Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis, Characteristation and Biological Activity of Silver Nanoparticles Generated Using the Leaf and Stembark Extract of Combretum erythrophyllum

Author(s): Sahejna Bantho*, Yougasphree Naidoo, Yaser H. Dewir, Moganavelli Singh, Johnson Lin and Ayuvna Bantho

Volume 23, Issue 13, 2023

Published on: 10 May, 2023

Page: [1545 - 1566] Pages: 22

DOI: 10.2174/1871520623666230417112903

Price: $65

conference banner
Abstract

Background: Medicinal plants are known to contain numerous phytometabolites with suggested pharmacological value. Literature suggests that the medicinal use of phytometabolites in its natural state has limited success due to poor absorption rates. Currently, the focus lies on synthesizing phytometabolites extracted from medicinal plants and silver ions to generate nano-scale carriers with specialized properties. Thus, the nano-synthesis of phytometabolites with silver (Ag+) ions is proposed. The use of silver is promoted due to its known antibacterial and antioxidant effectiveness, among many. Nanotechnology allows for the green generation of nano-scaled particles that are able to penetrate target areas due to its size and unique structure. Therefore, this study aimed to generate a novel protocol for the synthesis of AgNP’s using the leaf and stembark extracts of C. erythrophyllum. In addition, the biological activity of the generated nanoparticles was evaluated.

Objectives: To synthesis silver nanoparticles (AgNP’s) using the leaf and stembark extracts of Combretum erythrophyllum. The relative shape, size, distribution, and zeta potential of the synthesised particles were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX), Nanoparticle tracking analysis (NTA), and UV Spectrophotometry (UV -vis). To screen the synthesised particles for its potential antibacterial, apoptotic and cytotoxic properties.

Methods: A novel protocol for the synthesis of silver nanoparticles (AgNP’s) using the leaf and stembark extracts of Combretum erythrophyllum was established. The generated AgNP’s were characterised using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX), Nanoparticle tracking analysis (NTA), and UV Spectrophotometry (UV -vis). Furthermore, the AgNP’s were evaluated for their antibacterial, cytotoxic and apoptotic activity against a range of bacterial strains and cancer cells. Characterisation was based upon particle size, shape and elemental silver composition.

Results: Within the stembark extract, synthesised nanoparticles were large, spherical in shape and dense in elemental silver composition. While synthesised nanoparticles of the leaf extract were small to medium in size, varied in shape established and contained minimal quantities of silver (substantiated by the TEM and NTA results). Furthermore, it was established that the synthesized nanoparticles exhibited high antibacterial properties due to the conducted antibacterial assay. The FTIR analysis revealed the presence of numerous functional groups within active compounds found in the synthesised extracts. Functional groups found varied between the leaf and stembark extracts, each with proposed pharmacological activity.

Conclusion: Presently, antibiotic-resistant bacteria are continuously evolving thus, posing as a threat to conventional drug delivery systems. Nanotechnology provides a platform that enables the formulation of a low-toxicity and hypersensitive drug delivery system. Further studies evaluating the biological activity of extracts of C. erythrophyllum synthesized with silver nanoparticles could enhance its proposed pharmaceutical value.

Keywords: AgNP’s, Ag+ , bio-nanotechnology, anti-bacterial activity, Combretum erythrophyllum, phytometabolites

Graphical Abstract
[1]
Prasher, P; Singh, M; Mudila, H Silver nanoparticles as antimicrobial therapeutics: Current perspectives and future challenges. 3 Biotech., 2018, 8, 1-23.
[2]
Demirdöğen, R.E.; Emen, F.M.; Ocakoglu, K.; Murugan, P.; Sudesh, K.; Avşar, G. Green nanotechnology for synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) nanoparticles for sustained bortezomib release using supercritical CO2 assisted particle formation combined with electrodeposition. Int. J. Biol. Macromol., 2018, 107(Pt A), 436-445.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.011] [PMID: 28888547]
[3]
Gibb, A.; Jones, W.; Goodier, C.; Bust, P.; Song, M.; Jin, J. Nanotechnology in construction and demolition: What we know, what we don’t. Constr. Res. Innov., 2018, 9(2), 55-58.
[http://dx.doi.org/10.1080/20450249.2018.1470405]
[4]
Hu, Q.; Li, H.; Wang, L.; Gu, H.; Fan, C. DNA nanotechnology-enabled drug delivery systems. Chem. Rev., 2019, 119(10), 6459-6506.
[http://dx.doi.org/10.1021/acs.chemrev.7b00663] [PMID: 29465222]
[5]
Sheoran, N.; Kaur, P. Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: A review. Biotechnol. Res. Innov., 2018, 2(1), 63-73.
[6]
Li, D.; Qi, L. Self-assembly of inorganic nanoparticles mediated by host-guest interactions. Curr. Opin. Colloid Interface Sci., 2018, 35, 59-67.
[http://dx.doi.org/10.1016/j.cocis.2018.01.004]
[7]
Bailey, J.K.; Sammet, S.; Overocker, J.; Craft-Coffman, B.; Acevedo, C.M.; Cowan, M.E.; Powell, H.M. MRI compatibility of silver based wound dressings. Burns, 2018, 44(8), 1940-1946.
[http://dx.doi.org/10.1016/j.burns.2018.05.017] [PMID: 29921487]
[8]
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci., 2014, 9(6), 385-406.
[PMID: 26339255]
[9]
Chandirika, J.U.; Annadurai, G. Biosynthesis and characterization of silver nanoparticles using leaf extract Abutilon indicum. Glob. J. Biotechnol. Biochem., 2018, 13, 7-11.
[10]
Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep., 2017, 15(1), 11-23.
[http://dx.doi.org/10.1016/j.btre.2017.03.002] [PMID: 28603692]
[11]
Vázquez-Núñez, E.; López-Moreno, M.L.; de la Rosa Álvarez, G.; Fernández-Luqueño, F. Incorporation of nanoparticles into plant nutrients: The real benefits. In: Agricultural nanobiotechnology modern agriculture for a sustainable future; López-Valdez, F.; Fernández-Luqueño, F., Eds.; Springer International Publishing: Berlin, Germany, 2018.
[http://dx.doi.org/10.1007/978-3-319-96719-6_4]
[12]
Hedaginal, B.R.; Taranath, T.C. Characterisation and antimicrobial activity of biogenic silver nano-particles using leaf extract of Thunbergia alata bojer ex sims. Int. J. Pharm. Sci. Res., 2017, 8(5), 2070-2081.
[13]
Chung, I.M.; Abdul Rahuman, A.; Marimuthu, S.; Kirthi, A.V.; Anbarasan, K.; Padmini, P.; Rajakumar, G. Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp. Ther. Med., 2017, 14(1), 18-24.
[PMID: 28672888]
[14]
Akbar, N.; Khan, N.A.; Muhammad, J.S.; Siddiqui, R. The role of gut microbiome in cancer genesis and cancer prevention; Health Sci. Rev, 2022, p. 100010.
[15]
Bantho, S.; Naidoo, Y.; Dewir, Y.H.; Bantho, A.; Murthy, H.N. Chemical composition of Combretum erythrophyllum leaf and stem bark extracts. Horticulturae, 2022, 8(8), 755.
[http://dx.doi.org/10.3390/horticulturae8080755]
[16]
Arazmjoo, S.; Es-haghi, A.; Mahmoodzadeh, H. Evaluation of anti-cancer and antioxidant properties of nanoemulsions synthesized by Nigella Sativa L. tincture. Nanomed. J., 2021, 8(1)
[17]
Mawoza, T.; Ndove, T. Combretum erythrophyllum (Burch.) Sond.(combretaceae): A review of its ethnomedicinal uses, phytochemistry and pharmacology. Global Journal of Biology. Agriculture and Health Sciences., 2015, 4(1), 105-109.
[18]
Mtunzi, F.M.; Ejidike, I.P.; Ledwaba, I.; Ahmed, A.; Pakade, V.E.; Klink, M.J.; Modise, S.J. Solvent–solvent fractionations of Combretum erythrophyllum (Burch.) leave extract: Studies of their antibacterial, antifungal, antioxidant and cytotoxicity potentials. Asian Pac. J. Trop. Med., 2017, 10(7), 670-679.
[http://dx.doi.org/10.1016/j.apjtm.2017.07.007] [PMID: 28870343]
[19]
Chinnasamy, C.; Tamilselvan, P.; Karthik, V.; Karthik, B. Optimization and characterization studies on green synthesis of silver nanoparticles using response surface methodology. Adv. Nat. Appl. Sci., 2017, 11(4), 214-221.
[20]
Bahuguna, G.; Kumar, A.; Mishra, N.K.; Kumar, C.; Bahlwal, A.; Chaudhary, P.; Singh, R. Green synthesis and characterization of silver nanoparticles using aqueous petal extract of the medicinal plant Combretum indicum. Mater. Res. Express, 2016, 3(7), 075003.
[http://dx.doi.org/10.1088/2053-1591/3/7/075003]
[21]
Chittasupho, C.; Athikomkulchai, S. Nanoparticles of Combretum quadrangulare leaf extract induce cytotoxicity, apoptosis, cell cycle arrest and anti-migration in lung cancer cells. J. Drug Deliv. Sci. Technol., 2018, 45, 378-387.
[http://dx.doi.org/10.1016/j.jddst.2018.04.003]
[22]
Nabikhan, A.; Kandasamy, K.; Raj, A.; Alikunhi, N.M. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf. B Biointerfaces, 2010, 79(2), 488-493.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.018] [PMID: 20627485]
[23]
Awwad, A.M.; Salem, N.M.; Abdeen, A.O. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Ind. Chem., 2013, 4, 1-6.
[http://dx.doi.org/10.1186/2228-5547-4-29]
[24]
Vanaja, M.; Annadurai, G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci., 2013, 3(3), 217-223.
[http://dx.doi.org/10.1007/s13204-012-0121-9]
[25]
Ashraf, J.M.; Ansari, M.A.; Khan, H.M.; Alzohairy, M.A.; Choi, I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci. Rep., 2016, 6(1), 20414.
[http://dx.doi.org/10.1038/srep20414] [PMID: 26829907]
[26]
Khatoon, N.; Mazumder, J.A.; Sardar, M. Biotechnological applications of green synthesized silver nanoparticles. J. Nanosci. Curr. Res., 2017, 2(1), 2572-0813.
[http://dx.doi.org/10.4172/2572-0813.1000107]
[27]
Paulkumar, K.; Gnanajobitha, G.; Vanaja, M.; Pavunraj, M.; Annadurai, G. Green synthesis of silver nanoparticle and silver based chitosan bionanocomposite using stem extract of Saccharum officinarum and assessment of its antibacterial activity. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2017, 8(3), 035019.
[http://dx.doi.org/10.1088/2043-6254/aa7232]
[28]
Sharma, M.; Yadav, S.; Srivastava, M.M.; Ganesh, N.; Srivastava, S. Promising anti-inflammatory bio-efficacy of saponin loaded silver nanoparticles prepared from the plant Madhuca longifolia. Asian J. Nanosci. Mater., 2018, 1, 244-261.
[29]
Bantho, S.; Naidoo, Y.; Dewir, Y.H. The secretory scales of Combretum erythrophyllum (Combretaceae): Micromorphology, ultrastructure and histochemistry. S. Afr. J. Bot., 2020, 131, 104-117.
[http://dx.doi.org/10.1016/j.sajb.2020.02.001]
[30]
Assunção, A.G.L.; Cakmak, I.; Clemens, S.; González-Guerrero, M.; Nawrocki, A.; Thomine, S. Micronutrient homeostasis in plants for more sustainable agriculture and healthier human nutrition. J. Exp. Bot., 2022, 73(6), 1789-1799.
[http://dx.doi.org/10.1093/jxb/erac014] [PMID: 35134869]
[31]
Podar, D.; Maathuis, F.J.M. Primary nutrient sensors in plants. iScience, 2022, 25(4), 104029.
[http://dx.doi.org/10.1016/j.isci.2022.104029] [PMID: 35313690]
[32]
Yadav, J.P.; Kumar, S.; Budhwar, L.; Yadav, A.; Yadav, M. Characterization and antibacterial activity of synthesized silver and iron nanoparticles using Aloe vera. J. Nanomed. Nanotechnol., 2016, 7(384), 2.
[33]
Srirangam, G.M.; Rao, K.P. Synthesis and charcterization of silver nanoparticles from the leaf extract of Malachra capitata (L.). Rasayan J. Chem., 2017, 10(1), 46-53.
[34]
Granbohm, H.; Larismaa, J.; Ali, S.; Johansson, L.S.; Hannula, S.P. Control of the size of silver nanoparticles and release of silver in heat treated SiO2-Ag composite powders. Materials, 2018, 11(1), 80.
[http://dx.doi.org/10.3390/ma11010080] [PMID: 29304021]
[35]
Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, 73(6), 1712-1720.
[http://dx.doi.org/10.1128/AEM.02218-06] [PMID: 17261510]
[36]
Sibiya, P.N.; Moloto, M.J. Green synthesis of Ag2S nanoparticles: Effect of ph and capping agent on size and shape of nps and their antibacterial activity. Dig. J. Nanomater. Biostruct., 2018, 13(2)
[37]
Raza, M.; Kanwal, Z.; Rauf, A.; Sabri, A.; Riaz, S.; Naseem, S. Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials, 2016, 6(4), 74.
[http://dx.doi.org/10.3390/nano6040074] [PMID: 28335201]
[38]
Kumar, V.; Yadav, S.C.; Yadav, S.K. Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J. Chem. Technol. Biotechnol., 2010, 85(10), 1301-1309.
[http://dx.doi.org/10.1002/jctb.2427]
[39]
Mallikarjuna, K.; Narasimha, G.; Dillip, G.R.; Praveen, B.; Shreedhar, B.; Lakshmi, C.S.; Reddy, B.V.; Raju, B.D. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Dig. J. Nanomater. Biostruct., 2011, 6(1), 181-186.
[40]
Yugay, Y.; Rusapetova, T.; Mashtalyar, D.; Grigorchuk, V.; Vasyutkina, E.; Kudinova, O.; Zenkina, K.; Trifuntova, I.; Karabtsov, A.; Ivanov, V.; Aseeva, T.; Bulgakov, V.; Shkryl, Y. Biomimetic synthesis of functional silver nanoparticles using hairy roots of Panax ginseng for wheat pathogenic fungi treatment. Colloids Surf. B Biointerfaces, 2021, 207, 112031.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112031] [PMID: 34392080]
[41]
Alabdallah, N.M.; Hasan, M.M. Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi J. Biol. Sci., 2021, 28(10), 5631-5639.
[http://dx.doi.org/10.1016/j.sjbs.2021.05.081] [PMID: 34588874]
[42]
Kim, D.; Kwon, S.J.; Wu, X.; Sauve, J.; Lee, I.; Nam, J.; Kim, J.; Dordick, J.S. Selective killing of pathogenic bacteria by antimicrobial silver nanoparticle-Cell wall binding domain conjugates. ACS Appl. Mater. Interfaces, 2018, 10(16), 13317-13324.
[http://dx.doi.org/10.1021/acsami.8b00181] [PMID: 29619821]
[43]
Patel, N. Biosynthesis and antibacterial activity of silver and gold nanoparticles from the leaf and callus extracts of Amaranthus dubius, Gunnera perpensa, Ceratotheca triloba and Catharanthus roseus, PhD Thesis, Durban University of Technology, Durban, South Africa 2013.
[http://dx.doi.org/10.51415/10321/914]
[44]
Poojitha, M.; Kumar, S.; Narayana, S.S. Phytochemical analysis of medicinal plants by FTIR analysis. Ann. Rom. Soc. Cell Biol., 2021, 25(6), 4261-4268.
[45]
Burman, S.; Bhattacharya, K.; Mukherjee, D.; Chandra, G. Antibacterial efficacy of leaf extracts of Combretum album Pers. against some pathogenic bacteria. BMC Complement. Altern. Med., 2018, 18(1), 213.
[http://dx.doi.org/10.1186/s12906-018-2271-0] [PMID: 29996826]
[46]
Taher, M.A.; Khojah, E.; Darwish, M.S.; Elsherbiny, E.A.; Elawady, A.A.; Dawood, D.H. Biosynthesis of silver nanoparticles by polysaccharide of Leucaena leucocephala seeds and their anticancer, antifungal properties and as preservative of composite milk sample. J. Nanomater., 2022, 2022, 1-16.
[http://dx.doi.org/10.1155/2022/7490221]
[47]
Kulshreshtha, M.; Shukla, K.S.; Tiwari, G.A.; Singh, M.P.; Singh, A. Pharmacognostical, phytochemical and pharmacological aspects of Quisqualis indica: An update. J. Nat. Sci. Med., 2018, 1(2), 41.
[48]
Al-Nasser, M.M.; Al-Dosari, M.S.; Parvez, M.K.; Al-Anazi, M.R.; Alkahtane, A.A.; Alothaid, H.; Alahmari, A.; Alarifi, S.; Albasher, G.; Almeer, R.; Alqahtani, M.D.; Al-Johani, N.S.; Alhoshani, N.M.; Alkeraishan, N.; Alhenaky, A.; Alkahtani, S.; Al-Qahtani, A.A. The potential effects of Indigofera coerulea extract on THP-1 human cell line. J. King Saud Univ. Sci., 2021, 33(4), 101446.
[http://dx.doi.org/10.1016/j.jksus.2021.101446]
[49]
Mobaraki, F.; Momeni, M.; Taghavizadeh Yazdi, M.E.; Meshkat, Z.; Silanian Toosi, M.; Hosseini, S.M. Plant-derived synthesis and characterization of gold nanoparticles: Investigation of its antioxidant and anticancer activity against human testicular embryonic carcinoma stem cells. Process Biochem., 2021, 111, 167-177.
[http://dx.doi.org/10.1016/j.procbio.2021.09.010]
[50]
Ali, S.; Khan, M.R.; Batool, R.; Shah, S.A.; Iqbal, J.; Abbasi, B.A.; Yaseen, T.; Zahra, N.; Aldhahrani, A.; Althobaiti, F. Characterization and phytochemical constituents of Periploca hydaspidis Falc crude extract and its anticancer activities. Saudi J. Biol. Sci., 2021, 28(10), 5500-5517.
[http://dx.doi.org/10.1016/j.sjbs.2021.08.020] [PMID: 34588860]
[51]
Jabir, M.S.; Saleh, Y.M.; Sulaiman, G.M.; Yaseen, N.Y.; Sahib, U.I.; Dewir, Y.H.; Alwahibi, M.S.; Soliman, D.A. Green synthesis of silver nanoparticles using Annona muricata extract as an inducer of apoptosis in cancer cells and inhibitor for NLRP3 inflammasome via enhanced autophagy. Nanomaterials, 2021, 11(2), 384.
[http://dx.doi.org/10.3390/nano11020384] [PMID: 33546151]
[52]
Anitha, J.; Selvakumar, R.; Hema, S.; Murugan, K.; Premkumar, T. Facile green synthesis of nano-sized ZnO using leaf extract of Morinda tinctoria: MCF-7 cell cycle arrest, antiproliferation, and apoptosis studies. J. Ind. Eng. Chem., 2021, 105, 520-529.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy