Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

SARS-CoV-2 Infection to Premature Neuronal Aging and Neurodegenerative Diseases: Is there any Connection with Hypoxia?

Author(s): Narmadhaa Sivagurunathan and Latchoumycandane Calivarathan*

Volume 23, Issue 4, 2024

Published on: 06 June, 2023

Page: [431 - 448] Pages: 18

DOI: 10.2174/1871527322666230418114446

Price: $65

conference banner
Abstract

The pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.

Keywords: Alzheimer’s disease, COVID-19, HIF-1α, hypoxia, neurodegeneration, Parkinson’s disease.

Graphical Abstract
[1]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[2]
Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19). JAMA 2020; 324(8): 782-93.
[http://dx.doi.org/10.1001/jama.2020.12839] [PMID: 32648899]
[3]
Singh SP, Pritam M, Pandey B, Yadav TP. Microstructure, pathophysiology, and potential therapeutics of COVID‐19: A comprehensive review. J Med Virol 2021; 93(1): 275-99.
[http://dx.doi.org/10.1002/jmv.26254] [PMID: 32617987]
[4]
Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022; 604(7907): 697-707.
[http://dx.doi.org/10.1038/s41586-022-04569-5] [PMID: 35255491]
[5]
Bhutta BS, Alghoula F, Berim I. Hypoxia. Treasure Island, FL: StatPearls 2021.
[6]
Nakano Y, Morita H, Makimura H. The transmembrane potentials of a mammalian abdominal inferior vena cava. Bull Osaka Med Sch 1971; 17(2): 65-72.
[PMID: 5161296]
[7]
Terraneo L, Paroni R, Bianciardi P, et al. Brain adaptation to hypoxia and hyperoxia in mice. Redox Biol 2017; 11: 12-20.
[http://dx.doi.org/10.1016/j.redox.2016.10.018] [PMID: 27835780]
[8]
Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci 2019; 20(24): 6140.
[http://dx.doi.org/10.3390/ijms20246140] [PMID: 31817513]
[9]
Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci 1993; 90(9): 4304-8.
[http://dx.doi.org/10.1073/pnas.90.9.4304] [PMID: 8387214]
[10]
Mitroshina EV, Savyuk MO, Ponimaskin E, Vedunova MV. Hypoxia-Inducible Factor (HIF) in Ischemic Stroke and Neurodegenerative Disease. Front Cell Dev Biol 2021; 9: 703084.
[http://dx.doi.org/10.3389/fcell.2021.703084] [PMID: 34395432]
[11]
Jahani M, Dokaneheifard S, Mansouri K. Hypoxia: A key feature of COVID-19 launching activation of HIF-1 and cytokine storm. J Inflamm 2020; 17(1): 33.
[http://dx.doi.org/10.1186/s12950-020-00263-3] [PMID: 33139969]
[12]
Han Q, Lin Q, Jin S, You L. Coronavirus 2019-nCoV: A brief perspective from the front line. J Infect 2020; 80(4): 373-7.
[http://dx.doi.org/10.1016/j.jinf.2020.02.010] [PMID: 32109444]
[13]
Hertzog RG, Bicheru NS, Popescu DM. Călborean O, Catrina AM. Hypoxic preconditioning — A nonpharmacological approach in COVID-19 prevention. Int J Infect Dis 2021; 103: 415-9.
[http://dx.doi.org/10.1016/j.ijid.2020.11.181] [PMID: 33249285]
[14]
Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[15]
Stokes EK, Zambrano LD, Anderson KN, et al. Coronavirus disease 2019 case surveillance — United States, January 22–May 30, 2020. MMWR Morb Mortal Wkly Rep 2020; 69(24): 759-65.
[http://dx.doi.org/10.15585/mmwr.mm6924e2] [PMID: 32555134]
[16]
Burkert FR, Lanser L, Bellmann-Weiler R, Weiss G. Coronavirus disease 2019: Clinics, treatment, and prevention. Front Microbiol 2021; 12: 761887.
[http://dx.doi.org/10.3389/fmicb.2021.761887] [PMID: 34858373]
[17]
Couzin-Frankel J. The mystery of the pandemic’s ‘happy hypoxia’. Science 2020; 368(6490): 455-6.
[http://dx.doi.org/10.1126/science.368.6490.455] [PMID: 32355007]
[18]
Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in sars-cov-infected mice. Cell Host Microbe 2016; 19(2): 181-93.
[http://dx.doi.org/10.1016/j.chom.2016.01.007] [PMID: 26867177]
[19]
Olwenyi OA, Dyavar SR, Acharya A, et al. Immuno-epidemiology and pathophysiology of coronavirus disease 2019 (COVID-19). J Mol Med 2020; 98(10): 1369-83.
[http://dx.doi.org/10.1007/s00109-020-01961-4] [PMID: 32808094]
[20]
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect 2020; 80(6): 607-13.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[21]
Webb BJ, Peltan ID, Jensen P, et al. Clinical criteria for COVID-19-associated hyperinflammatory syndrome: a cohort study. Lancet Rheumatol 2020; 2(12): e754-63.
[http://dx.doi.org/10.1016/S2665-9913(20)30343-X] [PMID: 33015645]
[22]
Robba C, Battaglini D, Pelosi P, Rocco PRM. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Rev Respir Med 2020; 14(9): 865-8.
[http://dx.doi.org/10.1080/17476348.2020.1778470] [PMID: 32567404]
[23]
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19). JAMA 2020; 323(18): 1824-36.
[http://dx.doi.org/10.1001/jama.2020.6019] [PMID: 32282022]
[24]
Xie J, Covassin N, Fan Z, et al. Association between hypoxemia and mortality in patients with COVID-19. Mayo Clin Proc 2020; 95(6): 1138-47.
[http://dx.doi.org/10.1016/j.mayocp.2020.04.006] [PMID: 32376101]
[25]
Grieb P, Swiatkiewicz M, Prus K, Rejdak K. Hypoxia may be a determinative factor in COVID-19 progression. Curr Res Pharmacol Drug Discov 2021; 2: 100030.
[http://dx.doi.org/10.1016/j.crphar.2021.100030] [PMID: 34870146]
[26]
Lahri S. Early detection of hypoxia in COVID-19. Pan Afr Med J 2020; 35(S2): 61.
[http://dx.doi.org/10.11604/pamj.supp.2020.35.2.23871] [PMID: 33623585]
[27]
Pandita A, Gillani FS, Shi Y, et al. Predictors of severity and mortality among patients hospitalized with COVID-19 in Rhode Island. PLoS One 2021; 16(6): e0252411.
[http://dx.doi.org/10.1371/journal.pone.0252411] [PMID: 34143791]
[28]
Thakur S, Rai DK. Study to identify predictor of hypoxia in COVID-19 infection: A single-center, retrospective study. J Family Med Prim Care 2021; 10(5): 1852-5.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_2252_20] [PMID: 34195115]
[29]
Serebrovska ZO, Chong EY, Serebrovska TV, Tumanovska LV, Xi L. Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin 2020; 41(12): 1539-46.
[http://dx.doi.org/10.1038/s41401-020-00554-8] [PMID: 33110240]
[30]
Firth JD, Ebert BL, Ratcliffe PJ. Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem 1995; 270(36): 21021-7.
[http://dx.doi.org/10.1074/jbc.270.36.21021] [PMID: 7673128]
[31]
Taniguchi-Ponciano K, Vadillo E, Mayani H, et al. Increased expression of hypoxia-induced factor 1α, mRNA and its related genes in myeloid blood cells from critically ill COVID-19 patients. Ann Med 2021; 53(1): 197-207.
[http://dx.doi.org/10.1080/07853890.2020.1858234] [PMID: 33345622]
[32]
Rahman A, Tabassum T, Araf Y, Al Nahid A, Ullah MA, Hosen MJ. Silent hypoxia in COVID-19: Pathomechanism and possible management strategy. Mol Biol Rep 2021; 48(4): 3863-9.
[http://dx.doi.org/10.1007/s11033-021-06358-1] [PMID: 33891272]
[33]
Zhang R, Wu Y, Zhao M, et al. Role of HIF-1α, in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2009; 297(4): L631-40.
[http://dx.doi.org/10.1152/ajplung.90415.2008] [PMID: 19592460]
[34]
Moasefi N, Fouladi M, Norooznezhad AH, Yarani R, Rahmani A, Mansouri K. How could perfluorocarbon affect cytokine storm and angiogenesis in coronavirus disease 2019 (COVID-19): role of hypoxia-inducible factor 1α. Inflamm Res 2021; 70(7): 749-52.
[http://dx.doi.org/10.1007/s00011-021-01469-8] [PMID: 34173853]
[35]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[36]
Appelberg S, Gupta S, Svensson Akusjärvi S, et al. Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg Microbes Infect 2020; 9(1): 1748-60.
[http://dx.doi.org/10.1080/22221751.2020.1799723] [PMID: 32691695]
[37]
Del Valle DM, Kim-Schulze S, Huang HH, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med 2020; 26(10): 1636-43.
[http://dx.doi.org/10.1038/s41591-020-1051-9] [PMID: 32839624]
[38]
Xing J, Lu J. HIF-1α, Activation Attenuates IL-6 and TNF-α, Pathways in Hippocampus of Rats Following Transient Global Ischemia. Cell Physiol Biochem 2016; 39(2): 511-20.
[http://dx.doi.org/10.1159/000445643] [PMID: 27383646]
[39]
Tian M, Liu W, Li X, et al. HIF-1α, promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19. Signal Transduct Target Ther 2021; 6(1): 308.
[http://dx.doi.org/10.1038/s41392-021-00726-w] [PMID: 34408131]
[40]
Jiang B, Wei H. Oxygen therapy strategies and techniques to treat hypoxia in COVID-19 patients. Eur Rev Med Pharmacol Sci 2020; 24(19): 10239-46.
[PMID: 33090435]
[41]
Liu Y, Lv J, Liu J, et al. Mucus production stimulated by IFN-AhR signaling triggers hypoxia of COVID-19. Cell Res 2020; 30(12): 1078-87.
[http://dx.doi.org/10.1038/s41422-020-00435-z] [PMID: 33159154]
[42]
Widysanto A, Wahyuni TD, Simanjuntak LH, et al. Happy hypoxia in critical COVID‐19 patient: A case report in Tangerang, Indonesia. Physiol Rep 2020; 8(20): e14619.
[http://dx.doi.org/10.14814/phy2.14619] [PMID: 33112512]
[43]
Wan D, Du T, Hong W, et al. Neurological complications and infection mechanism of SARS-CoV-2. Signal Transduct Target Ther 2021; 6(1): 406.
[http://dx.doi.org/10.1038/s41392-021-00818-7] [PMID: 34815399]
[44]
Victorino DB, Guimarães-Marques M, Nejm M, Scorza FA, Scorza CA. COVID-19 and Parkinson’s Disease: Are we dealing with short-term impacts or something worse? J Parkinsons Dis 2020; 10(3): 899-902.
[http://dx.doi.org/10.3233/JPD-202073] [PMID: 32390643]
[45]
Dziedzic A, Saluk-Bijak J, Miller E, Niemcewicz M, Bijak M. The impact of SARS-CoV-2 infection on the development of neurodegeneration in multiple sclerosis. Int J Mol Sci 2021; 22(4): 1804.
[http://dx.doi.org/10.3390/ijms22041804] [PMID: 33670394]
[46]
Cristallo A, Gambaro F, Biamonti G, Ferrante P, Battaglia M, Cereda PM. Human coronavirus polyadenylated RNA sequences in cerebrospinal fluid from multiple sclerosis patients. New Microbiol 1997; 20(2): 105-14.
[PMID: 9208420]
[47]
Al Saiegh F, Ghosh R, Leibold A, et al. Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J Neurol Neurosurg Psychiatry 2020; 91(8): 846-8.
[http://dx.doi.org/10.1136/jnnp-2020-323522] [PMID: 32354770]
[48]
Alexopoulos H, Magira E, Bitzogli K, et al. Anti–SARS-CoV-2 antibodies in the CSF, blood-brain barrier dysfunction, and neurological outcome. Neurol Neuroimmunol Neuroinflamm 2020; 7(6): e893.
[http://dx.doi.org/10.1212/NXI.0000000000000893] [PMID: 32978291]
[49]
Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2). J Med Virol 2020; 92(7): 699-702.
[http://dx.doi.org/10.1002/jmv.25915] [PMID: 32314810]
[50]
Alipoor SD, Mortaz E, Varahram M, Garssen J, Adcock IM. The immunopathogenesis of neuroinvasive lesions of SARS-CoV-2 infection in COVID-19 patients. Front Neurol 2021; 12: 697079.
[http://dx.doi.org/10.3389/fneur.2021.697079] [PMID: 34393976]
[51]
Rodriguez M, Soler Y, Perry M, Reynolds JL, El-Hage N. Impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the Nervous System: implications of COVID-19 in neurodegeneration. Front Neurol 2020; 11: 583459.
[http://dx.doi.org/10.3389/fneur.2020.583459] [PMID: 33304309]
[52]
Alonso-Lana S, Marquié M, Ruiz A, Boada M. Cognitive and neuropsychiatric manifestations of COVID-19 and effects on elderly individuals with dementia. Front Aging Neurosci 2020; 12: 588872.
[http://dx.doi.org/10.3389/fnagi.2020.588872] [PMID: 33192483]
[53]
Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of Covid-19. N Engl J Med 2020; 383(10): 989-92.
[http://dx.doi.org/10.1056/NEJMc2019373] [PMID: 32530583]
[54]
Rink C, Khanna S. Significance of brain tissue oxygenation and the arachidonic acid cascade in stroke. Antioxid Redox Signal 2011; 14(10): 1889-903.
[http://dx.doi.org/10.1089/ars.2010.3474] [PMID: 20673202]
[55]
Burtscher J, Mallet RT, Burtscher M, Millet GP. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res Rev 2021; 68: 101343.
[http://dx.doi.org/10.1016/j.arr.2021.101343] [PMID: 33862277]
[56]
Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 2015; 86(4): 883-901.
[http://dx.doi.org/10.1016/j.neuron.2015.03.035] [PMID: 25996133]
[57]
Watts ME, Pocock R, Claudianos C. Brain energy and oxygen metabolism: Emerging role in normal function and disease. Front Mol Neurosci 2018; 11: 216.
[http://dx.doi.org/10.3389/fnmol.2018.00216] [PMID: 29988368]
[58]
Sharp FR, Bernaudin M. HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 2004; 5(6): 437-48.
[http://dx.doi.org/10.1038/nrn1408] [PMID: 15152194]
[59]
Masamoto K, Tanishita K. Oxygen transport in brain tissue. J Biomech Eng 2009; 131(7): 074002.
[http://dx.doi.org/10.1115/1.3184694] [PMID: 19640134]
[60]
Vannucci RC, Towfighi J, Vannucci SJ. Hypoxic preconditioning and hypoxic-ischemic brain damage in the immature rat: Pathologic and metabolic correlates. J Neurochem 1998; 71(3): 1215-20.
[http://dx.doi.org/10.1046/j.1471-4159.1998.71031215.x] [PMID: 9721747]
[61]
Ikeda Y, Sciarretta S, Nagarajan N, et al. New insights into the role of mitochondrial dynamics and autophagy during oxidative stress and aging in the heart. Oxid Med Cell Longev 2014; 2014: 1-13.
[http://dx.doi.org/10.1155/2014/210934] [PMID: 25132912]
[62]
Jha NK, Jha SK, Sharma R, Kumar D, Ambasta RK, Kumar P. Hypoxia-induced signaling activation in neurodegenerative diseases: Targets for new therapeutic strategies. J Alzheimers Dis 2018; 62(1): 15-38.
[http://dx.doi.org/10.3233/JAD-170589] [PMID: 29439330]
[63]
Bulbarelli A, Lonati E, Brambilla A, et al. Aβ42 production in brain capillary endothelial cells after oxygen and glucose deprivation. Mol Cell Neurosci 2012; 49(4): 415-22.
[http://dx.doi.org/10.1016/j.mcn.2012.01.007] [PMID: 22326856]
[64]
Adeyemi OS, Awakan OJ, Afolabi LB, et al. Hypoxia and the kynurenine pathway: Implications and therapeutic prospects in alzheimer’s disease. Oxid Med Cell Longev 2021; 2021: 1-11.
[http://dx.doi.org/10.1155/2021/5522981] [PMID: 34804368]
[65]
Iyer NV, Kotch LE, Agani F, et al. Cellular and developmental control of O 2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 1998; 12(2): 149-62.
[http://dx.doi.org/10.1101/gad.12.2.149] [PMID: 9436976]
[66]
Solaini G, Baracca A, Lenaz G, Sgarbi G. Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta Bioenerg 2010; 1797(6-7): 1171-7.
[http://dx.doi.org/10.1016/j.bbabio.2010.02.011] [PMID: 20153717]
[67]
Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 2006; 70(5): 1469-80.
[http://dx.doi.org/10.1124/mol.106.027029] [PMID: 16887934]
[68]
Tang H, Mao X, Xie L, Greenberg DA, Jin K. Expression level of vascular endothelial growth factor in hippocampus is associated with cognitive impairment in patients with Alzheimer’s disease. Neurobiol Aging 2013; 34(5): 1412-5.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.10.029] [PMID: 23182805]
[69]
Noguchi CT, Asavaritikrai P, Teng R, Jia Y. Role of erythropoietin in the brain. Crit Rev Oncol Hematol 2007; 64(2): 159-71.
[http://dx.doi.org/10.1016/j.critrevonc.2007.03.001] [PMID: 17482474]
[70]
Nagai A, Nakagawa E, Choi HB, Hatori K, Kobayashi S, Kim SU. Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J Neuropathol Exp Neurol 2001; 60(4): 386-92.
[http://dx.doi.org/10.1093/jnen/60.4.386] [PMID: 11305874]
[71]
Studer L, Csete M, Lee SH, et al. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 2000; 20(19): 7377-83.
[http://dx.doi.org/10.1523/JNEUROSCI.20-19-07377.2000] [PMID: 11007896]
[72]
Mazumdar J, O’Brien WT, Johnson RS, et al. O2 regulates stem cells through Wnt/β-catenin signalling. Nat Cell Biol 2010; 12(10): 1007-13.
[http://dx.doi.org/10.1038/ncb2102] [PMID: 20852629]
[73]
Kaidi A, Williams AC, Paraskeva C. Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol 2007; 9(2): 210-7.
[http://dx.doi.org/10.1038/ncb1534] [PMID: 17220880]
[74]
Cunningham LA, Candelario K, Li L. Roles for HIF-1α, in neural stem cell function and the regenerative response to stroke. Behav Brain Res 2012; 227(2): 410-7.
[http://dx.doi.org/10.1016/j.bbr.2011.08.002] [PMID: 21871501]
[75]
Pham K, Parikh K, Heinrich EC. Hypoxia and inflammation: insights from high-altitude physiology. Front Physiol 2021; 12: 676782.
[http://dx.doi.org/10.3389/fphys.2021.676782] [PMID: 34122145]
[76]
Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med 2011; 364(7): 656-65.
[http://dx.doi.org/10.1056/NEJMra0910283] [PMID: 21323543]
[77]
Eltzschig HK. Targeting hypoxia-induced inflammation. Anesthesiology 2011; 114(2): 239-42.
[http://dx.doi.org/10.1097/ALN.0b013e3182070c66] [PMID: 21239967]
[78]
Rosenberger P, Schwab JM, Mirakaj V, et al. Hypoxia-inducible factor–dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol 2009; 10(2): 195-202.
[http://dx.doi.org/10.1038/ni.1683] [PMID: 19122655]
[79]
Hartmann G, Tschöp M, Fischer R, et al. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine 2000; 12(3): 246-52.
[http://dx.doi.org/10.1006/cyto.1999.0533] [PMID: 10704252]
[80]
Peng X, Li C, Yu W, et al. Propofol attenuates hypoxia-induced inflammation in bv2 microglia by inhibiting oxidative stress and NF- κB/Hif-1 α, signaling. BioMed Res Int 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/8978704] [PMID: 32420378]
[81]
Colgan SP, Taylor CT. Hypoxia: An alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol 2010; 7(5): 281-7.
[http://dx.doi.org/10.1038/nrgastro.2010.39] [PMID: 20368740]
[82]
Giatromanolaki A, Sivridis E, Maltezos E, et al. Hypoxia inducible factor 1 and 2 overexpression in inflammatory bowel disease. J Clin Pathol 2003; 56(3): 209-13.
[http://dx.doi.org/10.1136/jcp.56.3.209] [PMID: 12610101]
[83]
Gong LJ, Wang XY, Gu WY, Wu X. Pinocembrin ameliorates intermittent hypoxia-induced neuroinflammation through BNIP3-dependent mitophagy in a murine model of sleep apnea. J Neuroinflammation 2020; 17(1): 337.
[http://dx.doi.org/10.1186/s12974-020-02014-w] [PMID: 33176803]
[84]
Sapin E, Peyron C, Roche F, et al. Chronic intermittent hypoxia induces chronic low-grade neuroinflammation in the dorsal hippocampus of mice. Sleep 2015; 38(10): 1537-46.
[http://dx.doi.org/10.5665/sleep.5042] [PMID: 26085297]
[85]
Lee Y, Lee S, Park JW, et al. Hypoxia-induced neuroinflammation and learning–memory impairments in adult zebrafish are suppressed by glucosamine. Mol Neurobiol 2018; 55(11): 8738-53.
[http://dx.doi.org/10.1007/s12035-018-1017-9] [PMID: 29589284]
[86]
Brahadeeswaran S, Sivagurunathan N, Calivarathan L. Inflammasome signaling in the aging brain and age-related neurodegenerative diseases. Mol Neurobiol 2022; 59(4): 2288-304.
[http://dx.doi.org/10.1007/s12035-021-02683-5] [PMID: 35066762]
[87]
Hambali A, Kumar J, Hashim NFM, et al. Hypoxia-induced neuroinflammation in Alzheimer’s Disease: Potential neuroprotective effects of centella asiatica. Front Physiol 2021; 12: 712317.
[http://dx.doi.org/10.3389/fphys.2021.712317] [PMID: 34721056]
[88]
Deng Y, Lu J, Sivakumar V, Ling EA, Kaur C. Amoeboid microglia in the periventricular white matter induce oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats. Brain Pathol 2008; 18(3): 387-400.
[http://dx.doi.org/10.1111/j.1750-3639.2008.00138.x] [PMID: 18371179]
[89]
Kaur C, Rathnasamy G, Ling EA. Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina. J Neuroimmune Pharmacol 2013; 8(1): 66-78.
[http://dx.doi.org/10.1007/s11481-012-9347-2] [PMID: 22367679]
[90]
Lan KM, Tien LT, Cai Z, et al. Erythropoietin ameliorates neonatal hypoxia-ischemia-induced neurobehavioral deficits, neuroinflammation, and hippocampal injury in the juvenile rat. Int J Mol Sci 2016; 17(3): 289.
[http://dx.doi.org/10.3390/ijms17030289] [PMID: 26927081]
[91]
Yeo EJ. Hypoxia and aging. Exp Mol Med 2019; 51(6): 1-15.
[PMID: 31221957]
[92]
Chakrabarti S, Munshi S, Banerjee K, Thakurta IG, Sinha M, Bagh MB. Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation. Aging Dis 2011; 2(3): 242-56.
[PMID: 22396876]
[93]
Katschinski D. Is there a molecular connection between hypoxia and aging? Exp Gerontol 2006; 41(5): 482-4.
[http://dx.doi.org/10.1016/j.exger.2005.12.003] [PMID: 16457978]
[94]
Frenkel-Denkberg G, Gershon D, Levy AP. The function of hypoxia-inducible factor 1 (HIF-1) is impaired in senescent mice. FEBS Lett 1999; 462(3): 341-4.
[http://dx.doi.org/10.1016/S0014-5793(99)01552-5] [PMID: 10622722]
[95]
Snyder B, Shell B, Cunningham JT, Cunningham RL. Chronic intermittent hypoxia induces oxidative stress and inflammation in brain regions associated with early-stage neurodegeneration. Physiol Rep 2017; 5(9): e13258.
[http://dx.doi.org/10.14814/phy2.13258] [PMID: 28473320]
[96]
Macheda T, Roberts K, Lyons DN, et al. Chronic intermittent hypoxia induces robust astrogliosis in an alzheimer’s disease-relevant mouse model. Neuroscience 2019; 398: 55-63.
[http://dx.doi.org/10.1016/j.neuroscience.2018.11.040] [PMID: 30529693]
[97]
Shiota S, Takekawa H, Matsumoto S, et al. Chronic intermittent hypoxia/reoxygenation facilitate amyloid-β generation in mice. J Alzheimers Dis 2013; 37(2): 325-33.
[http://dx.doi.org/10.3233/JAD-130419] [PMID: 23948880]
[98]
Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 2017; 39(1): 73-82.
[http://dx.doi.org/10.1080/01616412.2016.1251711] [PMID: 27809706]
[99]
Francistiová L, Klepe A, Curley G, Gulya K, Dinnyés A, Filkor K. Cellular and molecular effects of SARS-CoV-2 linking lung infection to the brain. Front Immunol 2021; 12: 730088.
[http://dx.doi.org/10.3389/fimmu.2021.730088] [PMID: 34484241]
[100]
Bondi MW, Edmonds EC, Salmon DP. Alzheimer’s Disease: Past, present, and future. J Int Neuropsychol Soc 2017; 23(9-10): 818-31.
[http://dx.doi.org/10.1017/S135561771700100X] [PMID: 29198280]
[101]
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019; 14: 5541-54.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[102]
Moussavi Nik SH, Wilson L, Newman M, et al. The BACE1-PSEN-AβPP regulatory axis has an ancient role in response to low oxygen/oxidative stress. J Alzheimers Dis 2012; 28(3): 515-30.
[http://dx.doi.org/10.3233/JAD-2011-110533] [PMID: 22045484]
[103]
Dominguez DI, Hartmann D, De Strooper B. BACE1 and presenilin: two unusual aspartyl proteases involved in Alzheimer’s disease. Neurodegener Dis 2004; 1(4-5): 168-74.
[http://dx.doi.org/10.1159/000080982] [PMID: 16908986]
[104]
Zhang X, Zhou K, Wang R, et al. Hypoxia-inducible Factor 1α, (HIF-1α,)-mediated Hypoxia Increases BACE1 Expression and β-Amyloid Generation. J Biol Chem 2007; 282(15): 10873-80.
[http://dx.doi.org/10.1074/jbc.M608856200] [PMID: 17303576]
[105]
Sun X, He G, Qing H, et al. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci 2006; 103(49): 18727-32.
[http://dx.doi.org/10.1073/pnas.0606298103] [PMID: 17121991]
[106]
Grammas P, Tripathy D, Sanchez A, Yin X, Luo J. Brain microvasculature and hypoxia-related proteins in Alzheimer’s disease. Int J Clin Exp Pathol 2011; 4(6): 616-27.
[PMID: 21904637]
[107]
de Lemos ML, de la Torre AV, Petrov D, et al. Evaluation of hypoxia inducible factor expression in inflammatory and neurodegenerative brain models. Int J Biochem Cell Biol 2013; 45(7): 1377-88.
[http://dx.doi.org/10.1016/j.biocel.2013.04.011] [PMID: 23603149]
[108]
Spencer B, Marr RA, Rockenstein E, et al. Long-term neprilysin gene transfer is associated with reduced levels of intracellular Abeta and behavioral improvement in APP transgenic mice. BMC Neurosci 2008; 9(1): 109.
[http://dx.doi.org/10.1186/1471-2202-9-109] [PMID: 19014502]
[109]
Nalivaevaa NN, Fisk L, Kochkina EG, et al. Effect of hypoxia/ischemia and hypoxic preconditioning/reperfusion on expression of some amyloid-degrading enzymes. Ann N Y Acad Sci 2004; 1035(1): 21-33.
[http://dx.doi.org/10.1196/annals.1332.002] [PMID: 15681798]
[110]
Fisk L, Nalivaeva NN, Boyle JP, Peers CS, Turner AJ. Effects of hypoxia and oxidative stress on expression of neprilysin in human neuroblastoma cells and rat cortical neurones and astrocytes. Neurochem Res 2007; 32(10): 1741-8.
[http://dx.doi.org/10.1007/s11064-007-9349-2] [PMID: 17486446]
[111]
Wang Z, Yang D, Zhang X, et al. Hypoxia-induced down-regulation of neprilysin by histone modification in mouse primary cortical and hippocampal neurons. PLoS One 2011; 6(4): e19229.
[http://dx.doi.org/10.1371/journal.pone.0019229] [PMID: 21559427]
[112]
Leissring MA, Farris W, Chang AY, et al. Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 2003; 40(6): 1087-93.
[http://dx.doi.org/10.1016/S0896-6273(03)00787-6] [PMID: 14687544]
[113]
Kurochkin IV, Goto S. Alzheimer’s β-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett 1994; 345(1): 33-7.
[http://dx.doi.org/10.1016/0014-5793(94)00387-4] [PMID: 8194595]
[114]
Farkas E, Donka G, de Vos RAI, Mihály A, Bari F, Luiten PGM. Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol 2004; 108(1): 57-64.
[http://dx.doi.org/10.1007/s00401-004-0864-9] [PMID: 15138777]
[115]
Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 2008; 28(33): 8354-60.
[http://dx.doi.org/10.1523/JNEUROSCI.0616-08.2008] [PMID: 18701698]
[116]
Yamamoto M, Kiyota T, Horiba M, et al. Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol 2007; 170(2): 680-92.
[http://dx.doi.org/10.2353/ajpath.2007.060378] [PMID: 17255335]
[117]
Webster NJ, Green KN, Peers C, Vaughan PFT. Altered processing of amyloid precursor protein in the human neuroblastoma SH-SY5Y by chronic hypoxia. J Neurochem 2002; 83(6): 1262-71.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01236.x] [PMID: 12472881]
[118]
Marshall AJ, Rattray M, Vaughan PFT. Chronic hypoxia in the human neuroblastoma SH-SY5Y causes reduced expression of the putative α,-secretases, ADAM10 and TACE, without altering their mRNA levels. Brain Res 2006; 1099(1): 18-24.
[http://dx.doi.org/10.1016/j.brainres.2006.05.008] [PMID: 16762326]
[119]
Luo J, Martinez J, Yin X, Sanchez A, Tripathy D, Grammas P. Hypoxia induces angiogenic factors in brain microvascular endothelial cells. Microvasc Res 2012; 83(2): 138-45.
[http://dx.doi.org/10.1016/j.mvr.2011.11.004] [PMID: 22100491]
[120]
Zhang X, Le W. Pathological role of hypoxia in Alzheimer’s disease. Exp Neurol 2010; 223(2): 299-303.
[http://dx.doi.org/10.1016/j.expneurol.2009.07.033] [PMID: 19679125]
[121]
Daulatzai MA. Death by a thousand cuts in Alzheimer’s disease: hypoxia--the prodrome. Neurotox Res 2013; 24(2): 216-43.
[http://dx.doi.org/10.1007/s12640-013-9379-2] [PMID: 23400634]
[122]
Gao L, Tian S, Gao H, Xu Y. Hypoxia increases Aβ-induced tau phosphorylation by calpain and promotes behavioral consequences in AD transgenic mice. J Mol Neurosci 2013; 51(1): 138-47.
[http://dx.doi.org/10.1007/s12031-013-9966-y] [PMID: 23345083]
[123]
Wang CY, Xie JW, Wang T, et al. Hypoxia-triggered m-calpain activation evokes endoplasmic reticulum stress and neuropathogenesis in a transgenic mouse model of Alzheimer’s disease. CNS Neurosci Ther 2013; 19(10): 820-33.
[http://dx.doi.org/10.1111/cns.12151] [PMID: 23889979]
[124]
Heneka MT, Golenbock D, Latz E, Morgan D, Brown R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Ther 2020; 12(1): 69.
[http://dx.doi.org/10.1186/s13195-020-00640-3] [PMID: 32498691]
[125]
Mahalakshmi AM, Ray B, Tuladhar S, et al. Does COVID‐19 contribute to development of neurological disease? Immun Inflamm Dis 2021; 9(1): 48-58.
[http://dx.doi.org/10.1002/iid3.387] [PMID: 33332737]
[126]
Idrees D, Kumar V. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration. Biochem Biophys Res Commun 2021; 554: 94-8.
[http://dx.doi.org/10.1016/j.bbrc.2021.03.100] [PMID: 33789211]
[127]
Semerdzhiev SA, Fakhree MAA, Segers-Nolten I, Blum C, Claessens M. Interactions between SARS-CoV-2 N-protein and alpha-synuclein accelerate amyloid formation. ACS Chem Neurosci 2022; 13(1): 143-50.
[http://dx.doi.org/10.1021/acschemneuro.1c00666] [PMID: 34860005]
[128]
Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med 2020; 36(1): 1-12.
[http://dx.doi.org/10.1016/j.cger.2019.08.002] [PMID: 31733690]
[129]
Wang Y, Yang J, Li H, et al. Hypoxia promotes dopaminergic differentiation of mesenchymal stem cells and shows benefits for transplantation in a rat model of Parkinson’s disease. PLoS One 2013; 8(1): e54296.
[http://dx.doi.org/10.1371/journal.pone.0054296] [PMID: 23342124]
[130]
Qin L, Shu L, Zhong J, et al. Association of HIF1A and Parkinson’s disease in a Han Chinese population demonstrated by molecular inversion probe analysis. Neurol Sci 2019; 40(9): 1927-31.
[http://dx.doi.org/10.1007/s10072-019-03905-4] [PMID: 31025220]
[131]
Zhao T, Zhang CP, Zhu LL, Jin B, Huang X, Fan M. Hypoxia promotes the differentiation of neural stem cells into dopaminergic neurons. Sheng Li Xue Bao 2007; 59(3): 273-7.
[PMID: 17579780]
[132]
Mehrabani M, Nematollahi MH, Tarzi ME, et al. Protective effect of hydralazine on a cellular model of Parkinson’s disease: a possible role of hypoxia-inducible factor (HIF)-1α. Biochem Cell Biol 2020; 98(3): 405-14.
[http://dx.doi.org/10.1139/bcb-2019-0117] [PMID: 31940231]
[133]
Chiang HL, Chen CM, Chen YC, Chao CY, Wu YR, Lee-Chen GJ. Genetic analysis of EGLN1 C127S variant in taiwanese parkinson’s disease. Parkinsons Dis 2020; 2020: 1-4.
[http://dx.doi.org/10.1155/2020/9582317] [PMID: 32377332]
[134]
Witten L, Sager T, Thirstrup K, et al. HIF prolyl hydroxylase inhibition augments dopamine release in the rat brain in vivo. J Neurosci Res 2009; 87(7): 1686-94.
[http://dx.doi.org/10.1002/jnr.21988] [PMID: 19156859]
[135]
Johansen JL, Sager TN, Lotharius J, et al. HIF prolyl hydroxylase inhibition increases cell viability and potentiates dopamine release in dopaminergic cells. J Neurochem 2010; 115(1): 209-19.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06917.x] [PMID: 20649842]
[136]
Agani FH, Pichiule P, Chavez JC, LaManna JC. The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia. J Biol Chem 2000; 275(46): 35863-7.
[http://dx.doi.org/10.1074/jbc.M005643200] [PMID: 10961998]
[137]
Millhorn DE, Raymond R, Conforti L, et al. Regulation of gene expression for tyrosine hydroxylase in oxygen sensitive cells by hypoxia. Kidney Int 1997; 51(2): 527-35.
[http://dx.doi.org/10.1038/ki.1997.73] [PMID: 9027733]
[138]
Schnell PO, Ignacak ML, Bauer AL, Striet JB, Paulding WR, Czyzyk-Krzeska MF. Regulation of tyrosine hydroxylase promoter activity by the von Hippel-Lindau tumor suppressor protein and hypoxia-inducible transcription factors. J Neurochem 2003; 85(2): 483-91.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01696.x] [PMID: 12675925]
[139]
Milosevic J, Maisel M, Wegner F, et al. Lack of hypoxia-inducible factor-1 alpha impairs midbrain neural precursor cells involving vascular endothelial growth factor signaling. J Neurosci 2007; 27(2): 412-21.
[http://dx.doi.org/10.1523/JNEUROSCI.2482-06.2007] [PMID: 17215402]
[140]
Signore AP, Weng Z, Hastings T, et al. Erythropoietin protects against 6-hydroxydopamine-induced dopaminergic cell death. J Neurochem 2006; 96(2): 428-43.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03587.x] [PMID: 16336625]
[141]
Silverman WF, Krum JM, Mani N, Rosenstein JM. Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience 1999; 90(4): 1529-41.
[http://dx.doi.org/10.1016/S0306-4522(98)00540-5] [PMID: 10338318]
[142]
Xu Q, Guo H, Zhang X, et al. Hypoxia regulation of ATP13A2 (PARK9) gene transcription. J Neurochem 2012; 122(2): 251-9.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07676.x] [PMID: 22288903]
[143]
Rajagopalan S, Rane A, Chinta SJ, Andersen JK. Regulation of ATP13A2 via PHD2-HIF1 signaling is critical for cellular iron homeostasis: Implications for Parkinson’s Disease. J Neurosci 2016; 36(4): 1086-95.
[http://dx.doi.org/10.1523/JNEUROSCI.3117-15.2016] [PMID: 26818499]
[144]
Zhang G, Chen L, Liu J, et al. HIF-1α,/microRNA-128-3p axis protects hippocampal neurons from apoptosis via the Axin1 -mediated Wnt/β-catenin signaling pathway in Parkinson’s disease models. Aging 2020; 12(5): 4067-81.
[http://dx.doi.org/10.18632/aging.102636] [PMID: 32167488]
[145]
Zhang Z, Yan J, Chang Y. ShiDu Yan S, Shi H. Hypoxia inducible factor-1 as a target for neurodegenerative diseases. Curr Med Chem 2011; 18(28): 4335-43.
[http://dx.doi.org/10.2174/092986711797200426] [PMID: 21861815]
[146]
Bouali-Benazzouz R, Benazzouz A. Covid‐19 infection and parkinsonism: Is there a link? Mov Disord 2021; 36(8): 1737-43.
[http://dx.doi.org/10.1002/mds.28680] [PMID: 34080714]
[147]
Hainque E, Grabli D. Rapid worsening in Parkinson’s disease may hide COVID-19 infection. Parkinsonism Relat Disord 2020; 75: 126-7.
[http://dx.doi.org/10.1016/j.parkreldis.2020.05.008] [PMID: 32414669]
[148]
Conte C. Possible Link between SARS-CoV-2 Infection and Parkinson’s Disease: The Role of Toll-Like Receptor 4. Int J Mol Sci 2021; 22(13): 7135.
[http://dx.doi.org/10.3390/ijms22137135] [PMID: 34281186]
[149]
Semerdzhiev SA, Fakhree MAA, Segers-Nolten I, Blum C, Claessens MMAE. Interactions between SARS-CoV-2 N-Protein and α,-Synuclein Accelerate Amyloid Formation. ACS Chem Neurosci 2022; 13(1): 143-50.
[http://dx.doi.org/10.1021/acschemneuro.1c00666] [PMID: 34860005]
[150]
Sinha S, Mittal S, Roy R. Parkinson’s Disease and the COVID-19 Pandemic: A review article on the association between SARS-CoV-2 and α,-Synucleinopathy. J Mov Disord 2021; 14(3): 184-92.
[http://dx.doi.org/10.14802/jmd.21046] [PMID: 34315206]
[151]
Behl T, Kumar S, Sehgal A, et al. Linking COVID-19 and Parkinson’s disease: Targeting the role of Vitamin-D. Biochem Biophys Res Commun 2021; 583: 14-21.
[http://dx.doi.org/10.1016/j.bbrc.2021.10.042] [PMID: 34715496]
[152]
Pavel A, Murray DK, Stoessl AJ. COVID-19 and selective vulnerability to Parkinson’s disease. Lancet Neurol 2020; 19(9): 719.
[http://dx.doi.org/10.1016/S1474-4422(20)30269-6] [PMID: 32822628]
[153]
Yu Y, Travaglio M, Popovic R, Leal NS, Martins LM. Alzheimer’s and Parkinson’s Diseases Predict Different COVID-19 Outcomes: A UK Biobank Study. Geriatrics 2021; 6(1): 10.
[http://dx.doi.org/10.3390/geriatrics6010010] [PMID: 33530357]
[154]
Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. Huntington’s disease: Mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb Perspect Med 2017; 7(7): a024240.
[http://dx.doi.org/10.1101/cshperspect.a024240] [PMID: 27940602]
[155]
Zheng J, Winderickx J, Franssens V, Liu B. A Mitochondria-Associated Oxidative Stress Perspective on Huntington’s Disease. Front Mol Neurosci 2018; 11: 329.
[http://dx.doi.org/10.3389/fnmol.2018.00329] [PMID: 30283298]
[156]
Burtscher J, Di Pardo A, Maglione V, Schwarzer C, Squitieri F. Mitochondrial respiration changes in R6/2 Huntington’s disease model mice during aging in a brain region specific manner. Int J Mol Sci 2020; 21(15): 5412.
[http://dx.doi.org/10.3390/ijms21155412] [PMID: 32751413]
[157]
Niatsetskaya Z, Basso M, Speer RE, et al. HIF prolyl hydroxylase inhibitors prevent neuronal death induced by mitochondrial toxins: therapeutic implications for Huntington’s disease and Alzheimer’s disease. Antioxid Redox Signal 2010; 12(4): 435-43.
[http://dx.doi.org/10.1089/ars.2009.2800] [PMID: 19659431]
[158]
Naia L, Cunha-Oliveira T, Rodrigues J, et al. Histone deacetylase inhibitors protect against pyruvate dehydrogenase dysfunction in huntington’s disease. J Neurosci 2017; 37(10): 2776-94.
[http://dx.doi.org/10.1523/JNEUROSCI.2006-14.2016] [PMID: 28123081]
[159]
Lemus HN, Warrington AE, Rodriguez M. Multiple sclerosis. Neurol Clin 2018; 36(1): 1-11.
[http://dx.doi.org/10.1016/j.ncl.2017.08.002] [PMID: 29157392]
[160]
Cotsapas C, Mitrovic M, Hafler D. Multiple sclerosis. Handb Clin Neurol 2018; 148: 723-30.
[http://dx.doi.org/10.1016/B978-0-444-64076-5.00046-6] [PMID: 29478610]
[161]
Markowitz CE. Multiple sclerosis update. Am J Manag Care 2013; 19(S16): s294-300.
[PMID: 24494618]
[162]
Martinez Sosa S, Smith KJ. Understanding a role for hypoxia in lesion formation and location in the deep and periventricular white matter in small vessel disease and multiple sclerosis. Clin Sci 2017; 131(20): 2503-24.
[http://dx.doi.org/10.1042/CS20170981] [PMID: 29026001]
[163]
De Riccardis L, Rizzello A, Ferramosca A, et al. Bioenergetics profile of CD4 + T cells in relapsing remitting multiple sclerosis subjects. J Biotechnol 2015; 202: 31-9.
[http://dx.doi.org/10.1016/j.jbiotec.2015.02.015] [PMID: 25701681]
[164]
Esen N, Katyshev V, Serkin Z, Katysheva S, Dore-Duffy P. Endogenous adaptation to low oxygen modulates T-cell regulatory pathways in EAE. J Neuroinflammation 2016; 13(1): 13.
[http://dx.doi.org/10.1186/s12974-015-0407-4] [PMID: 26785841]
[165]
Yao S, Soutto M, Sriram S. Preconditioning with cobalt chloride or desferrioxamine protects oligodendrocyte cell line (MO3.13) from tumor necrosis factor-α,-mediated cell death. J Neurosci Res 2008; 86(11): 2403-13.
[http://dx.doi.org/10.1002/jnr.21697] [PMID: 18438939]
[166]
Deng W, Feng X, Li X, Wang D, Sun L. Hypoxia-inducible factor 1 in autoimmune diseases. Cell Immunol 2016; 303: 7-15.
[http://dx.doi.org/10.1016/j.cellimm.2016.04.001] [PMID: 27071377]
[167]
Johnson TW, Wu Y, Nathoo N, Rogers JA, Wee Yong V, Dunn JF. Gray matter hypoxia in the brain of the experimental autoimmune encephalomyelitis model of multiple sclerosis. PLoS One 2016; 11(12): e0167196.
[http://dx.doi.org/10.1371/journal.pone.0167196] [PMID: 27907119]
[168]
McMahon JM, McQuaid S, Reynolds R, FitzGerald UF. Increased expression of ER stress- and hypoxia-associated molecules in grey matter lesions in multiple sclerosis. Mult Scler 2012; 18(10): 1437-47.
[http://dx.doi.org/10.1177/1352458512438455] [PMID: 22354737]
[169]
Mháille AN, McQuaid S, Windebank A, et al. Increased expression of endoplasmic reticulum stress-related signaling pathway molecules in multiple sclerosis lesions. J Neuropathol Exp Neurol 2008; 67(3): 200-11.
[http://dx.doi.org/10.1097/NEN.0b013e318165b239] [PMID: 18344911]
[170]
Hulisz D. Amyotrophic lateral sclerosis: disease state overview. Am J Manag Care 2018; 24(15): S320-6.
[PMID: 30207670]
[171]
Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet 2011; 377(9769): 942-55.
[http://dx.doi.org/10.1016/S0140-6736(10)61156-7] [PMID: 21296405]
[172]
Masrori P, Van Damme P. Amyotrophic lateral sclerosis: A clinical review. Eur J Neurol 2020; 27(10): 1918-29.
[http://dx.doi.org/10.1111/ene.14393] [PMID: 32526057]
[173]
Kim SM, Kim H, Lee JS, et al. Intermittent hypoxia can aggravate motor neuronal loss and cognitive dysfunction in ALS mice. PLoS One 2013; 8(11): e81808.
[http://dx.doi.org/10.1371/journal.pone.0081808] [PMID: 24303073]
[174]
Yamashita T, Hatakeyama T, Sato K, et al. Hypoxic stress visualized in the cervical spinal cord of ALS patients. Neurol Res 2021; 43(6): 429-33.
[http://dx.doi.org/10.1080/01616412.2020.1866383] [PMID: 33377424]
[175]
Zheng C, Nennesmo I, Fadeel B, Henter JI. Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann Neurol 2004; 56(4): 564-7.
[http://dx.doi.org/10.1002/ana.20223] [PMID: 15389897]
[176]
Nomura E, Ohta Y, Tadokoro K, et al. Imaging hypoxic stress and the treatment of amyotrophic lateral sclerosis with dimethyloxalylglycine in a mice model. Neuroscience 2019; 415: 31-43.
[http://dx.doi.org/10.1016/j.neuroscience.2019.06.025] [PMID: 31344397]
[177]
Moreau C, Gosset P, Kluza J, et al. Deregulation of the hypoxia inducible factor-1α, pathway in monocytes from sporadic amyotrophic lateral sclerosis patients. Neuroscience 2011; 172: 110-7.
[http://dx.doi.org/10.1016/j.neuroscience.2010.10.040] [PMID: 20977930]
[178]
Nagara Y, Tateishi T, Yamasaki R, et al. Impaired cytoplasmic-nuclear transport of hypoxia-inducible factor-1α, in amyotrophic lateral sclerosis. Brain Pathol 2013; 23(5): 534-46.
[http://dx.doi.org/10.1111/bpa.12040] [PMID: 23368766]
[179]
Murakami T, Ilieva H, Shiote M, et al. Hypoxic induction of vascular endothelial growth factor is selectively impaired in mice carrying the mutant SOD1 gene. Brain Res 2003; 989(2): 231-7.
[http://dx.doi.org/10.1016/S0006-8993(03)03374-2] [PMID: 14556945]
[180]
Sato K, Morimoto N, Kurata T, et al. Impaired response of hypoxic sensor protein HIF-1α, and its downstream proteins in the spinal motor neurons of ALS model mice. Brain Res 2012; 1473: 55-62.
[http://dx.doi.org/10.1016/j.brainres.2012.07.040] [PMID: 22871270]
[181]
Wiesner D, Merdian I, Lewerenz J, Ludolph AC, Dupuis L, Witting A. Fumaric acid esters stimulate astrocytic VEGF expression through HIF-1α, and Nrf2. PLoS One 2013; 8(10): e76670.
[http://dx.doi.org/10.1371/journal.pone.0076670] [PMID: 24098549]
[182]
Ziello JE, Jovin IS, Huang Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med 2007; 80(2): 51-60.
[PMID: 18160990]
[183]
Cimmino F, Avitabile M, Lasorsa VA, et al. HIF-1 transcription activity: HIF1A driven response in normoxia and in hypoxia. BMC Med Genet 2019; 20(1): 37.
[http://dx.doi.org/10.1186/s12881-019-0767-1] [PMID: 30808328]
[184]
Tolonen JP, Heikkilä M, Malinen M, et al. A long hypoxia-inducible factor 3 isoform 2 is a transcription activator that regulates erythropoietin. Cell Mol Life Sci 2020; 77(18): 3627-42.
[http://dx.doi.org/10.1007/s00018-019-03387-9] [PMID: 31768607]
[185]
Lam SY, Tipoe GL, Liong EC, Fung ML. Differential expressions and roles of hypoxia-inducible factor-1alpha, -2alpha and -3alpha in the rat carotid body during chronic and intermittent hypoxia. Histol Histopathol 2008; 23(3): 271-80.
[PMID: 18072084]
[186]
Semenza GL, Agani F, Booth G, et al. Structural and functional analysis of hypoxia-inducible factor 1. Kidney Int 1997; 51(2): 553-5.
[http://dx.doi.org/10.1038/ki.1997.77] [PMID: 9027737]
[187]
Conrad PW, Freeman TL, Beitner-Johnson D, Millhorn DE. EPAS1 trans-activation during Hypoxia Requires p42/p44 MAPK. J Biol Chem 1999; 274(47): 33709-13.
[http://dx.doi.org/10.1074/jbc.274.47.33709] [PMID: 10559262]
[188]
Kleszka K, Leu T, Quinting T, et al. Hypoxia-inducible factor-2α, is crucial for proper brain development. Sci Rep 2020; 10(1): 19146.
[http://dx.doi.org/10.1038/s41598-020-75838-4] [PMID: 33154420]
[189]
Chavez JC, Baranova O, Lin J, Pichiule P. The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J Neurosci 2006; 26(37): 9471-81.
[http://dx.doi.org/10.1523/JNEUROSCI.2838-06.2006] [PMID: 16971531]
[190]
Cirillo F, Resmini G, Ghiroldi A, et al. Activation of the hypoxia‐inducible factor 1a promotes myogenesis through the noncanonical Wnt pathway, leading to hypertrophic myotubes. FASEB J 2017; 31(5): 2146-56.
[http://dx.doi.org/10.1096/fj.201600878R] [PMID: 28188178]
[191]
Cui XP, Xing Y, Chen JM, Dong SW, Ying DJ, Yew DT. Wnt/beta-catenin is involved in the proliferation of hippocampal neural stem cells induced by hypoxia. Ir J Med Sci 2011; 180(2): 387-93.
[http://dx.doi.org/10.1007/s11845-010-0566-3] [PMID: 20811817]
[192]
Kohnoh T, Hashimoto N, Ando A, et al. Hypoxia-induced modulation of PTEN activity and EMT phenotypes in lung cancers. Cancer Cell Int 2016; 16(1): 33.
[http://dx.doi.org/10.1186/s12935-016-0308-3] [PMID: 27095949]
[193]
Zhao J, Yin L, Jiang L, Hou L, He L, Zhang C. PTEN nuclear translocation enhances neuronal injury after hypoxia-ischemia via modulation of the nuclear factor-κB signaling pathway. Aging 2021; 13(12): 16165-77.
[http://dx.doi.org/10.18632/aging.203141] [PMID: 34114972]
[194]
Zarrabi AJ, Kao D, Nguyen DT, Loscalzo J, Handy DE. Hypoxia-induced suppression of c-Myc by HIF-2α, in human pulmonary endothelial cells attenuates TFAM expression. Cell Signal 2017; 38: 230-7.
[http://dx.doi.org/10.1016/j.cellsig.2017.07.008] [PMID: 28709643]
[195]
Chen Q, Zhang F, Wang Y, et al. The transcription factor c-Myc suppresses MiR-23b and MiR-27b transcription during fetal distress and increases the sensitivity of neurons to hypoxia-induced apoptosis. PLoS One 2015; 10(3): e0120217.
[http://dx.doi.org/10.1371/journal.pone.0120217] [PMID: 25781629]
[196]
Zhang Z, Yao L, Yang J, Wang Z, Du G. PI3K/Akt and HIF 1 signaling pathway in hypoxia ischemia. Mol Med Rep (Review) 2018; 18(4): 3547-54.
[http://dx.doi.org/10.3892/mmr.2018.9375] [PMID: 30106145]
[197]
Zhao H, Lin J, Sieck G, Haddad GG. Neuroprotective role of Akt in Hypoxia Adaptation in Andeans. Front Neurosci 2021; 14: 607711.
[http://dx.doi.org/10.3389/fnins.2020.607711] [PMID: 33519361]
[198]
Culver C, Sundqvist A, Mudie S, Melvin A, Xirodimas D, Rocha S. Mechanism of hypoxia-induced NF-κB. Mol Cell Biol 2010; 30(20): 4901-21.
[http://dx.doi.org/10.1128/MCB.00409-10] [PMID: 20696840]
[199]
Rius J, Guma M, Schachtrup C, et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 2008; 453(7196): 807-11.
[http://dx.doi.org/10.1038/nature06905] [PMID: 18432192]
[200]
Gao W, McCormick J, Connolly M, Balogh E, Veale DJ, Fearon U. Hypoxia and STAT3 signalling interactions regulate pro-inflammatory pathways in rheumatoid arthritis. Ann Rheum Dis 2015; 74(6): 1275-83.
[http://dx.doi.org/10.1136/annrheumdis-2013-204105] [PMID: 24525913]
[201]
Haddad J, Hanbali L. Hypoxia upregulates MAPK(p38)/MAPK (ERK) phosphorylation in vitro: neuroimmunological differential time-dependent expression of MAPKs. Protein Pept Lett 2014; 21(5): 444-51.
[http://dx.doi.org/10.2174/092986652105140218112521] [PMID: 24555431]
[202]
Zhu J, Tang Y, Wu Q, Ji YC, Feng ZF, Kang FW. HIF‐1α, facilitates osteocyte‐mediated osteoclastogenesis by activating JAK2/STAT3 pathway in vitro. J Cell Physiol 2019; 234(11): 21182-92.
[http://dx.doi.org/10.1002/jcp.28721] [PMID: 31032948]
[203]
Hempel SL, Monick MM, Hunninghake GW. Effect of hypoxia on release of IL-1 and TNF by human alveolar macrophages. Am J Respir Cell Mol Biol 1996; 14(2): 170-6.
[http://dx.doi.org/10.1165/ajrcmb.14.2.8630267] [PMID: 8630267]
[204]
O’Connor JJ. Targeting tumour necrosis factor-α, in hypoxia and synaptic signalling. Ir J Med Sci 2013; 182(2): 157-62.
[http://dx.doi.org/10.1007/s11845-013-0911-4] [PMID: 23361632]
[205]
Tamm M, Bihl M, Eickelberg O, Stulz P, Perruchoud AP, Roth M. Hypoxia-induced interleukin-6 and interleukin-8 production is mediated by platelet-activating factor and platelet-derived growth factor in primary human lung cells. Am J Respir Cell Mol Biol 1998; 19(4): 653-61.
[http://dx.doi.org/10.1165/ajrcmb.19.4.3058] [PMID: 9761763]
[206]
Yang SH, Gangidine M, Pritts TA, Goodman MD, Lentsch AB. Interleukin 6 mediates neuroinflammation and motor coordination deficits after mild traumatic brain injury and brief hypoxia in mice. Shock 2013; 40(6): 471-5.
[http://dx.doi.org/10.1097/SHK.0000000000000037] [PMID: 24088994]
[207]
Meng X, Grötsch B, Luo Y, et al. Hypoxia-inducible factor-1α, is a critical transcription factor for IL-10-producing B cells in autoimmune disease. Nat Commun 2018; 9(1): 251.
[http://dx.doi.org/10.1038/s41467-017-02683-x] [PMID: 29343683]
[208]
Li SJ, Liu W, Wang JL, et al. The role of TNF-α, IL-6, IL-10, and GDNF in neuronal apoptosis in neonatal rat with hypoxic-ischemic encephalopathy. Eur Rev Med Pharmacol Sci 2014; 18(6): 905-9.
[PMID: 24706318]
[209]
Hu F, Shi L, Mu R, et al. Hypoxia-inducible factor-1α, and interleukin 33 form a regulatory circuit to perpetuate the inflammation in rheumatoid arthritis. PLoS One 2013; 8(8): e72650.
[http://dx.doi.org/10.1371/journal.pone.0072650] [PMID: 23967327]
[210]
Folco EJ, Sukhova GK, Quillard T, Libby P. Moderate hypoxia potentiates interleukin-1β production in activated human macrophages. Circ Res 2014; 115(10): 875-83.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.304437] [PMID: 25185259]
[211]
Xia JB, Liu GH, Chen ZY, et al. Hypoxia/ischemia promotes CXCL10 expression in cardiac microvascular endothelial cells by NFkB activation. Cytokine 2016; 81: 63-70.
[http://dx.doi.org/10.1016/j.cyto.2016.02.007] [PMID: 26891076]
[212]
Hitchon C, Wong K, Ma G, Reed J, Lyttle D, El-Gabalawy H. Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum 2002; 46(10): 2587-97.
[http://dx.doi.org/10.1002/art.10520] [PMID: 12384916]
[213]
Hu Y, Chen W, Wu L, Jiang L, Qin H, Tang N. Hypoxic preconditioning improves the survival and neural effects of transplanted mesenchymal stem cells via CXCL12/CXCR4 signalling in a rat model of cerebral infarction. Cell Biochem Funct 2019; 37(7): 504-15.
[http://dx.doi.org/10.1002/cbf.3423] [PMID: 31368195]
[214]
Mojsilovic-Petrovic J, Callaghan D, Cui H, Dean C, Stanimirovic DB, Zhang W. Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and MCP-5 (Ccl12) in astrocytes. J Neuroinflammation 2007; 4(1): 12.
[http://dx.doi.org/10.1186/1742-2094-4-12] [PMID: 17474992]
[215]
Stowe AM, Wacker BK, Cravens PD, et al. CCL2 upregulation triggers hypoxic preconditioning-induced protection from stroke. J Neuroinflammation 2012; 9(1): 33.
[http://dx.doi.org/10.1186/1742-2094-9-33] [PMID: 22340958]
[216]
Swinson DEB, O’Byrne KJ. Interactions between hypoxia and epidermal growth factor receptor in non-small-cell lung cancer. Clin Lung Cancer 2006; 7(4): 250-6.
[http://dx.doi.org/10.3816/CLC.2006.n.002] [PMID: 16512978]
[217]
Kim SY, Choi YJ, Joung SM, Lee BH, Jung YS, Lee JY. Hypoxic stress up-regulates the expression of Toll-like receptor 4 in macrophages via hypoxia-inducible factor. Immunology 2010; 129(4): 516-24.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03203.x] [PMID: 20002786]
[218]
Zhu K, Zhu X, Sun S, et al. Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats. Exp Neurol 2021; 345: 113828.
[http://dx.doi.org/10.1016/j.expneurol.2021.113828] [PMID: 34343528]
[219]
Seo EJ, Kim DK, Jang IH, et al. Hypoxia-NOTCH1-SOX2 signaling is important for maintaining cancer stem cells in ovarian cancer. Oncotarget 2016; 7(34): 55624-38.
[http://dx.doi.org/10.18632/oncotarget.10954] [PMID: 27489349]
[220]
Cheng YL, Park JS, Manzanero S, et al. Evidence that collaboration between HIF-1α, and Notch-1 promotes neuronal cell death in ischemic stroke. Neurobiol Dis 2014; 62: 286-95.
[http://dx.doi.org/10.1016/j.nbd.2013.10.009] [PMID: 24141018]
[221]
Whelan KA, Schwab LP, Karakashev SV, et al. The oncogene HER2/neu (ERBB2) requires the hypoxia-inducible factor HIF-1 for mammary tumor growth and anoikis resistance. J Biol Chem 2013; 288(22): 15865-77.
[http://dx.doi.org/10.1074/jbc.M112.426999] [PMID: 23585570]
[222]
Kuhlicke J, Frick JS, Morote-Garcia JC, Rosenberger P, Eltzschig HK. Hypoxia inducible factor (HIF)-1 coordinates induction of Toll-like receptors TLR2 and TLR6 during hypoxia. PLoS One 2007; 2(12): e1364.
[http://dx.doi.org/10.1371/journal.pone.0001364] [PMID: 18159247]
[223]
Olszewska-Pazdrak B, Hein TW, Olszewska P, Carney DH. Chronic hypoxia attenuates VEGF signaling and angiogenic responses by downregulation of KDR in human endothelial cells. Am J Physiol Cell Physiol 2009; 296(5): C1162-70.
[http://dx.doi.org/10.1152/ajpcell.00533.2008] [PMID: 19244479]
[224]
Das B, Yeger H, Tsuchida R, et al. A hypoxia-driven vascular endothelial growth factor/Flt1 autocrine loop interacts with hypoxia-inducible factor-1alpha through mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 pathway in neuroblastoma. Cancer Res 2005; 65(16): 7267-75.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4575] [PMID: 16103078]
[225]
Nie M, Blankenship AL, Giesy JP. Interactions between aryl hydrocarbon receptor (AhR) and hypoxia signaling pathways. Environ Toxicol Pharmacol 2001; 10(1-2): 17-27.
[http://dx.doi.org/10.1016/S1382-6689(01)00065-5] [PMID: 11382553]
[226]
Juricek L, Coumoul X. The Aryl Hydrocarbon Receptor and the Nervous System. Int J Mol Sci 2018; 19(9): 2504.
[http://dx.doi.org/10.3390/ijms19092504] [PMID: 30149528]
[227]
Rehn M, Olsson A, Reckzeh K, et al. Hypoxic induction of vascular endothelial growth factor regulates murine hematopoietic stem cell function in the low-oxygenic niche. Blood 2011; 118(6): 1534-43.
[http://dx.doi.org/10.1182/blood-2011-01-332890] [PMID: 21670467]
[228]
Rattner A, Williams J, Nathans J. Roles of HIFs and VEGF in angiogenesis in the retina and brain. J Clin Invest 2019; 129(9): 3807-20.
[http://dx.doi.org/10.1172/JCI126655] [PMID: 31403471]
[229]
Ramakrishnan S, Anand V, Roy S. Vascular endothelial growth factor signaling in hypoxia and inflammation. J Neuroimmune Pharmacol 2014; 9(2): 142-60.
[http://dx.doi.org/10.1007/s11481-014-9531-7] [PMID: 24610033]
[230]
McMahon S, Charbonneau M, Grandmont S, Richard DE, Dubois CM. Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. J Biol Chem 2006; 281(34): 24171-81.
[http://dx.doi.org/10.1074/jbc.M604507200] [PMID: 16815840]
[231]
Guan J, Miller OT, Waugh KM, McCarthy DC, Gluckman PD, Gunn AJ. TGFβ-1 and neurological function after hypoxia-ischemia in adult rats. Neuroreport 2004; 15(6): 961-4.
[http://dx.doi.org/10.1097/00001756-200404290-00006] [PMID: 15076715]
[232]
Klempt ND, Sirimanne E, Gunn AJ, et al. Hypoxia-ischemia induces transforming growth factor β1 mRNA in the infant rat brain. Brain Res Mol Brain Res 1992; 13(1-2): 93-101.
[http://dx.doi.org/10.1016/0169-328X(92)90048-G] [PMID: 1315921]
[233]
Becke A, Müller P, Dordevic M, Lessmann V, Brigadski T, Müller NG. Daily intermittent normobaric hypoxia Over 2 weeks reduces bdnf plasma levels in young adults – a randomized controlled feasibility study. Front Physiol 2018; 9: 1337.
[http://dx.doi.org/10.3389/fphys.2018.01337] [PMID: 30327610]
[234]
Xue LL, Du RL, Hu Y, et al. BDNF promotes neuronal survival after neonatal hypoxic-ischemic encephalopathy by up-regulating Stx1b and suppressing VDAC1. Brain Res Bull 2021; 174: 131-40.
[http://dx.doi.org/10.1016/j.brainresbull.2021.05.013] [PMID: 34058286]
[235]
Chen AI, Xiong LJ, Tong YU, Mao M. The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biomed Rep 2013; 1(2): 167-76.
[http://dx.doi.org/10.3892/br.2012.48] [PMID: 24648914]
[236]
Conte C, Riant E, Toutain C, et al. FGF2 translationally induced by hypoxia is involved in negative and positive feedback loops with HIF-1alpha. PLoS One 2008; 3(8): e3078.
[http://dx.doi.org/10.1371/journal.pone.0003078] [PMID: 18728783]
[237]
Akaneya Y, Enokido Y, Takahashi M, Hatanaka H. In vitro model of hypoxia: basic fibroblast growth factor can rescue cultured CNS neurons from oxygen-deprived cell death. J Cereb Blood Flow Metab 1993; 13(6): 1029-32.
[http://dx.doi.org/10.1038/jcbfm.1993.130] [PMID: 8408312]
[238]
Sakaki T, Yamada K, Otsuki H, Yuguchi T, Kohmura E, Hayakawa T. Brief exposure to hypoxia induces bFGF mRNA and protein and protects rat cortical neurons from prolonged hypoxic stress. Neurosci Res 1995; 23(3): 289-96.
[http://dx.doi.org/10.1016/0168-0102(95)00954-X] [PMID: 8545077]
[239]
Abato JE, Moftah M, Cron GO, Smith PD, Jadavji NM. Methylenetetrahydrofolate reductase deficiency alters cellular response after ischemic stroke in male mice. Nutr Neurosci 2022; 25(3): 558-66.
[http://dx.doi.org/10.1080/1028415X.2020.1769412] [PMID: 32448097]
[240]
Olcina MM, Grand RJA, Hammond EM. ATM activation in hypoxia - causes and consequences. Mol Cell Oncol 2014; 1(1): e29903.
[http://dx.doi.org/10.4161/mco.29903] [PMID: 27308313]
[241]
Feng J, Zhao X, Gurkoff GG, Van KC, Shahlaie K, Lyeth BG. Post-traumatic hypoxia exacerbates neuronal cell death in the hippocampus. J Neurotrauma 2012; 29(6): 1167-79.
[http://dx.doi.org/10.1089/neu.2011.1867] [PMID: 22191636]
[242]
Ben-Yosef Y, Miller A, Shapiro S, Lahat N. Hypoxia of endothelial cells leads to MMP-2-dependent survival and death. Am J Physiol Cell Physiol 2005; 289(5): C1321-31.
[http://dx.doi.org/10.1152/ajpcell.00079.2005] [PMID: 16210427]
[243]
Tong W, Chen W, Ostrowski RP, et al. Maternal hypoxia increases the activity of MMPs and decreases the expression of TIMPs in the brain of neonatal rats. Dev Neurobiol 2010; 70(3): 182-94.
[PMID: 20017119]
[244]
Vadysirisack DD, Ellisen LW. mTOR activity under hypoxia. Methods Mol Biol 2012; 821: 45-58.
[http://dx.doi.org/10.1007/978-1-61779-430-8_4] [PMID: 22125059]
[245]
Chen H, Xiong T, Qu Y, Zhao F, Ferriero D, Mu D. mTOR activates hypoxia-inducible factor-1α, and inhibits neuronal apoptosis in the developing rat brain during the early phase after hypoxia–ischemia. Neurosci Lett 2012; 507(2): 118-23.
[http://dx.doi.org/10.1016/j.neulet.2011.11.058] [PMID: 22178140]
[246]
Zeng M, Kikuchi H, Pino MS, Chung DC. Hypoxia activates the K-ras proto-oncogene to stimulate angiogenesis and inhibit apoptosis in colon cancer cells. PLoS One 2010; 5(6): e10966.
[http://dx.doi.org/10.1371/journal.pone.0010966] [PMID: 20532039]
[247]
Zhang R, Lai L, He J, et al. EGLN2 DNA methylation and expression interact with HIF1A to affect survival of early-stage NSCLC. Epigenetics 2019; 14(2): 118-29.
[http://dx.doi.org/10.1080/15592294.2019.1573066] [PMID: 30665327]
[248]
Zhou Y, Ouyang N, Liu L, Tian J, Huang X, Lu T. An EGLN1 mutation may regulate hypoxic response in cyanotic congenital heart disease through the PHD2/HIF-1A pathway. Genes Dis 2019; 6(1): 35-42.
[http://dx.doi.org/10.1016/j.gendis.2018.03.003] [PMID: 30906831]
[249]
Rahikkala E, Myllykoski M, Hinttala R, et al. Biallelic loss-of-function P4HTM gene variants cause hypotonia, hypoventilation, intellectual disability, dysautonomia, epilepsy, and eye abnormalities (HIDEA syndrome). Genet Med 2019; 21(10): 2355-63.
[http://dx.doi.org/10.1038/s41436-019-0503-4] [PMID: 30940925]
[250]
Panchenko MV, Farber HW, Korn JH. Induction of heme oxygenase-1 by hypoxia and free radicals in human dermal fibroblasts. Am J Physiol Cell Physiol 2000; 278(1): C92-C101.
[http://dx.doi.org/10.1152/ajpcell.2000.278.1.C92] [PMID: 10644516]
[251]
Hampel H, Vassar R, De Strooper B, et al. The β-Secretase BACE1 in Alzheimer’s Disease. Biol Psychiatry 2021; 89(8): 745-56.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.001] [PMID: 32223911]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy