendocrine tumor cell lines. Neuroendocrinology, 2010, 91(2), 121-130.
[http://dx.doi.org/10.1159/000258705] [PMID: 19923785]
[205]
Dar, A.A.; Goff, L.W.; Majid, S.; Berlin, J.; El-Rifai, W. Aurora kinase inhibitors-rising stars in cancer therapeutics? Mol. Cancer Ther., 2010, 9(2), 268-278.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0765] [PMID: 20124450]
[206]
Chung, M.S.; Han, S.J. Endometriosis-associated angiogenesis and anti-angiogenic therapy for endometriosis. Front. Global Women's Health., 2022, 3, 856316
[http://dx.doi.org/10.3389/fgwh.2022.856316]
[207]
Chan, F.; Sun, C.; Perumal, M.; Nguyen, Q.D.; Bavetsias, V.; McDonald, E.; Martins, V.; Wilsher, N.E.; Raynaud, F.I.; Valenti, M.; Eccles, S.; te Poele, R.; Workman, P.; Aboagye, E.O.; Linardopoulos, S. Mechanism of action of the Aurora kinase inhibitor CCT129202 and in vivo quantification of biological activity. Mol. Cancer Ther., 2007, 6(12), 3147-3157.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2156] [PMID: 18089709]
[208]
Moreno, L.; Marshall, L.V.; Pearson, A.D.J.; Morland, B.; Elliott, M.; Campbell-Hewson, Q. . A phase I trial of AT9283 (a selective inhibitor of aurora kinases) in children and adolescents with solid tumors: A Cancer Research UK study. Clin. Cancer Res., 2015, 21(2), 267-73.
[209]
Joshi-Hangal, R.; Tang, C.; Sadikin, S.; Inloes, R.; Shi, C.; Severson, P.; Lamb, J.; Bearss, D.; Redkar, S.; Kanekal, S. Pharmacokinetics of MP529, a selective Aurora A kinase inhibitor, in a novel subcutaneous delivery system . Exp. Mol. Med., 2008, 68(9_Supplement), 5729.
[210]
VanderPorten, E.C.; Taverna, P.; Hogan, J.N.; Ballinger, M.D.; Flanagan, W.M.; Fucini, R.V. The Aurora kinase inhibitor SNS-314 shows broad therapeutic potential with chemotherapeutics and synergy with microtubule-targeted agents in a colon carcinoma model. Mol. Cancer Ther., 2009, 8(4), 930-939.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0754] [PMID: 19372566]
[211]
McLaughlin, J.; Markovtsov, V.; Li, H.; Wong, S.; Gelman, M.; Zhu, Y.; Franci, C.; Lang, D.W.; Pali, E.; Lasaga, J.; Low, C.; Zhao, F.; Chang, B.; Gururaja, T.L.; Xu, W.; Baluom, M.; Sweeny, D.; Carroll, D.; Sran, A.; Thota, S.; Parmer, M.; Romane, A.; Clemens, G.; Grossbard, E.; Qu, K.; Jenkins, Y.; Kinoshita, T.; Taylor, V.; Holland, S.J.; Argade, A.; Singh, R.; Pine, P.; Payan, D.G.; Hitoshi, Y. Preclinical characterization of Aurora kinase inhibitor R763/AS703569 identified through an image-based phenotypic screen. J. Cancer Res. Clin. Oncol., 2010, 136(1), 99-113.
[http://dx.doi.org/10.1007/s00432-009-0641-1] [PMID: 19609559]
[212]
Matulonis, U.A.; Lee, J.; Lasonde, B.; Tew, W.P.; Yehwalashet, A.; Matei, D.; Behbakht, K.; Grothusen, J.; Fleming, G.; Lee, N.K.; Arnott, J.; Bray, M.R.; Fletcher, G.; Brokx, R.D.; Castonguay, V.; Mackay, H.; Sidor, C.F.; Oza, A.M. ENMD-2076, an oral inhibitor of angiogenic and proliferation kinases, has activity in recurrent, platinum resistant ovarian cancer. Eur. J. Cancer, 2013, 49(1), 121-131.
[http://dx.doi.org/10.1016/j.ejca.2012.07.020] [PMID: 22921155]
[213]
Study of XL228 in Subjects With Chronic Myeloid Leukemia or Philadelphia-Chromosome-Positive Acute Lymphocytic Leukemia - Full Text View - ClinicalTrials. ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/NCT00464113(Accessed on: 2022 Aug 25)
[214]
TTP607 Clinical Trials. Clincosm. 2022. Available from: https://www.clincosm.com/drug/TTP607(Acessed on: 2022 Aug 25)
[215]
Schöffski, P.; Jones, S.F.; Dumez, H.; Infante, J.R.; Van Mieghem, E.; Fowst, C.; Gerletti, P.; Xu, H.; Jakubczak, J.L.; English, P.A.; Pierce, K.J.; Burris, H.A. Phase I, open-label, multicentre, dose-escalation, pharmacokinetic and pharmacodynamic trial of the oral aurora kinase inhibitor PF-03814735 in advanced solid tumours. Eur. J. Cancer, 2011, 47(15), 2256-2264.
[http://dx.doi.org/10.1016/j.ejca.2011.07.008] [PMID: 21852114]
[216]
A phase I pharmacologic study of CYC116, an oral aurora kinase inhibitor, in patients with advanced solid tumors. Available from: https://clinicaltrials.gov/ct2/show/NCT00560716(Acessed on: 2022 Aug 25).
[217]
Vitetta, L; Hall, S; Coulson, S. Metabolic interactions in the Gastrointestinal Tract (GIT): Host, commensal, probiotics, and bacteriophage influences. Microorganisms, 2015, 20153(4), 913.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy