Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Neuronal Vulnerability to Degeneration in Parkinson’s Disease and Therapeutic Approaches

Author(s): Tanushree Sharma, Rajnish Kumar and Sayali Mukherjee*

Volume 23, Issue 6, 2024

Published on: 24 May, 2023

Page: [715 - 730] Pages: 16

DOI: 10.2174/1871527322666230426155432

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Parkinson's disease is the second most common neurodegenerative disease affecting millions of people worldwide. Despite the crucial threat it poses, currently, no specific therapy exists that can completely reverse or halt the progression of the disease. Parkinson's disease pathology is driven by neurodegeneration caused by the intraneuronal accumulation of alpha-synuclein (α-syn) aggregates in Lewy bodies in the substantia nigra region of the brain. Parkinson’s disease is a multiorgan disease affecting the central nervous system (CNS) as well as the autonomic nervous system. A bidirectional route of spreading α-syn from the gut to CNS through the vagus nerve and vice versa has also been reported. Despite our understanding of the molecular and pathophysiological aspects of Parkinson’s disease, many questions remain unanswered regarding the selective vulnerability of neuronal populations, the neuromodulatory role of the locus coeruleus, and alpha-synuclein aggregation. This review article aims to describe the probable factors that contribute to selective neuronal vulnerability in Parkinson’s disease, such as genetic predisposition, bioenergetics, and the physiology of neurons, as well as the interplay of environmental and exogenous modulators. This review also highlights various therapeutic strategies with cell transplants, through viral gene delivery, by targeting α-synuclein and aquaporin protein or epidermal growth factor receptors for the treatment of Parkinson’s disease. The application of regenerative medicine and patient-specific personalized approaches have also been explored as promising strategies in the treatment of Parkinson’s disease.

Keywords: Neuronal vulnerability, Parkinson’s disease, Lewy Pathology, therapy, neurodegenerative disorder, dopaminergic deficiency.

Graphical Abstract
[1]
Pringsheim T, Nathalie J, Alexandra F, Thomas DLS. The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Mov Disord 2014; 29(13): 1583-90.
[2]
Parkinson J. An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 2002; 14(2): 223-36.
[http://dx.doi.org/10.1176/jnp.14.2.223] [PMID: 11983801]
[3]
Jellinger KA. The pathology of Parkinson’s disease. Adv Neurol 2001; 86: 55-72.
[PMID: 11554010]
[4]
Pons-Espinal M, Blasco-Agell L, Consiglio A. Dissecting the non-neuronal cell contribution to Parkinson’s disease pathogenesis using induced pluripotent stem cells. Cell Mol Life Sci 2021; 78(5): 2081-94.
[http://dx.doi.org/10.1007/s00018-020-03700-x] [PMID: 33210214]
[5]
Lees AJ, Selikhova M, Andrade LA, Duyckaerts C. The black stuff and konstantin nikolaevich tretiakoff. Mov Disord 2008; 23(6): 777-83.
[http://dx.doi.org/10.1002/mds.21855] [PMID: 18383531]
[6]
Rodriguez-Oroz MC, Jahanshahi M, Krack P, et al. Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol 2009; 8(12): 1128-39.
[http://dx.doi.org/10.1016/S1474-4422(09)70293-5] [PMID: 19909911]
[7]
Qiu PL, Liu SY, Bradshaw M, et al. Multi-locus phylogeny and taxonomy of an unresolved, heterogeneous species complex within the genus Golovinomyces (Ascomycota, Erysiphales), including G. ambrosiae, G. circumfusus and G. spadiceus. BMC Microbiol 2020; 20(1): 51.
[http://dx.doi.org/10.1186/s12866-020-01731-9] [PMID: 32138640]
[8]
Miyamoto T, Miyamoto M. Odor identification predicts the transition of patients with isolated RBD: A retrospective study. Ann Clin Transl Neurol 2022; 9(8): 1177-85.
[http://dx.doi.org/10.1002/acn3.51615] [PMID: 35767550]
[9]
Giguère N, Burke Nanni S, Trudeau LE. On cell loss and selective vulnerability of neuronal populations in Parkinson’s disease. Front Neurol 2018; 9: 455.
[http://dx.doi.org/10.3389/fneur.2018.00455] [PMID: 29971039]
[10]
Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003; 24(2): 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[11]
Van Den Berge N, Ferreira N, Gram H, et al. Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats. Acta Neuropathol 2019; 138(4): 535-50.
[http://dx.doi.org/10.1007/s00401-019-02040-w] [PMID: 31254094]
[12]
Horsager J, Andersen KB, Knudsen K, et al. Brain-first versus body-first Parkinson’s disease: A multimodal imaging case-control study. Brain 2020; 143(10): 3077-88.
[http://dx.doi.org/10.1093/brain/awaa238] [PMID: 32830221]
[13]
Dauer W, Przedborski S. Parkinson’s Disease. Neuron 2003; 39(6): 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[14]
Hawkes CH, Del Tredici K, Braak H. A timeline for Parkinson’s disease. Parkinsonism Relat Disord 2010; 16(2): 79-84.
[http://dx.doi.org/10.1016/j.parkreldis.2009.08.007] [PMID: 19846332]
[15]
Dickson LE, Greenwood GW. 221. Am Math Mon 1904; 11(5): 116.
[http://dx.doi.org/10.2307/2968851]
[16]
Cykowski MD, Coon EA, Powell SZ, et al. Expanding the spectrum of neuronal pathology in multiple system atrophy. Brain 2015; 138(8): 2293-309.
[http://dx.doi.org/10.1093/brain/awv114] [PMID: 25981961]
[17]
Jellinger KA. Neuropathology and pathophysiology of multiple system atrophy. Neuropathol Appl Neurobiol 2012; 38(4): 379-80.
[http://dx.doi.org/10.1111/j.1365-2990.2012.01268.x] [PMID: 22730560]
[18]
Kanda T, Tsukagoshi H, Oda M, Miyamoto K, Tanabe H. Changes of unmyelinated nerve fibers in sural nerve in amyotrophic lateral sclerosis, Parkinson’s disease and multiple system atrophy. Acta Neuropathol 1996; 91(2): 145-54.
[http://dx.doi.org/10.1007/s004010050406] [PMID: 8787147]
[19]
Jellinger KA. Neuropathology of multiple system atrophy: New thoughts about pathogenesis. Mov Disord 2014; 29(14): 1720-41.
[http://dx.doi.org/10.1002/mds.26052] [PMID: 25297524]
[20]
Ozawa T. Morphological substrate of autonomic failure and neurohormonal dysfunction in multiple system atrophy: Impact on determining phenotype spectrum. Acta Neuropathol 2007; 114(3): 201-11.
[http://dx.doi.org/10.1007/s00401-007-0254-1] [PMID: 17593377]
[21]
Orimo S, Kanazawa T, Nakamura A, et al. Degeneration of cardiac sympathetic nerve can occur in multiple system atrophy. Acta Neuropathol 2006; 113(1): 81-6.
[http://dx.doi.org/10.1007/s00401-006-0160-y] [PMID: 17089131]
[22]
Valentino RR, Tamvaka N, Heckman MG, et al. Associations of mitochondrial genomic variation with corticobasal degeneration, progressive supranuclear palsy, and neuropathological tau measures. Acta Neuropathol Commun 2020; 8(1): 162.
[http://dx.doi.org/10.1186/s40478-020-01035-z] [PMID: 32943110]
[23]
Dickson DW, Bergeron C, Chin SS, et al. Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol 2002; 61(11): 935-46.
[http://dx.doi.org/10.1093/jnen/61.11.935] [PMID: 12430710]
[24]
Dickson DW, Rademakers R, Hutton ML. Progressive supranuclear palsy: Pathology and genetics. Brain Pathol 2007; 17(1): 74-82.
[http://dx.doi.org/10.1111/j.1750-3639.2007.00054.x] [PMID: 17493041]
[25]
McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies. Neurology 2017; 89(1): 88-100.
[http://dx.doi.org/10.1212/WNL.0000000000004058] [PMID: 28592453]
[26]
Iovino L, Tremblay ME, Civiero L. Glutamate-induced excitotoxicity in Parkinson’s disease: The role of glial cells. J Pharmacol Sci 2020; 144(3): 151-64.
[http://dx.doi.org/10.1016/j.jphs.2020.07.011] [PMID: 32807662]
[27]
Brichta L, Greengard P. Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: An update. Front Neuroanat 2014; 8: 152.
[http://dx.doi.org/10.3389/fnana.2014.00152] [PMID: 25565977]
[28]
Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature 1997; 388(6645): 839-40.
[http://dx.doi.org/10.1038/42166] [PMID: 9278044]
[29]
Miyazaki I, Asanuma M. Neuron-astrocyte interactions in Parkinson’s disease. Cells 2020; 9(12): 2623.
[http://dx.doi.org/10.3390/cells9122623] [PMID: 33297340]
[30]
Bordone MP, Salman MM, Titus HE, et al. The energetic brain – A review from students to students. J Neurochem 2019; 151(2): 139-65.
[http://dx.doi.org/10.1111/jnc.14829] [PMID: 31318452]
[31]
Farhy-Tselnicker I, Allen NJ. Astrocytes, neurons, synapses: A tripartite view on cortical circuit development. Neural Dev 2018; 13(1): 7.
[http://dx.doi.org/10.1186/s13064-018-0104-y] [PMID: 29712572]
[32]
Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci 1999; 22(5): 208-15.
[http://dx.doi.org/10.1016/S0166-2236(98)01349-6] [PMID: 10322493]
[33]
Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis 2018; 109(Pt B): 249-57.
[http://dx.doi.org/10.1016/j.nbd.2017.04.004] [PMID: 28400134]
[34]
Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18(7): 965-77.
[http://dx.doi.org/10.1038/nn.4030] [PMID: 26030851]
[35]
Oksanen M, Lehtonen S, Jaronen M, Goldsteins G, Hämäläinen RH, Koistinaho J. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol Life Sci 2019; 76(14): 2739-60.
[http://dx.doi.org/10.1007/s00018-019-03111-7] [PMID: 31016348]
[36]
Salman MM, Kitchen P, Halsey A, et al. Emerging roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis. Brain 2022; 145(1): 64-75.
[http://dx.doi.org/10.1093/brain/awab311]
[37]
Galvan A, Wichmann T. Pathophysiology of Parkinsonism. Clin Neurophysiol 2008; 119(7): 1459-74.
[http://dx.doi.org/10.1016/j.clinph.2008.03.017] [PMID: 18467168]
[38]
Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 2017; 18(2): 101-13.
[http://dx.doi.org/10.1038/nrn.2016.178] [PMID: 28104909]
[39]
Krauss R, Bosanac T, Devraj R, Engber T, Hughes RO. Axons matter: The promise of treating neurodegenerative disorders by targeting SARM1-mediated axonal degeneration. Trends Pharmacol Sci 2020; 41(4): 281-93.
[http://dx.doi.org/10.1016/j.tips.2020.01.006] [PMID: 32107050]
[40]
Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 1997; 276(5321): 2045-7.
[41]
Singleton AB, Farrer M, Johnson J, et al. α-Synuclein locus triplication causes Parkinson’s disease. Science 2003; 302(5646): 841.
[http://dx.doi.org/10.1126/science.1090278] [PMID: 14593171]
[42]
Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 2004; 304(5674): 1158-60.
[http://dx.doi.org/10.1126/science.1096284] [PMID: 15087508]
[43]
Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003; 299(5604): 256-9.
[http://dx.doi.org/10.1126/science.1077209] [PMID: 12446870]
[44]
Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004; 44(4): 601-7.
[http://dx.doi.org/10.1016/j.neuron.2004.11.005] [PMID: 15541309]
[45]
Ramirez A, Heimbach A, Gründemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 2006; 38(10): 1184-91.
[http://dx.doi.org/10.1038/ng1884] [PMID: 16964263]
[46]
Paisan-Ruiz C, Bhatia KP, Li A, et al. Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 2009; 65(1): 19-23.
[http://dx.doi.org/10.1002/ana.21415] [PMID: 18570303]
[47]
Fonzo AD, Dekker MCJ, Montagna P, et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 2009; 72(3): 240-5.
[http://dx.doi.org/10.1212/01.wnl.0000338144.10967.2b] [PMID: 19038853]
[48]
Vilariño-Güell C, Wider C, Ross OA, et al. VPS35 mutations in Parkinson disease. Am J Hum Genet 2011; 89(1): 162-7.
[http://dx.doi.org/10.1016/j.ajhg.2011.06.001] [PMID: 21763482]
[49]
Zimprich A, Benet-Pagès A, Struhal W, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes lateonset Parkinson disease. Am J Hum Genet 2011; 89(1): 168-75.
[http://dx.doi.org/10.1016/j.ajhg.2011.06.008] [PMID: 21763483]
[50]
Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson’s disease with the alpha-synuclein protein. Front Pharmacol 2020; 11: 356.
[http://dx.doi.org/10.3389/fphar.2020.00356] [PMID: 32390826]
[51]
Dehay B, Bourdenx M, Gorry P, et al. Targeting α-synuclein for treatment of Parkinson’s disease: Mechanistic and therapeutic considerations. Lancet Neurol 2015; 14(8): 855-66.
[http://dx.doi.org/10.1016/S1474-4422(15)00006-X] [PMID: 26050140]
[52]
Ntetsika T, Papathoma PE, Markaki I. Novel targeted therapies for Parkinson’s disease. Mol Med 2021; 27(1): 17.
[http://dx.doi.org/10.1186/s10020-021-00279-2] [PMID: 33632120]
[53]
Philippart F, Destreel G, Merino-Sepúlveda P, Henny P, Engel D, Seutin V. Differential somatic Ca2+ channel profile in midbrain dopaminergic neurons. J Neurosci 2016; 36(27): 7234-45.
[http://dx.doi.org/10.1523/JNEUROSCI.0459-16.2016] [PMID: 27383597]
[54]
van der Vlag M, Havekes R, Heckman PRA. The contribution of Parkin, PINK1 and DJ‐1 genes to selective neuronal degeneration in Parkinson’s disease. Eur J Neurosci 2020; 52(4): 3256-68.
[http://dx.doi.org/10.1111/ejn.14689] [PMID: 31991026]
[55]
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015; 85(2): 257-73.
[http://dx.doi.org/10.1016/j.neuron.2014.12.007] [PMID: 25611507]
[56]
O’Keeffe GW, Sullivan AM. Evidence for dopaminergic axonal degeneration as an early pathological process in Parkinson’s disease. Parkinsonism Relat Disord 2018; 56: 9-15.
[http://dx.doi.org/10.1016/j.parkreldis.2018.06.025] [PMID: 29934196]
[57]
Lill CM. Genetics of Parkinson’s disease. Mol Cell Probes 2016; 30(6): 386-96.
[http://dx.doi.org/10.1016/j.mcp.2016.11.001] [PMID: 27818248]
[58]
Roberts H, Brown D. Seeking a mechanism for the toxicity of oligomeric α-synuclein. Biomolecules 2015; 5(2): 282-305.
[http://dx.doi.org/10.3390/biom5020282] [PMID: 25816357]
[59]
Luth ES, Stavrovskaya IG, Bartels T, Kristal BS, Selkoe DJ. Soluble, prefibrillar α-synuclein oligomers promote complex Idependent, Ca2+-induced mitochondrial dysfunction. J Biol Chem 2014; 289(31): 21490-507.
[http://dx.doi.org/10.1074/jbc.M113.545749] [PMID: 24942732]
[60]
Calì T, Ottolini D, Negro A, Brini M. α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J Biol Chem 2012; 287(22): 17914-29.
[http://dx.doi.org/10.1074/jbc.M111.302794] [PMID: 22453917]
[61]
Deng H, Gao K, Jankovic J. The VPS35 gene and Parkinson’s disease. Mov Disord 2013; 28(5): 569-75.
[http://dx.doi.org/10.1002/mds.25430] [PMID: 23536430]
[62]
Bolam JP, Pissadaki EK. Living on the edge with too many mouths to feed: Why dopamine neurons die. Mov Disord 2012; 27(12): 1478-83.
[http://dx.doi.org/10.1002/mds.25135] [PMID: 23008164]
[63]
Hunn BHM, Cragg SJ, Bolam JP, Spillantini MG, Wade-Martins R. Impaired intracellular trafficking defines early Parkinson’s disease. Trends Neurosci 2015; 38(3): 178-88.
[http://dx.doi.org/10.1016/j.tins.2014.12.009] [PMID: 25639775]
[64]
Bratzel F, López-Torrejón G, Koch M, Del Pozo JC, Calonje M. Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. Curr Biol 2010; 20(20): 1853-9.
[http://dx.doi.org/10.1016/j.cub.2010.09.046] [PMID: 20933424]
[65]
Surmeier DJ, Guzman JN, Sanchez J, Schumacker PT. Physiological phenotype and vulnerability in Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2(7): a009290.
[http://dx.doi.org/10.1101/cshperspect.a009290] [PMID: 22762023]
[66]
Guzman JN, Sánchez-Padilla J, Chan CS, Surmeier DJ. Robust pacemaking in substantia nigra dopaminergic neurons. J Neurosci 2009; 29(35): 11011-9.
[http://dx.doi.org/10.1523/JNEUROSCI.2519-09.2009] [PMID: 19726659]
[67]
Khaliq ZM, Bean BP. Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J Neurosci 2010; 30(21): 7401-13.
[http://dx.doi.org/10.1523/JNEUROSCI.0143-10.2010] [PMID: 20505107]
[68]
Singh A, Verma P, Balaji G, Samantaray S, Mohanakumar KP. Nimodipine, an L-type calcium channel blocker attenuates mitochondrial dysfunctions to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. Neurochem Int 2016; 99: 221-32.
[http://dx.doi.org/10.1016/j.neuint.2016.07.003] [PMID: 27395789]
[69]
Putzier I, Kullmann PHM, Horn JP, Levitan ES. Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci 2009; 29(49): 15414-9.
[http://dx.doi.org/10.1523/JNEUROSCI.4742-09.2009] [PMID: 20007466]
[70]
Guzman JN, Sanchez-Padilla J, Wokosin D, et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 2010; 468(7324): 696-700.
[http://dx.doi.org/10.1038/nature09536] [PMID: 21068725]
[71]
Balaban RS. The role of Ca2+ signaling in the coordination of mitochondrial ATP production with cardiac work. Biochim Biophys Acta Bioenerg 2009; 1787(11): 1334-41.
[http://dx.doi.org/10.1016/j.bbabio.2009.05.011] [PMID: 19481532]
[72]
Votyakova TV, Reynolds IJ. ΔΨm-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 2001; 79(2): 266-77.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00548.x] [PMID: 11677254]
[73]
de Vries RLA, Przedborski S. Mitophagy and Parkinson’s disease: Be eaten to stay healthy. Mol Cell Neurosci 2013; 55: 37-43.
[http://dx.doi.org/10.1016/j.mcn.2012.07.008] [PMID: 22926193]
[74]
Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 2010; 13(7): 805-11.
[http://dx.doi.org/10.1038/nn.2575] [PMID: 20581817]
[75]
Haining R, Achat-Mendes C. Neuromelanin, one of the most overlooked molecules in modern medicine, is not a spectator. Neural Regen Res 2017; 12(3): 372-5.
[http://dx.doi.org/10.4103/1673-5374.202928] [PMID: 28469642]
[76]
Sulzer D, Bogulavsky J, Larsen KE, et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci 2000; 97(22): 11869-74.
[http://dx.doi.org/10.1073/pnas.97.22.11869] [PMID: 11050221]
[77]
Sawada H, Oeda T, Yamamoto K. Catecholamines and neurodegeneration in Parkinson’s Disease—from diagnostic marker to aggregations of α-synuclein. Diagnostics 2013; 3(2): 210-21.
[http://dx.doi.org/10.3390/diagnostics3020210] [PMID: 26835675]
[78]
Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol Neurodegener 2019; 14(1): 35.
[http://dx.doi.org/10.1186/s13024-019-0332-6] [PMID: 31488222]
[79]
Muñoz P, Huenchuguala S, Paris I, Segura-Aguilar J. Dopamine oxidation and autophagy. Parkinsons Dis 2012; 2012: 1-13.
[http://dx.doi.org/10.1155/2012/920953] [PMID: 22966478]
[80]
LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ. Dopamine covalently modifies and functionally inactivates parkin. Nat Med 2005; 11(11): 1214-21.
[http://dx.doi.org/10.1038/nm1314] [PMID: 16227987]
[81]
Chen V, Saez-Atienzar S. A tango for two: Dopamine and α‐synuclein synergy may explain nigrostriatal degeneration in Parkinson’s disease. Mov Disord 2018; 33(2): 249.
[http://dx.doi.org/10.1002/mds.27248] [PMID: 29356152]
[82]
Dickson PW, Briggs GD. Tyrosine Hydroxylase. Adv Pharmacol 2013; 68: 13-21.
[http://dx.doi.org/10.1016/B978-0-12-411512-5.00002-6] [PMID: 24054138]
[83]
Segura-Aguilar , Sulzer D, Zucca FA, Zecca L. Overexpression of vesicular monoamine transporter-2 may block neurotoxic metabolites from cytosolic dopamine: A potential neuroprotective therapy for Parkinson’s disease. Clin Pharmacol Transl Med 2019; 3(1): 143-8.
[PMID: 32864581]
[84]
Nedergaard M. Neuroscience. Garbage truck of the brain. Science 2013; 340(6140): 1529-30.
[http://dx.doi.org/10.1126/science.1240514] [PMID: 23812703]
[85]
Iliff JJ, Chen MJ, Plog BA, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 2014; 34(49): 16180-93.
[http://dx.doi.org/10.1523/JNEUROSCI.3020-14.2014] [PMID: 25471560]
[86]
Iliff J, Simon M. CrossTalk proposal: The glymphatic system supports convective exchange of cerebrospinal fluid and brain interstitial fluid that is mediated by perivascular aquaporin‐4. J Physiol 2019; 597(17): 4417-9.
[http://dx.doi.org/10.1113/JP277635] [PMID: 31389028]
[87]
Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science 2020; 370(6512): 50-6.
[http://dx.doi.org/10.1126/science.abb8739] [PMID: 33004510]
[88]
Kylkilahti TM, Berends E, Ramos M, et al. Achieving brain clearance and preventing neurodegenerative diseases—A glymphatic perspective. J Cereb Blood Flow Metab 2021; 41(9): 2137-49.
[http://dx.doi.org/10.1177/0271678X20982388] [PMID: 33461408]
[89]
Lopes DM, Llewellyn SK, Harrison IF. Propagation of tau and α-synuclein in the brain: therapeutic potential of the glymphatic system. Transl Neurodegener 2022; 11(1): 19.
[http://dx.doi.org/10.1186/s40035-022-00293-2] [PMID: 35314000]
[90]
Hoshi A, Tsunoda A, Tada M, Nishizawa M, Ugawa Y, Kakita A. Expression of aquaporin 1 and aquaporin 4 in the temporal neocortex of patients with Parkinson’s disease. Brain Pathol 2017; 27(2): 160-8.
[http://dx.doi.org/10.1111/bpa.12369] [PMID: 26919570]
[91]
Post MR, Lieberman OJ, Mosharov EV. Can interactions between α-Synuclein, dopamine and calcium explain selective neurodegeneration in Parkinson’s Disease? Front Neurosci 2018; 12: 161.
[http://dx.doi.org/10.3389/fnins.2018.00161] [PMID: 29593491]
[92]
Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr. Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science 2001; 294(5545): 1346-9.
[http://dx.doi.org/10.1126/science.1063522] [PMID: 11701929]
[93]
Martinez-Vicente M, Talloczy Z, Kaushik S, et al. Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. J Clin Invest 2008; 118(2): 777-88.
[PMID: 18172548]
[94]
Nagley P, Higgins GC, Atkin JD, Beart PM. Multifaceted deaths orchestrated by mitochondria in neurones. Biochim Biophys Acta Mol Basis Dis 2010; 1802(1): 167-85.
[http://dx.doi.org/10.1016/j.bbadis.2009.09.004]
[95]
Cookson MR. α-Synuclein and neuronal cell death. Mol Neurodegener 2009; 4(1): 9.
[http://dx.doi.org/10.1186/1750-1326-4-9] [PMID: 19193223]
[96]
Reeve A, Simcox E, Turnbull D. Aging and Parkinson's disease: Why is advancing age the biggest risk factor? Ageing Res Rev 2014; 14: 19-30.
[http://dx.doi.org/10.1016/j.arr.2014.01.004] [PMID: 24503004]
[97]
Anglade P, Vyas S, Javoy-Agid F, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 1997; 12(1): 25-31.
[PMID: 9046040]
[98]
Schneider JL, Cuervo AM. Autophagy and human disease: Emerging themes. Curr Opin Genet Dev 2014; 26: 16-23.
[http://dx.doi.org/10.1016/j.gde.2014.04.003] [PMID: 24907664]
[99]
Ramachandiran S, Hansen JM, Jones DP, Richardson JR, Miller GW. Divergent mechanisms of paraquat, MPP+, and rotenone toxicity: Oxidation of thioredoxin and caspase-3 activation. Toxicol Sci 2007; 95(1): 163-71.
[http://dx.doi.org/10.1093/toxsci/kfl125] [PMID: 17018646]
[100]
Schildknecht S, Di Monte DA, Pape R, Tieu K, Leist M. Tipping points and endogenous determinants of nigrostriatal degeneration by MPTP. Trends Pharmacol Sci 2017; 38(6): 541-55.
[http://dx.doi.org/10.1016/j.tips.2017.03.010] [PMID: 28442167]
[101]
Ballard PA, Tetrud JW, Langston JW. Permanent human parkinsonism due to 1-methy 1-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): Seven cases. Neurology 1985; 35(7): 949-56.
[http://dx.doi.org/10.1212/WNL.35.7.949] [PMID: 3874373]
[102]
Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S. α-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem 2000; 74(2): 721-9.
[http://dx.doi.org/10.1046/j.1471-4159.2000.740721.x] [PMID: 10646524]
[103]
McCormack AL, Mak SK, Shenasa M, Langston WJ, Forno LS, Di Monte DA. Pathologic modifications of α-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated squirrel monkeys. J Neuropathol Exp Neurol 2008; 67(8): 793-802.
[http://dx.doi.org/10.1097/NEN.0b013e318180f0bd] [PMID: 18648323]
[104]
McCormack AL, Thiruchelvam M, Manning-Bog AB, et al. Environmental risk factors and Parkinson’s disease: Selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 2002; 10(2): 119-27.
[http://dx.doi.org/10.1006/nbdi.2002.0507] [PMID: 12127150]
[105]
Bisaglia M, Tosatto L, Munari F, et al. Dopamine quinones interact with α-synuclein to form unstructured adducts. Biochem Biophys Res Commun 2010; 394(2): 424-8.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.044] [PMID: 20226175]
[106]
Li N, Ragheb K, Lawler G, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 2003; 278(10): 8516-25.
[http://dx.doi.org/10.1074/jbc.M210432200] [PMID: 12496265]
[107]
Ren Y, Liu W, Jiang H, Jiang Q, Feng J. Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem 2005; 280(40): 34105-12.
[http://dx.doi.org/10.1074/jbc.M503483200] [PMID: 16091364]
[108]
Yuan Y, Yan W, Sun J, Huang J, Mu Z, Chen NH. The molecular mechanism of rotenone-induced α-synuclein aggregation: Emphasizing the role of the calcium/GSK3β pathway. Toxicol Lett 2015; 233(2): 163-71.
[http://dx.doi.org/10.1016/j.toxlet.2014.11.029] [PMID: 25433145]
[109]
Kaindlstorfer C, Jellinger KA, Eschlböck S, Stefanova N, Weiss G, Wenning GK. The relevance of iron in the pathogenesis of multiple system atrophy: A viewpoint. J Alzheimers Dis 2018; 61(4): 1253-73.
[http://dx.doi.org/10.3233/JAD-170601] [PMID: 29376857]
[110]
Abeyawardhane DL, Fernández RD, Murgas CJ, et al. Iron redox chemistry promotes antiparallel oligomerization of α-synuclein. J Am Chem Soc 2018; 140(15): 5028-32.
[http://dx.doi.org/10.1021/jacs.8b02013] [PMID: 29608844]
[111]
Zhu Z, Liu L, Su C, et al. Corynoxine B derivative CB6 prevents Parkinsonian toxicity in mice by inducing PIK3C3 complex-dependent autophagy. Acta Pharmacol Sin 2022; 43(10): 2511-26.
[http://dx.doi.org/10.1038/s41401-022-00871-0] [PMID: 35217810]
[112]
Nielsen JE, Jensen LN, Krabbe K. Hereditary haemochromatosis: A case of iron accumulation in the basal ganglia associated with a parkinsonian syndrome. J Neurol Neurosurg Psychiatry 1995; 59(3): 318-21.
[http://dx.doi.org/10.1136/jnnp.59.3.318] [PMID: 7673967]
[113]
Chen P, Miah MR, Aschner M. Metals and neurodegeneration. F1000 Res 2016; 5: 366.
[http://dx.doi.org/10.12688/f1000research.7431.1] [PMID: 27006759]
[114]
Valensin D, Dell’Acqua S, Kozlowski H, Casella L. Coordination and redox properties of copper interaction with α-synuclein. J Inorg Biochem 2016; 163: 292-300.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.04.012] [PMID: 27112900]
[115]
Fukushima T, Tan X, Luo Y, Kanda H. Serum vitamins and heavy metals in blood and urine, and the correlations among them in Parkinson’s disease patients in China. Neuroepidemiology 2011; 36(4): 240-4.
[http://dx.doi.org/10.1159/000328253] [PMID: 21677448]
[116]
Castillo-Gonzalez JA, Loera-Arias MDJ, Saucedo-Cardenas O, Montes-de-Oca-Luna R, Garcia-Garcia A, Rodriguez-Rocha H. Phosphorylated α-synuclein-copper complex formation in the pathogenesis of Parkinson’s disease. Parkinsons Dis 2017; 2017: 1-9.
[http://dx.doi.org/10.1155/2017/9164754] [PMID: 29333317]
[117]
Chen P, Chakraborty S, Mukhopadhyay S, et al. Manganese homeostasis in the nervous system. J Neurochem 2015; 134(4): 601-10.
[http://dx.doi.org/10.1111/jnc.13170] [PMID: 25982296]
[118]
Harischandra DS, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. α-Synuclein protects against manganese neurotoxic insult during the early stages of exposure in a dopaminergic cell model of Parkinson’s disease. Toxicol Sci 2015; 143(2): 454-68.
[http://dx.doi.org/10.1093/toxsci/kfu247] [PMID: 25416158]
[119]
Jankovic J, Aguilar LG. Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr Dis Treat 2008; 4(4): 743-57.
[http://dx.doi.org/10.2147/NDT.S2006] [PMID: 19043519]
[120]
Young BK, Camicioli R, Ganzini L. Neuropsychiatric adverse effects of antiparkinsonian drugs. Characteristics, evaluation and treatment. Drugs Aging 1997; 10(5): 367-83.
[http://dx.doi.org/10.2165/00002512-199710050-00005] [PMID: 9143857]
[121]
Kalia SK, Sankar T, Lozano AM. Deep brain stimulation for Parkinsonʼs disease and other movement disorders. Curr Opin Neurol 2013; 26(4): 374-80.
[http://dx.doi.org/10.1097/WCO.0b013e3283632d08] [PMID: 23817213]
[122]
Benabid AL. Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol 2003; 13(6): 696-706.
[http://dx.doi.org/10.1016/j.conb.2003.11.001] [PMID: 14662371]
[123]
Olanow CW, Kieburtz K, Odin P, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: A randomised, controlled, double-blind, double-dummy study. Lancet Neurol 2014; 13(2): 141-9.
[http://dx.doi.org/10.1016/S1474-4422(13)70293-X] [PMID: 24361112]
[124]
Kaplitt MG, Feigin A, Tang C, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: An open label, phase I trial. Lancet 2007; 369(9579): 2097-105.
[http://dx.doi.org/10.1016/S0140-6736(07)60982-9] [PMID: 17586305]
[125]
Bjo¨rklund A, Stenevi U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res 1979; 177(3): 555-60.
[http://dx.doi.org/10.1016/0006-8993(79)90472-4] [PMID: 574053]
[126]
Barker RA, Drouin-Ouellet J, Parmar M. Cell-based therapies for Parkinson disease—past insights and future potential. Nat Rev Neurol 2015; 11(9): 492-503.
[http://dx.doi.org/10.1038/nrneurol.2015.123] [PMID: 26240036]
[127]
Lindvall O, Björklund A. Cell therapy in Parkinson’s disease. NeuroRx 2004; 1(4): 382-93.
[http://dx.doi.org/10.1602/neurorx.1.4.382] [PMID: 15717042]
[128]
Kriks S, Shim JW, Piao J, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 2011; 480(7378): 547-51.
[http://dx.doi.org/10.1038/nature10648] [PMID: 22056989]
[129]
Kikuchi T, Morizane A, Doi D, et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 2017; 548(7669): 592-6.
[http://dx.doi.org/10.1038/nature23664] [PMID: 28858313]
[130]
Bankiewicz KS, Forsayeth J, Eberling JL, et al. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 2006; 14(4): 564-70.
[http://dx.doi.org/10.1016/j.ymthe.2006.05.005] [PMID: 16829205]
[131]
Fountaine TM, Wade-Martins R. RNA interference-mediated knockdown of α-synuclein protects human dopaminergic neuroblastoma cells from MPP+ toxicity and reduces dopamine transport. J Neurosci Res 2007; 85(2): 351-63.
[http://dx.doi.org/10.1002/jnr.21125] [PMID: 17131421]
[132]
Mukherjee S, Thrasher AJ. Gene therapy for PIDs: Progress, pitfalls and prospects. Gene 2013; 525(2): 174-81.
[http://dx.doi.org/10.1016/j.gene.2013.03.098] [PMID: 23566838]
[133]
Sapru MK, Yates JW, Hogan S, Jiang L, Halter J, Bohn MC. Silencing of human α-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp Neurol 2006; 198(2): 382-90.
[http://dx.doi.org/10.1016/j.expneurol.2005.12.024] [PMID: 16455076]
[134]
Burré J, Sharma M, Südhof TC. α-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc Natl Acad Sci 2014; 111(40): E4274-83.
[http://dx.doi.org/10.1073/pnas.1416598111] [PMID: 25246573]
[135]
Gorbatyuk OS, Li S, Nash K, et al. In vivo RNAi-mediated α-synuclein silencing induces nigrostriatal degeneration. Mol Ther 2010; 18(8): 1450-7.
[http://dx.doi.org/10.1038/mt.2010.115] [PMID: 20551914]
[136]
Davies SE, Hallett PJ, Moens T, et al. Enhanced ubiquitin-dependent degradation by Nedd4 protects against α-synuclein accumulation and toxicity in animal models of Parkinson’s disease. Neurobiol Dis 2014; 64(100): 79-87.
[http://dx.doi.org/10.1016/j.nbd.2013.12.011] [PMID: 24388974]
[137]
George S, Brundin P. Immunotherapy in Parkinson’s disease: Micromanaging alpha-synuclein aggregation. J Parkinsons Dis 2015; 5(3): 413-24.
[http://dx.doi.org/10.3233/JPD-150630] [PMID: 26406122]
[138]
Brundin P, Dave KD, Kordower JH. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol 2017; 298(Pt B): 225-35.
[http://dx.doi.org/10.1016/j.expneurol.2017.10.003] [PMID: 28987463]
[139]
AstraZeneca and Takeda establish collaboration to develop and commercialize MEDI1341 for Parkinson’s disease. 2017. Available from: https://www.astrazeneca.com/media-center/press-releases/2017/astrazeneca-and-takeda-establish-collaboration-to-developand-commercialize-medi1341-for-parkinsons-disease-25082017.html (Accessed on: July 2021).
[140]
Sylvain NJ, Salman MM, Pushie MJ, et al. The effects of trifluoperazine on brain edema, aquaporin-4 expression and metabolic markers during the acute phase of stroke using photothrombotic mouse model. Biochim Biophys Acta Biomembr 2021; 1863(5): 183573.
[http://dx.doi.org/10.1016/j.bbamem.2021.183573] [PMID: 33561476]
[141]
Vargas JY, Grudina C, Zurzolo C. The prion-like spreading of α-synuclein: From in vitro to in vivo models of Parkinson’s disease. Ageing Res Rev 2019; 50: 89-101.
[http://dx.doi.org/10.1016/j.arr.2019.01.012] [PMID: 30690184]
[142]
Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 2017; 9(5): 52.
[http://dx.doi.org/10.3390/cancers9050052] [PMID: 28513565]
[143]
Tavassoly O, Sato T, Tavassoly I. Inhibition of brain epidermal growth factor receptor activation: a novel target in neurodegenerative diseases and brain injuries. Mol Pharmacol 2020; 98(1): 13-22.
[http://dx.doi.org/10.1124/mol.120.119909] [PMID: 32350120]
[144]
Tavassoly O, Tavassoly I. EGFR aggregation in the brain. ACS Chem Neurosci 2021; 12(11): 1833-4.
[http://dx.doi.org/10.1021/acschemneuro.1c00264] [PMID: 33979124]
[145]
Qian H, Kang X, Hu J, et al. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 2020; 582(7813): 550-6.
[http://dx.doi.org/10.1038/s41586-020-2388-4] [PMID: 32581380]
[146]
Michael SO. Management of Parkinson Disease in 2017 personalized approaches for patient-specific needs. JAMA 2017; 318(9): 791-2.
[147]
Barouki R, Audouze K, Coumoul X, Demenais F, Gauguier D. Integration of the human exposome with the human genome to advance medicine. Biochimie 2018; 152: 155-8.
[http://dx.doi.org/10.1016/j.biochi.2018.06.023] [PMID: 29960033]
[148]
Saeed U, Compagnone J, Aviv RI, et al. Imaging biomarkers in Parkinson’s disease and Parkinsonian syndromes: current and emerging concepts. Transl Neurodegener 2017; 6: 8.
[149]
Atik A, Stewart T, Zhang J. Alpha‐synuclein as a biomarker for Parkinson’s disease. Brain Pathol 2016; 26(3): 410-8.
[http://dx.doi.org/10.1111/bpa.12370] [PMID: 26940058]
[150]
Quinlan S, Kenny A, Medina M, Engel T, Jimenez-Mateos EM. MicroRNAs in neurodegenerative diseases. Int Rev Cell Mol Biol 2017; 334: 309-43.
[http://dx.doi.org/10.1016/bs.ircmb.2017.04.002] [PMID: 28838542]
[151]
Taymans JM, Mutez E, Drouyer M, Sibran W, Chartier-Harlin MC. LRRK2 detection in human biofluids: Potential use as a Parkinson’s disease biomarker? Biochem Soc Trans 2017; 45(1): 207-12.
[http://dx.doi.org/10.1042/BST20160334] [PMID: 28202674]
[152]
Liu L, Borlak J. Advances in liver cancer stem cell isolation and their characterization. Stem Cell Rev Rep 2021; 17(4): 1215-38.
[http://dx.doi.org/10.1007/s12015-020-10114-6] [PMID: 33432485]
[153]
Wevers NR, Kasi DG, Gray T, et al. A perfused human blood–brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS 2018; 15(1): 23.
[http://dx.doi.org/10.1186/s12987-018-0108-3] [PMID: 30165870]
[154]
Aldewachi H, Al-Zidan RN, Conner MT, Salman MM. High-throughput screening platforms in the discovery of novel drugs for neurodegenerative diseases. Bioengineering 2021; 8(2): 30.
[http://dx.doi.org/10.3390/bioengineering8020030] [PMID: 33672148]
[155]
Salman MM, Al-Obaidi Z, Kitchen P, Loreto A, Bill RM, Wade-Martins R. Advances in applying computer-aided drug design for neurodegenerative diseases. Int J Mol Sci 2021; 22(9): 4688.
[http://dx.doi.org/10.3390/ijms22094688] [PMID: 33925236]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy