General Research Article

姜黄素类似物的设计、合成、药代动力学及体外抗癌活性评价

卷 31, 期 5, 2024

发表于: 15 June, 2023

页: [620 - 639] 页: 20

弟呕挨: 10.2174/0929867330666230428162720

价格: $65

conference banner
摘要

背景:作为我们发现植物基先导分子的一部分,我们提供了一个有用的工具,有助于姜黄素的鉴定、设计、优化、结构修饰和预测,以发现具有增强生物利用度、药理安全性和抗癌潜力的新型类似物。 方法:建立了定量构效关系(Quantitative structure-activity relationship, QSAR)和药效团作图模型,并将其进一步用于姜黄素类似物的设计、合成、药代动力学和体外抗癌活性评价。 结果:QSAR模型的活动-描述符关系准确度(r2)为84%,活动预测准确度(rcv2)为81%,外部集预测准确度为89%。QSAR研究表明,这五种化学描述符与抗癌活性显著相关。确定的重要药效团特征是一个氢键受体、一个疏水中心和一个负电离中心。该模型的预测能力是针对一组化学合成的姜黄素类似物进行评估。9个姜黄素类似物的IC50值在0.10 ~ 1.86 μg/mL之间。评估活性类似物的药代动力学依从性。通过对接研究,发现EGFR是合成的活性姜黄素类似物的潜在靶点。 结论:集成芯片设计,QSAR驱动的虚拟筛选,化学合成和体外实验评估可能导致从天然来源中早期发现新的和有前途的抗癌化合物。所建立的QSAR模型和共同药效团的产生被用作设计和预测工具来开发新的姜黄素类似物。这项研究可能有助于优化所研究化合物的治疗关系,为进一步的药物开发和潜在的安全性问题提供帮助。该研究可指导化合物的选择和设计新的活性化学支架或新的姜黄素系列组合文库。

关键词: QSAR,药效团,ADMET,姜黄素,药代动力学,抗癌,对接,药物设计。

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Dikshit, R.; Gupta, P.C.; Ramasundarahettige, C.; Gajalakshmi, V.; Aleksandrowicz, L.; Badwe, R.; Kumar, R.; Roy, S.; Suraweera, W.; Bray, F.; Mallath, M.; Singh, P.K.; Sinha, D.N.; Shet, A.S.; Gelband, H.; Jha, P. Cancer mortality in India: A nationally representative survey. Lancet, 2012, 379(9828), 1807-1816.
[http://dx.doi.org/10.1016/S0140-6736(12)60358-4] [PMID: 22460346]
[3]
Kaur, R.; Kapoor, K.; Kaur, H. Plants as a source of anticancer agents. J. Nat. Prod. Plant Resour., 2011, 1, 119-124.
[4]
Chattopadhyay, I.; Biswas, K.; Bandyopadhyay, U.; Banerjee, R.K. Turmeric and curcumin: Biological actions and medicinal applications. Curr. Sci., 2004, 87, 44-53.
[5]
Ammon, H.; Wahl, M. Pharmacology of Curcuma longa. Planta Med., 1991, 57(1), 1-7.
[http://dx.doi.org/10.1055/s-2006-960004] [PMID: 2062949]
[6]
Kunnumakkara, A.B.; Anand, P.; Aggarwal, B.B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett., 2008, 269(2), 199-225.
[http://dx.doi.org/10.1016/j.canlet.2008.03.009] [PMID: 18479807]
[7]
Kuttan, R.; Bhanumathy, P.; Nirmala, K.; George, M.C. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett., 1985, 29(2), 197-202.
[http://dx.doi.org/10.1016/0304-3835(85)90159-4] [PMID: 4075289]
[8]
Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: The Indian solid gold. Adv. Exp. Med. Biol., 2007, 595, 1-75.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1] [PMID: 17569205]
[9]
Kiso, Y.; Suzuki, Y.; Watanabe, N.; Oshima, Y.; Hikino, H. Antihepatotoxic principles of Curcuma longa rhizomes. Planta Med., 1983, 49(11), 185-187.
[http://dx.doi.org/10.1055/s-2007-969845] [PMID: 6657788]
[10]
Venkatesan, N.; Punithavathi, D.; Arumugam, V. Curcumin prevents adriamycin nephrotoxicity in rats. Br. J. Pharmacol., 2000, 129(2), 231-234.
[http://dx.doi.org/10.1038/sj.bjp.0703067] [PMID: 10694226]
[11]
Srivastava, R.; Dikshit, M.; Srimal, R.C.; Dhawan, B.N. Anti-thrombotic effect of curcumin. Thromb. Res., 1985, 40(3), 413-417.
[http://dx.doi.org/10.1016/0049-3848(85)90276-2] [PMID: 4082116]
[12]
Nirmala, C.; Puvanakrishnan, R. Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Mol. Cell. Biochem., 1996, 159(2), 85-93.
[http://dx.doi.org/10.1007/BF00420910] [PMID: 8858558]
[13]
Mahady, G.B.; Pendland, S.L.; Yun, G.; Lu, Z.Z. Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res., 2002, 22(6C), 4179-4181.
[PMID: 12553052]
[14]
Ouassaf, M.; Daoui, O.; Alam, S.; Elkhattabi, S.; Belaidi, S.; Chtita, S. Pharmacophore-based virtual screening, molecular docking, and molecular dynamics studies for the discovery of novel FLT3 inhibitors. J. Biomol. Struct. Dyn., 2022, 1-13.
[http://dx.doi.org/10.1080/07391102.2022.2123403] [PMID: 36106982]
[15]
Alam, S.; Khan, F. 3D-QSAR, Docking, ADME/Tox studies on Flavone analogs reveal anticancer activity through Tankyrase inhibition. Sci. Rep., 2019, 9(1), 5414.
[http://dx.doi.org/10.1038/s41598-019-41984-7] [PMID: 30932078]
[16]
Jorgensen, W.L. The many roles of computation in drug discovery. Science, 2004, 303(5665), 1813-1818.
[http://dx.doi.org/10.1126/science.1096361] [PMID: 15031495]
[17]
Kalyaanamoorthy, S.; Chen, Y.P.P. Structure-based drug design to augment hit discovery. Drug Discov. Today, 2011, 16(17-18), 831-839.
[http://dx.doi.org/10.1016/j.drudis.2011.07.006] [PMID: 21810482]
[18]
Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka, M.; Gordillo-Marañón, M.; Hunter, F.; Junco, L.; Mugumbate, G.; Rodriguez-Lopez, M.; Atkinson, F.; Bosc, N.; Radoux, C.J.; Segura-Cabrera, A.; Hersey, A.; Leach, A.R. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res., 2019, 47(D1), D930-D940.
[http://dx.doi.org/10.1093/nar/gky1075] [PMID: 30398643]
[19]
Sahu, N.K.; Bari, S.B.; Kohli, D.V. Molecular modeling studies of some substituted chalcone derivatives as cysteine protease inhibitors. Med. Chem. Res., 2012, 21(11), 3835-3847.
[http://dx.doi.org/10.1007/s00044-011-9900-1]
[20]
Alam, S.; Nasreen, S.; Ahmad, A.; Darokar, M.P.; Khan, F. Detection of natural inhibitors against human liver cancer cell lines through QSAR, molecular docking and ADMET studies. Curr. Top. Med. Chem., 2021, 21(8), 686-695.
[http://dx.doi.org/10.2174/18734294MTEyjMDcb1] [PMID: 33280598]
[21]
Gobbi, A.; Lee, M.L. DISE: Directed sphere exclusion. J. Chem. Inf. Comput. Sci., 2003, 43(1), 317-323.
[http://dx.doi.org/10.1021/ci025554v] [PMID: 12546567]
[22]
Hudson, B.D.; Hyde, R.M.; Rahr, E.; Wood, J.; Osman, J. Parameter based methods for compound selection from chemical databases. Quant. Struct.-Act. Relationsh., 1996, 15(4), 285-289.
[http://dx.doi.org/10.1002/qsar.19960150402]
[23]
Validation of (Q)SAR Models - OECD. Available from: https://www.oecd.org/chemicalsafety/risk-assessment/validationofqsarmodels.htm (accessed February 3, 2022).
[24]
de Haas, E.M.; Eikelboom, T.; Bouwman, T. Internal and external validation of the long-term QSARs for neutral organics to fish from ECOSAR™. SAR QSAR Environ. Res., 2011, 22(5-6), 545-559.
[http://dx.doi.org/10.1080/1062936X.2011.569949] [PMID: 21732893]
[25]
Alam, S.; Khan, F. Virtual screening, docking, ADMET and system pharmacology studies on Garcinia caged Xanthone derivatives for anticancer activity. Sci. Rep., 2018, 8(1), 5524.
[http://dx.doi.org/10.1038/s41598-018-23768-7] [PMID: 29615704]
[26]
Alam, S.; Khan, F. QSAR, docking, ADMET, and system pharmacology studies on tormentic acid derivatives for anticancer activity. J. Biomol. Struct. Dyn., 2018, 36(9), 2373-2390.
[http://dx.doi.org/10.1080/07391102.2017.1355846] [PMID: 28705120]
[27]
Szklarczyk, D.; Santos, A.; von Mering, C.; Jensen, L.J.; Bork, P.; Kuhn, M. STITCH 5: Augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res., 2016, 44(D1), D380-D384.
[http://dx.doi.org/10.1093/nar/gkv1277] [PMID: 26590256]
[28]
Bhukya, B.; Alam, S.; Chaturvedi, V.; Trivedi, P.; Kumar, S.; Khan, F. Brevifoliol and its analogs: A new class of antitubercular agents. Curr. Top. Med. Chem., 2021, 21(9), 767-776.
[http://dx.doi.org/10.2174/1568026620666200528155236] [PMID: 32484109]
[29]
Feroz Khan, F.; Alam, S. QSAR and docking studies on xanthone derivatives for anticancer activity targeting DNA topoisomerase IIα. Drug Des. Devel. Ther., 2014, 8, 183-195.
[http://dx.doi.org/10.2147/DDDT.S51577] [PMID: 24516330]
[30]
Iqbal, H.; Verma, A.K.; Yadav, P.; Alam, S.; Shafiq, M.; Mishra, D.; Khan, F.; Hanif, K.; Negi, A.S.; Chanda, D. Antihypertensive effect of a novel angiotensin II receptor blocker fluorophenyl benzimidazole: Contribution of cGMP, voltage-dependent calcium channels, and BKCa channels to vasorelaxant mechanisms. Front. Pharmacol., 2021, 12, 611109.
[http://dx.doi.org/10.3389/fphar.2021.611109] [PMID: 33859561]
[31]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in advanced drug delivery reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[32]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[33]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[34]
Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[35]
Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem., 2001, 44(12), 1841-1846.
[http://dx.doi.org/10.1021/jm015507e] [PMID: 11384230]
[36]
Martin, Y.C. A bioavailability score. J. Med. Chem., 2005, 48(9), 3164-3170.
[http://dx.doi.org/10.1021/jm0492002] [PMID: 15857122]
[37]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[38]
Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 2008, 3(3), 435-444.
[http://dx.doi.org/10.1002/cmdc.200700139] [PMID: 18064617]
[39]
Teague, S.J.; Davis, A.M.; Leeson, P.D.; Oprea, T. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed., 1999, 38(24), 3743-3748.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3743::AID-ANIE3743>3.0.CO;2-U] [PMID: 10649345]
[40]
Boda, K.; Seidel, T.; Gasteiger, J. Structure and reaction based evaluation of synthetic accessibility. J. Comput. Aided Mol. Des., 2007, 21(6), 311-325.
[http://dx.doi.org/10.1007/s10822-006-9099-2] [PMID: 17294248]
[41]
Alam, S.; Khan, F. 3D-QSAR studies on maslinic acid analogs for anticancer activity against breast cancer cell line MCF-7. Sci. Rep., 2017, 7(1), 6019.
[http://dx.doi.org/10.1038/s41598-017-06131-0] [PMID: 28729623]
[42]
Doyle, A.; Griffiths, J.B. Mammalian cell culture: Essential techniques; Wiley, 1997.
[43]
Wang, M.; Zhang, Y.; Wang, T.; Zhang, J.; Zhou, Z.; Sun, Y.; Wang, S.; Shi, Y.; Luan, X.; Zhang, Y.; Wang, Y.; Wang, Y.; Zou, Z.; Kang, L.; Liu, H. The USP7 inhibitor P5091 induces cell death in ovarian cancers with different P53 status. Cell. Physiol. Biochem., 2017, 43(5), 1755-1766.
[http://dx.doi.org/10.1159/000484062] [PMID: 29049989]
[44]
Kulkarni, P.S.; Kondhare, D.D.; Varala, R.; Zubaidha, P.K. Calcium hydroxide: An efficient and mild base for one-pot synthesis of curcumin and it’s analogues. Acta Chim. Slov., 2013, 6(1), 150-156.
[http://dx.doi.org/10.2478/acs-2013-0023]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy