Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Covid-19 Prevention and Treatment by Targeting Fc-fusion Proteins: An Experience to Fight Emerging Diseases

Author(s): Hamed Zare, Tahereh Farkhondeh, Hamid Bakherad, Hengame Sharifi, Maryam Hosseinzade Shirzeyli, Saeed Samarghandian and Fahimeh Ghasemi*

Volume 24, Issue 4, 2024

Published on: 18 May, 2023

Page: [428 - 434] Pages: 7

DOI: 10.2174/1566524023666230410093243

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

The coronavirus disease 2019 (Covid-19) pandemic has been considered a major threat to human health. Effective therapeutic approaches are urgently required. Spike protein and the Angiotensin-converting enzyme 2 (ACE2) receptors have critical roles in SARS-CoV-2 infection. As a result, these two proteins are considered potential targets for the development of a wide variety of biotherapeutics and vaccines for controlling Covid-19. The fusion proteins have desirable medicinal properties, including high serum half-life, stability, and solubility in the body. Moreover, other Fc-fusion proteins used to treat other diseases have no known side effects. These Fc-fusion proteins are valuable biopharmaceuticals and have been proposed as therapeutic candidates for the treatment and prevention of Covid-19 owing to their potential therapeutic benefits.

Keywords: Fc-fusion proteins, Covid-19, SARS-CoV-2, Spike protein, ACE2, receptor.

[1]
Siriwattananon K, Manopwisedjaroen S, Shanmugaraj B, et al. Plant-produced receptor-binding domain of SARS-CoV-2 elicits potent neutralizing responses in mice and non-human primates. Front Plant Sci 2021; 12: 682953.
[http://dx.doi.org/10.3389/fpls.2021.682953] [PMID: 34054909]
[2]
Li X, Raventós B, Roel E, et al. Association between covid-19 vaccination, SARS-CoV-2 infection, and risk of immune mediated neurological events: population based cohort and self-controlled case series analysis. BMJ 2022; 376: e068373.
[http://dx.doi.org/10.1136/bmj-2021-068373] [PMID: 35296468]
[3]
Shao Y, Wu Y, Feng Y, Xu W, Xiong F, Zhang X. SARS-CoV-2 vaccine research and immunization strategies for improved control of the COVID-19 pandemic. Front Med 2022; 16(2): 185-95.
[http://dx.doi.org/10.1007/s11684-021-0913-y] [PMID: 35226300]
[4]
Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020; 181(4): 894-904.e9.
[http://dx.doi.org/10.1016/j.cell.2020.03.045] [PMID: 32275855]
[5]
Kim HY, Lee JH, Kim MJ, et al. Development of a SARS-CoV-2-specific biosensor for antigen detection using scFv-Fc fusion proteins. Biosens Bioelectron 2021; 175: 112868.
[http://dx.doi.org/10.1016/j.bios.2020.112868] [PMID: 33281048]
[6]
Castilho A, Schwestka J, Kienzl NF, et al. Generation of enzymatically competent SARS‐CoV‐2 decoy receptor ACE2‐Fc in glycoengineered Nicotiana benthamiana. Biotechnol J 2021; 16(6): 2000566.
[http://dx.doi.org/10.1002/biot.202000566] [PMID: 33481336]
[7]
Li Y, Tenchov R, Smoot J, Liu C, Watkins S, Zhou Q. A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Cent Sci 2021; 7(4): 512-33.
[http://dx.doi.org/10.1021/acscentsci.1c00120] [PMID: 34056083]
[8]
Camperi J, Dahotre S, Guillarme D, et al. Monitoring multiple quality attributes of a complex Fc-fusion protein during cell culture production processes by mD-LC-MS peptide mapping. Talanta 2022; 246: 123519.
[http://dx.doi.org/10.1016/j.talanta.2022.123519]
[9]
Ren W, Sun H, Gao GF, et al. Recombinant SARS-CoV-2 spike S1-Fc fusion protein induced high levels of neutralizing responses in nonhuman primates. Vaccine 2020; 38(35): 5653-8.
[http://dx.doi.org/10.1016/j.vaccine.2020.06.066] [PMID: 32651113]
[10]
Strohl WR. Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs 2015; 29(4): 215-39.
[http://dx.doi.org/10.1007/s40259-015-0133-6] [PMID: 26177629]
[11]
Wu B, Sun YN. Pharmacokinetics of Peptide–Fc Fusion Proteins. J Pharm Sci 2014; 103(6): 1928.
[http://dx.doi.org/10.1002/jps.23984]
[12]
Levin D, Golding B, Strome SE, Sauna ZE. Fc fusion as a platform technology: potential for modulating immunogenicity. Trends Biotechnol 2015; 33(1): 27-34.
[http://dx.doi.org/10.1016/j.tibtech.2014.11.001] [PMID: 25488117]
[13]
Duivelshof BL, Murisier A, Camperi J, et al. Therapeutic Fc‐fusion proteins: Current analytical strategies. J Sep Sci 2021; 44(1): 35-62.
[http://dx.doi.org/10.1002/jssc.202000765] [PMID: 32914936]
[14]
Czajkowsky DM, Hu J, Shao ZH, Pleass RJ. Fc‐fusion proteins: New developments and future perspectives. EMBO Mol Med 2012; 4(10): 1015-28.
[http://dx.doi.org/10.1002/emmm.201201379]
[15]
Yang C, Gao X, Gong R. Engineering of Fc fragments with optimized physicochemical properties implying improvement of clinical potentials for Fc-based therapeutics. Front Immunol 2018; 8: 1860.
[http://dx.doi.org/10.3389/fimmu.2017.01860] [PMID: 29375551]
[16]
Oh J, Lee KW, Choi HW, Lee C. Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein. Arch Virol 2014; 159(11): 2977-87.
[http://dx.doi.org/10.1007/s00705-014-2163-7] [PMID: 25008896]
[17]
Bernardi A, Huang Y, Harris B, et al. Development and simulation of fully glycosylated molecular models of ACE2-Fc fusion proteins and their interaction with the SARS-CoV-2 spike protein binding domain. PLoS One 2020; 15(8): e0237295.
[http://dx.doi.org/10.1371/journal.pone.0237295] [PMID: 32756606]
[18]
Liu P, Xie X, Gao L, Jin J. Designed variants of ACE2-Fc that decouple anti-SARS-CoV-2 activities from unwanted cardiovascular effects. Int J Biol Macromol 2020; 165(Pt B): 1626-33.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.1205] [PMID: 33080267]
[19]
Huang KY, Lin MS, Kuo TC, et al. Humanized COVID‐19 decoy antibody effectively blocks viral entry and prevents SARS‐CoV‐2 infection. EMBO Mol Med 2021; 13(1): e12828.
[http://dx.doi.org/10.15252/emmm.202012828] [PMID: 33159417]
[20]
Khan A, Benthin C, Zeno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care 2017; 21(1): 234.
[http://dx.doi.org/10.1186/s13054-017-1823-x] [PMID: 28877748]
[21]
Hemnes AR, Rathinasabapathy A, Austin EA, et al. A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension. Eur Respir J 2018; 51(6): 1702638.
[http://dx.doi.org/10.1183/13993003.02638-2017] [PMID: 29903860]
[22]
Liu P, Wysocki J, Souma T, et al. Novel ACE2-Fc chimeric fusion provides long-lasting hypertension control and organ protection in mouse models of systemic renin angiotensin system activation. Kidney Int 2018; 94(1): 114-25.
[http://dx.doi.org/10.1016/j.kint.2018.01.029] [PMID: 29691064]
[23]
Tada T, Fan C, Chen JS, et al. An ACE2 microbody containing a single immunoglobulin Fc domain is a potent inhibitor of SARS-CoV-2. Cell Rep 2020; 33(12): 108528.
[http://dx.doi.org/10.1016/j.celrep.2020.108528] [PMID: 33326798]
[24]
Zhang X, Han P, Wang H, et al. Engineering mesenchymal stromal cells with neutralizing and anti-inflammatory capability against SARS-CoV-2 infection. Mol Ther Methods Clin Dev 2021; 21: 754-64.
[http://dx.doi.org/10.1016/j.omtm.2021.05.004] [PMID: 34007862]
[25]
Siriwattananon K, Manopwisedjaroen S, Kanjanasirirat P, et al. Development of plant-produced recombinant ACE2-Fc fusion protein as a potential therapeutic agent against SARS-CoV-2. Front Plant Sci 2021; 11: 604663.
[http://dx.doi.org/10.3389/fpls.2020.604663] [PMID: 33584747]
[26]
He Y, Zhou Y, Liu S, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun 2004; 324(2): 773-81.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.106] [PMID: 15474494]
[27]
Qi X, Ke B, Feng Q, et al. Construction and immunogenic studies of a mFc fusion receptor binding domain (RBD) of spike protein as a subunit vaccine against SARS-CoV-2 infection. Chem Commun 2020; 56(61): 8683-6.
[http://dx.doi.org/10.1039/D0CC03263H] [PMID: 32613971]
[28]
Liu X, Drelich A, Li W, et al. Enhanced elicitation of potent neutralizing antibodies by the SARS-CoV-2 spike receptor binding domain Fc fusion protein in mice. Vaccine 2020; 38(46): 7205-12.
[http://dx.doi.org/10.1016/j.vaccine.2020.09.058] [PMID: 33010978]
[29]
Sun S, He L, Zhao Z, et al. Recombinant vaccine containing an RBD-Fc fusion induced protection against SARS-CoV-2 in nonhuman primates and mice. Cell Mol Immunol 2021; 18(4): 1070-3.
[http://dx.doi.org/10.1038/s41423-021-00658-z] [PMID: 33731916]
[30]
Luo D, Yang X, Li T, et al. An updated RBD-Fc fusion vaccine booster increases neutralization of SARS-CoV-2 Omicron variants. Signal Transduct Target Ther 2022; 7(1): 327.
[http://dx.doi.org/10.1038/s41392-022-01185-7] [PMID: 36115830]
[31]
Alleva DG, Delpero AR, Scully MM, et al. Development of an IgG-Fc fusion COVID-19 subunit vaccine, AKS-452. Vaccine 2021; 39(45): 6601-13.
[http://dx.doi.org/10.1016/j.vaccine.2021.09.077] [PMID: 34642088]
[32]
Janssen YF, Feitsma EA, Boersma HH, et al. Phase I interim results of a phase I/II study of the IgG-Fc fusion COVID-19 subunit vaccine, AKS-452. Vaccine 2022; 40(9): 1253-60.
[http://dx.doi.org/10.1016/j.vaccine.2022.01.043] [PMID: 35115195]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy