Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Articular Cartilage Injury; Current Status and Future Direction

Author(s): Maryam Moradi, Farzad Parvizpour, Zohreh Arabpour, Nikan Zargarzadeh, Mahnaz Nazari, Heewa Rashnavadi, Farshid Sefat, Sanaz Dehghani, Marzieh Latifi and Arefeh Jafarian*

Volume 19, Issue 5, 2024

Published on: 17 May, 2023

Page: [653 - 661] Pages: 9

DOI: 10.2174/1574888X18666230418121122

Price: $65

conference banner
Abstract

Today, treatments of cartilage and osteochondral lesions are routine clinical procedures. The avascular and hard-to-self-repair nature of cartilage tissue has posed a clinical challenge for the replacement and reconstruction of damaged cartilage. Treatment of large articular cartilage defects is technically difficult and complex, often accompanied by failure. Articular cartilage cannot repair itself after injury due to a lack of blood vessels, lymph, and nerves. Various treatments for cartilage regeneration have shown encouraging results, but unfortunately, none have been the perfect solution. New minimally invasive and effective techniques are being developed. The development of tissue engineering technology has created hope for articular cartilage reconstruction. This technology mainly supplies stem cells with various sources of pluripotent and mesenchymal stem cells. This article describes the treatments in detail, including types, grades of cartilage lesions, and immune mechanisms in cartilage injuries.

Keywords: Cartilage lesion, articular cartilage surgery, articular cartilage tissue engineering, chondrocyte implantation, cartilage grafts, osteochondral lesions.

Graphical Abstract
[1]
Zhao Z, Fan C, Chen F, et al. Progress in articular cartilage tissue engineering: A review on therapeutic cells and macromolecular scaffolds. Macromol Biosci 2020; 20(2): 1900278.
[http://dx.doi.org/10.1002/mabi.201900278] [PMID: 31800166]
[2]
Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009; 1(6): 461-8.
[http://dx.doi.org/10.1177/1941738109350438] [PMID: 23015907]
[3]
Chu CR, Convery FR, Akeson WH, Meyers M, Amiel D. Articular cartilage transplantation. Clinical results in the knee. Clin Orthop Relat Res 1999; 360(360): 159-68.
[http://dx.doi.org/10.1097/00003086-199903000-00019] [PMID: 10101321]
[4]
Sharifi AM, Moshiri A, Oryan A. Articular cartilage: injury, healing, and regeneration. Curr Orthop Pract 2016; 27(6): 644-65.
[http://dx.doi.org/10.1097/BCO.0000000000000425]
[5]
Abdo J, Ortman H. Biologic and synthetic cellular and/or tissue-based products and smart wound dressings/coverings. Surg Clin North Am 2020; 100(4): 741-56.
[http://dx.doi.org/10.1016/j.suc.2020.05.006] [PMID: 32681874]
[6]
Peters HC, Otto TJ, Enders JT, Jin W, Moed BR, Zhang Z. The protective role of the pericellular matrix in chondrocyte apoptosis. Tissue Eng Part A 2011; 17(15-16): 2017-24.
[http://dx.doi.org/10.1089/ten.tea.2010.0601] [PMID: 21457093]
[7]
Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic science of articular cartilage. Clin Sports Med 2017; 36(3): 413-25.
[http://dx.doi.org/10.1016/j.csm.2017.02.001] [PMID: 28577703]
[8]
Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S. Composition and structure of articular cartilage: A template for tissue repair. Clin Orthop Relat Res 2001; 391(391) (Suppl.): S26-33.
[http://dx.doi.org/10.1097/00003086-200110001-00004] [PMID: 11603710]
[9]
Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol 2014; 39: 25-32.
[http://dx.doi.org/10.1016/j.matbio.2014.08.009] [PMID: 25172825]
[10]
Antons J, Marascio MGM, Nohava J, et al. Zone-dependent mechanical properties of human articular cartilage obtained by indentation measurements. J Mater Sci Mater Med 2018; 29(5): 57.
[http://dx.doi.org/10.1007/s10856-018-6066-0] [PMID: 29728770]
[11]
Bayliss MT. Proteoglycan structure and metabolism during maturation and ageing of human articular cartilage. Biochem Soc Trans 1990; 18(5): 799-802.
[http://dx.doi.org/10.1042/bst0180799] [PMID: 2083680]
[12]
Kuiper NJ, Sharma A. A detailed quantitative outcome measure of glycosaminoglycans in human articular cartilage for cell therapy and tissue engineering strategies. Osteoarthritis Cartilage 2015; 23(12): 2233-41.
[http://dx.doi.org/10.1016/j.joca.2015.07.011] [PMID: 26211607]
[13]
Eyre DR, Weis MA, Wu J-J. Articular cartilage collagen: an irreplaceable framework? Eur Cell Mater 2006; 12: 57-63.
[http://dx.doi.org/10.22203/eCM.v012a07] [PMID: 17083085]
[14]
Responte DJ, Natoli RM, Athanasiou KA. Collagens of articular cartilage: structure, function, and importance in tissue engineering. Crit Rev Biomed Eng 2007; 35(5): 363-411.
[http://dx.doi.org/10.1615/CritRevBiomedEng.v35.i5.20] [PMID: 19392643]
[15]
Bielajew BJ, Donahue RP, Lamkin EK, Hu JC, Hascall VC, Athanasiou KA. Proteomic, mechanical, and biochemical characterization of cartilage development. Acta Biomater 2022; 143: 52-62.
[http://dx.doi.org/10.1016/j.actbio.2022.02.037] [PMID: 35235865]
[16]
Articular cartilage. Oxford Textbook of Rheumatology. Oxford, New York, Tokyo: Oxford Medical Publications 1998; pp. 405-20.
[17]
Fosang AJ, Last K, Knäuper V, Murphy G, Neame PJ. Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett 1996; 380(1-2): 17-20.
[http://dx.doi.org/10.1016/0014-5793(95)01539-6] [PMID: 8603731]
[18]
Hardingham T. Cartilage: aggrecan-hyaluronan-link protein aggregates. Science of Hyaluronan Today 1998.
[19]
Hardingham T, Tew S, Murdoch A. Tissue engineering: chondrocytes and cartilage. Arthritis Res 2002; 4(Suppl 3)(Suppl. 3): S63-8.
[http://dx.doi.org/10.1186/ar561] [PMID: 12110124]
[20]
Peretti G. Pathophysiology of cartilage injuries. Orthopedic Sports Medicine. Berlin, Germany: Springer 2011; pp. 49-58.
[http://dx.doi.org/10.1007/978-88-470-1702-3_5]
[21]
Wang T, He C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev 2018; 44: 38-50.
[http://dx.doi.org/10.1016/j.cytogfr.2018.10.002] [PMID: 30340925]
[22]
Meszaros E, Malemud CJ. Prospects for treating osteoarthritis: enzyme–protein interactions regulating matrix metalloproteinase activity. Ther Adv Chronic Dis 2012; 3(5): 219-29.
[http://dx.doi.org/10.1177/2040622312454157] [PMID: 23342237]
[23]
Karpiński R, Krakowski P, Jonak J, Machrowska A, Maciejewski M, Nogalski A. Diagnostics of articular cartilage damage based on generated acoustic signals using ANN-Part I: Femoral-tibial joint. Sensors 2022; 22(6): 2176.
[http://dx.doi.org/10.3390/s22062176] [PMID: 35336346]
[24]
Wang C, Peng J, Lu S. Summary of the various treatments for osteonecrosis of the femoral head by mechanism: A review. Exp Ther Med 2014; 8(3): 700-6.
[http://dx.doi.org/10.3892/etm.2014.1811] [PMID: 25120585]
[25]
Yamamoto T, DiCarlo EF, Bullough PG. The prevalence and clinicopathological appearance of extension of osteonecrosis in the femoral head. J Bone Joint Surg Br 1999; 81-B(2): 328-32.
[http://dx.doi.org/10.1302/0301-620X.81B2.0810328] [PMID: 10204945]
[26]
Boss JH, Misselevich I, Bejar J, Norman D, Zinman C, Reis DN. Experimentally gained insight – based proposal apropos the treatment of osteonecrosis of the femoral head. Med Hypotheses 2004; 62(6): 958-65.
[http://dx.doi.org/10.1016/j.mehy.2003.12.036] [PMID: 15142657]
[27]
Moskowitz RW. Bone remodeling in osteoarthritis: subchondral and osteophytic responses. Osteoarthritis Cartilage 1999; 7(3): 323-4.
[http://dx.doi.org/10.1053/joca.1998.0181] [PMID: 10329315]
[28]
Fondi C, Franchi A. Definition of bone necrosis by the pathologist. Clin Cases Miner Bone Metab 2007; 4(1): 21-6.
[PMID: 22460748]
[29]
Slattery C, Kweon CY. Classifications in brief: outerbridge classification of chondral lesions. Clin Orthop Relat Res 2018; 476(10): 2101-4.
[http://dx.doi.org/10.1007/s11999.0000000000000255] [PMID: 29533246]
[30]
Zhou F, Chu L, Liu X, et al. Subchondral trabecular microstructure and articular cartilage damage variations between osteoarthritis and osteoporotic osteoarthritis: A cross-sectional cohort study. Front Med (Lausanne) 2021; 8: 617200.
[http://dx.doi.org/10.3389/fmed.2021.617200] [PMID: 33604349]
[31]
Sofu H, Oner A, Camurcu Y, Gursu S, Ucpunar H, Sahin V. Predictors of the clinical outcome after arthroscopic partial meniscectomy for acute trauma–related symptomatic medial meniscal tear in patients more than 60 years of age. Arthroscopy 2016; 32(6): 1125-32.
[http://dx.doi.org/10.1016/j.arthro.2015.11.040] [PMID: 26882967]
[32]
Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: A review of 31,516 knee arthroscopies. Arthroscopy 1997; 13(4): 456-60.
[http://dx.doi.org/10.1016/S0749-8063(97)90124-9] [PMID: 9276052]
[33]
Outerbridge RE. Further studies on the etiology of chondromalacia patellae. J Bone Joint Surg Br 1964; 46-B(2): 179-90.
[http://dx.doi.org/10.1302/0301-620X.46B2.179] [PMID: 14167619]
[34]
Fang Q, Zhou C, Nandakumar KS. Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. Mediators Inflamm 2020; 2020: 1-20.
[http://dx.doi.org/10.1155/2020/3830212] [PMID: 32256192]
[35]
Wang G, Jing W, Bi Y, et al. Neutrophil elastase induces chondrocyte apoptosis and facilitates the occurrence of osteoarthritis via caspase signaling pathway. Front Pharmacol 2021; 12: 666162.
[http://dx.doi.org/10.3389/fphar.2021.666162] [PMID: 33935789]
[36]
Fernandes TL, Gomoll AH, Lattermann C, Hernandez AJ, Bueno DF, Amano MT. Macrophage: A potential target on cartilage regeneration. Front Immunol 2020; 11: 111-.
[http://dx.doi.org/10.3389/fimmu.2020.00111] [PMID: 32117263]
[37]
Yap HY, Tee S, Wong M, Chow SK, Peh SC, Teow SY. Pathogenic role of immune cells in rheumatoid arthritis: Implications in clinical treatment and biomarker development. Cells 2018; 7(10): 161.
[http://dx.doi.org/10.3390/cells7100161] [PMID: 30304822]
[38]
Estrada McDermott J, Pezzanite L, Goodrich L, et al. Role of innate immunity in initiation and progression of osteoarthritis, with emphasis on horses. Animals (Basel) 2021; 11(11): 3247.
[http://dx.doi.org/10.3390/ani11113247] [PMID: 34827979]
[39]
Li M, Yin H, Yan Z, et al. The immune microenvironment in cartilage injury and repair. Acta Biomater 2022; 140: 23-42.
[http://dx.doi.org/10.1016/j.actbio.2021.12.006] [PMID: 34896634]
[40]
Kim JR, Yoo J, Kim H. Therapeutics in osteoarthritis based on an understanding of its molecular pathogenesis. Int J Mol Sci 2018; 19(3): 674.
[http://dx.doi.org/10.3390/ijms19030674] [PMID: 29495538]
[41]
Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380(9859): 2095-128.
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[42]
Berenbaum F, Wallace IJ, Lieberman DE, Felson DT. Modern-day environmental factors in the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2018; 14(11): 674-81.
[http://dx.doi.org/10.1038/s41584-018-0073-x] [PMID: 30209413]
[43]
Osteoporosis in the symptom-complex of osteoarthrosis.
[44]
Skrepnik N, Spitzer A, Altman R, Hoekstra J, Stewart J, Toselli R. Assessing the impact of a novel smartphone application compared with standard follow-up on mobility of patients with knee osteoarthritis following treatment with Hylan GF 20: A randomized controlled trial. JMIR Mhealth Uhealth 2017; 5(5): e64.
[http://dx.doi.org/10.2196/mhealth.7179] [PMID: 28487266]
[45]
Sebbag E, Felten R, Sagez F, Sibilia J, Devilliers H, Arnaud L. The world-wide burden of musculoskeletal diseases: A systematic analysis of the World Health Organization Burden of Diseases Database. Ann Rheum Dis 2019; 78(6): 844-8.
[http://dx.doi.org/10.1136/annrheumdis-2019-215142] [PMID: 30987966]
[46]
Fuggle NR, Cooper C, Oreffo ROC, et al. Alternative and complementary therapies in osteoarthritis and cartilage repair. Aging Clin Exp Res 2020; 32(4): 547-60.
[http://dx.doi.org/10.1007/s40520-020-01515-1] [PMID: 32170710]
[47]
Goyal D, Keyhani S, Goyal A, Lee EH, Hui JHP, Vaziri AS. Evidence-based status of osteochondral cylinder transfer techniques: A systematic review of level I and II studies. Arthroscopy 2014; 30(4): 497-505.
[http://dx.doi.org/10.1016/j.arthro.2013.12.023] [PMID: 24680310]
[48]
Medvedeva E, Grebenik E, Gornostaeva S, et al. Repair of damaged articular cartilage: current approaches and future directions. Int J Mol Sci 2018; 19(8): 2366.
[http://dx.doi.org/10.3390/ijms19082366] [PMID: 30103493]
[49]
Saris D, Price A, Widuchowski W, et al. Matrix-applied characterized autologous cultured chondrocytes versus microfracture. Am J Sports Med 2014; 42(6): 1384-94.
[http://dx.doi.org/10.1177/0363546514528093] [PMID: 24714783]
[50]
Buckwalter JA. Articular cartilage: Injuries and potential for healing. J Orthop Sports Phys Ther 1998; 28(4): 192-202.
[http://dx.doi.org/10.2519/jospt.1998.28.4.192] [PMID: 9785255]
[51]
Gratz KR, Wong BL, Bae WC, Sah RL. The effects of focal articular defects on intra-tissue strains in the surrounding and opposing cartilage. Biorheology 2008; 45(3-4): 193-207.
[http://dx.doi.org/10.3233/BIR-2008-0475] [PMID: 18836224]
[52]
Schinhan M, Gruber M, Vavken P, et al. Critical-size defect induces unicompartmental osteoarthritis in a stable ovine knee. J Orthop Res 2012; 30(2): 214-20.
[http://dx.doi.org/10.1002/jor.21521] [PMID: 21818770]
[53]
Marcacci M, Filardo G, Kon E. Treatment of cartilage lesions: What works and why? Injury 2013; 44 (Suppl. 1): S11-5.
[http://dx.doi.org/10.1016/S0020-1383(13)70004-4] [PMID: 23351863]
[54]
Browne JE, Branch TP. Surgical alternatives for treatment of articular cartilage lesions. J Am Acad Orthop Surg 2000; 8(3): 180-9.
[http://dx.doi.org/10.5435/00124635-200005000-00005] [PMID: 10874225]
[55]
Grieshober JA, Stanton M, Gambardella R. Debridement of articular cartilage: The natural course. Sports Med Arthrosc Rev 2016; 24(2): 56-62.
[http://dx.doi.org/10.1097/JSA.0000000000000108] [PMID: 27135287]
[56]
Magnuson PB. Joint debridement: Sur-gical treatment of degenerative arthritis. Surg Gynecol Obstet 1941; 73: 1-9.
[57]
Barber FA, Iwasko NG. Treatment of grade III femoral chondral lesions: mechanical chondroplasty versus monopolar radiofrequency probe. Arthroscopy 2006; 22(12): 1312-7.
[http://dx.doi.org/10.1016/j.arthro.2006.06.008] [PMID: 17157730]
[58]
Kaplan LD, Royce B, Meier B, et al. Mechanical chondroplasty: early metabolic consequences in vitro. Arthroscopy 2007; 23(9): 923-9.
[http://dx.doi.org/10.1016/j.arthro.2007.04.005] [PMID: 17868830]
[59]
Hubbard MJS. Articular debridement versus washout for degeneration of the medial femoral condyle. A five-year study. J Bone Joint Surg Br 1996; 78-B(2): 217-9.
[http://dx.doi.org/10.1302/0301-620X.78B2.0780217] [PMID: 8666628]
[60]
Scillia AJ, Aune KT, Andrachuk JS, et al. Return to play after chondroplasty of the knee in National Football League athletes. Am J Sports Med 2015; 43(3): 663-8.
[http://dx.doi.org/10.1177/0363546514562752] [PMID: 25573391]
[61]
Lotto ML, Wright EJ, Appleby D, Zelicof SB, Lemos MJ, Lubowitz JH. Ex vivo comparison of mechanical versus thermal chondroplasty: Assessment of tissue effect at the surgical endpoint. Arthroscopy 2008; 24(4): 410-5.
[http://dx.doi.org/10.1016/j.arthro.2007.09.018] [PMID: 18375272]
[62]
Kosy JD, Schranz PJ, Toms AD, Eyres KS, Mandalia VI. The use of radiofrequency energy for arthroscopic chondroplasty in the knee. Arthroscopy 2011; 27(5): 695-703.
[http://dx.doi.org/10.1016/j.arthro.2010.11.058] [PMID: 21663725]
[63]
Ficat RP, Ficat C, Gedeon P, Toussaint JB. Spongialization. Clin Orthop Relat Res 1979; &NA;(144): 74-83.
[http://dx.doi.org/10.1097/00003086-197910000-00014] [PMID: 535254]
[64]
Steadman JR, Rodkey WG, Singleton SB, Briggs KK. Microfracture technique forfull-thickness chondral defects: Technique and clinical results. Oper Tech Orthop 1997; 7(4): 300-4.
[http://dx.doi.org/10.1016/S1048-6666(97)80033-X]
[65]
Rodrigo J. Improvement of full-thickness chondral defect healing in the human knee after debridement and microfracture using continuous passive motion. Am J Knee Surg 1994; 7: 109-16.
[66]
Bhosale AM, Richardson JB. Articular cartilage: Structure, injuries and review of management. Br Med Bull 2008; 87(1): 77-95.
[http://dx.doi.org/10.1093/bmb/ldn025] [PMID: 18676397]
[67]
Matsusue Y, Yamamuro T, Hama H. Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 1993; 9(3): 318-21.
[http://dx.doi.org/10.1016/S0749-8063(05)80428-1] [PMID: 8323618]
[68]
Hangody L, Kish G, Kárpáti Z, Udvarhelyi I, Szigeti I, Bély M. Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics 1998; 21(7): 751-6.
[http://dx.doi.org/10.3928/0147-7447-19980701-04] [PMID: 9672912]
[69]
Bentley G, Biant LC, Carrington RWJ, et al. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 2003; 85-B(2): 223-30.
[http://dx.doi.org/10.1302/0301-620X.85B2.13543] [PMID: 12678357]
[70]
Brittberg M, Faxén E, Peterson L. Carbon fiber scaffolds in the treatment of early knee osteoarthritis. A prospective 4-year followup of 37 patients. Clin Orthop Relat Res 1994; (307): 155-64.
[PMID: 7924028]
[71]
Homminga GN, Bulstra SK, Bouwmeester PS, van der Linden AJ. Perichondral grafting for cartilage lesions of the knee. J Bone Joint Surg Br 1990; 72-B(6): 1003-7.
[http://dx.doi.org/10.1302/0301-620X.72B6.2246280] [PMID: 2246280]
[72]
Jackson JP, Waugh W. Tibial osteotomy for osteoarthritis of the knee. J Bone Joint Surg Br 1961; 43-B(4): 746-51.
[http://dx.doi.org/10.1302/0301-620X.43B4.746] [PMID: 14036496]
[73]
Blount WP, Zeier F. Control of bone length. JAMA 1952; 148(6): 451-7.
[http://dx.doi.org/10.1001/jama.1952.02930060033010] [PMID: 14888503]
[74]
Chimutengwende-Gordon M, Donaldson J, Bentley G. Current solutions for the treatment of chronic articular cartilage defects in the knee. EFORT Open Rev 2020; 5(3): 156-63.
[http://dx.doi.org/10.1302/2058-5241.5.190031] [PMID: 32296549]
[75]
Cook JL, Stoker AM, Stannard JP, et al. A novel system improves preservation of osteochondral allografts. Clin Orthop Relat Res 2014; 472(11): 3404-14.
[http://dx.doi.org/10.1007/s11999-014-3773-9] [PMID: 25030100]
[76]
Wang Z, Le H, Wang Y, et al. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater 2022; 11: 317-38.
[http://dx.doi.org/10.1016/j.bioactmat.2021.10.002] [PMID: 34977434]
[77]
de Windt TS, Vonk LA, Slaper-Cortenbach ICM, et al. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells 2017; 35(1): 256-64.
[http://dx.doi.org/10.1002/stem.2475] [PMID: 27507787]
[78]
Sánchez-Téllez D, Téllez-Jurado L, Rodríguez-Lorenzo L. Hydrogels for cartilage regeneration, from polysaccharides to hybrids. Polymers (Basel) 2017; 9(12): 671.
[http://dx.doi.org/10.3390/polym9120671] [PMID: 30965974]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy